organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2141-o2142

1,3-Bis[(4-nitro­benzyl­­idene)amino­­oxy]propane

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@mail.lzjtu.cn

(Received 13 July 2009; accepted 8 August 2009; online 12 August 2009)

The complete molecule of title compound, C17H16N4O6, is generated by a crystallographic twofold axis. Within the mol­ecule, the two benzene units are approximately perpen­dicular, making a dihedral angle of 85.91 (4)°. In the crystal, mol­ecules are linked into a three-dimensional network by C—H⋯O hydrogen bonds and short O⋯O and N⋯O inter­actions, with distances of 2.998 (2) and 2.968 (3) Å, respectively.

Related literature

For general background to Schiff base complexes and their applications, see: Niederhoffer et al. (1984[Niederhoffer, E. C., Timmons, J. H. & Martell, A. E. (1984). Chem. Rev. 84, 137-203.]); Zhang et al. (1990[Zhang, W., Loebach, J. L., Wilson, S. R. & Jacobsen, E. N. (1990). J. Am. Chem. Soc. 112, 2801-2803.]); Tisato et al. (1994[Tisato, J., Refosco, F. & Bandoli, F. (1994). Coord. Chem. Rev. 135-136, 325-397.]); Lacroix (2001[Lacroix, P. G. (2001). Eur. J. Inorg. Chem. 2, 339-348.]); Sundari et al. (1997[Sundari, S. S., Dhathathreyan, A., Kanthimathi, M. & Balachandran, U. N. (1997). Langmuir, 13, 4923-4925.]); Koehler et al. (1964[Koehler, K., Sandstrom, W. & Cordes, E. H. (1964). J. Am. Chem. Soc. 86, 2413-2419.]); Cordes & Jencks (1962[Cordes, E. H. & Jencks, W. P. (1962). J. Am. Chem. Soc. 84, 832-837.]); Akine et al. (2006[Akine, S., Dong, W. K. & Nabeshima, T. (2006). Inorg. Chem. 45, 4677-4684.]). For related structures, see: Fun et al. (2008a[Fun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008a). Acta Cryst. E64, o1374-o1375.],b[Fun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008b). Acta Cryst. E64, o1471.]); Kia et al. (2009[Kia, R., Fun, H.-K. & Kargar, H. (2009). Acta Cryst. E65, o682-o683.]); Shi et al. (2007[Shi, J., Dong, W., Zhang, Y. & Gao, S. (2007). Acta Cryst. E63, o4080.]); Ren et al. (2008[Ren, Z.-L., Dong, W.-K., Bai, W.-J., He, X.-N. & Wang, L. (2008). Acta Cryst. E64, o1678.]); Ding et al. (2009[Ding, Y.-J., Xue, Z.-L., Dong, W.-K., Sun, Y.-X. & Wu, J.-C. (2009). Acta Cryst. E65, o1193.]); Dong et al. (2008a[Dong, W.-K., Ding, Y.-J., Luo, Y.-L., Yan, H.-B. & Wang, L. (2008a). Acta Cryst. E64, o1636.]). For a related Schiff base bis­oxime compound synthesized using a similar route, see: Dong et al. (2008b[Dong, W.-K., He, X.-N., Li, L., Lv, Z.-W. & Tong, J.-F. (2008b). Acta Cryst. E64, o1405.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16N4O6

  • Mr = 372.34

  • Monoclinic, C 2

  • a = 29.005 (3) Å

  • b = 4.7878 (5) Å

  • c = 6.3579 (7) Å

  • β = 99.144 (1)°

  • V = 871.71 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.45 × 0.17 × 0.06 mm

Data collection
  • Siemens SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.952, Tmax = 0.993

  • 2321 measured reflections

  • 872 independent reflections

  • 675 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.094

  • S = 0.96

  • 872 reflections

  • 123 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.93 2.40 3.206 (4) 145
C9—H9⋯O3i 0.93 2.63 3.395 (4) 139
C9—H9⋯O2ii 0.93 2.71 3.374 (4) 129
Symmetry codes: (i) x, y-1, z+1; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+1].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases are among the most prevalent mixed-donor ligands in the field of coordination chemistry in which there has been growing interest, mainly because of their wide application in areas such as biochemistry (Niederhoffer et al., 1984), catalysis (Zhang et al., 1990), medical imaging (Tisato et al., 1994), optical materials (Lacroix, 2001) and thin films (Sundari et al., 1997). Although most Schiff bases are stable in both solution and the solid state, C=N bonds often suffer exchange reactions (Koehler et al., 1964) as well as hydrolysis (Cordes & Jencks, 1962). Rate constants of oxime formation are smaller than those of imine formation and the equilibrium constants are larger by several orders (Akine et al., 2006). Hence, the title compound should be stable enough to resist the metathesis of the C=N bonds. Many bisdentate Schiff base compounds have been structurally characterized (Fun et al., 2008a; Fun et al., 2008b; Kia et al., 2009), but only a relatively small number of bisoxime compounds have had their X-ray structures reported (Shi et al., 2007; Ren et al., 2008). As an extension of our work (Ding et al., 2009; Dong et al., 2008a) on the structural characterization of bisoxime compounds, the title compound, is reported here (Fig. 1).

In the title compound all bond lengths are in normal ranges. The molecule sits on a crystallographic twofold passing through the central CH2 group (symmetry code: -x, y, -z) such that there is 1/2 molecule per asymmetric unit. Within the molecule, the dihedral angle between the plane of oxime functional group and benzene ring is about 0.54 (3)° for O1—N1—C3 and the C4—C9 ring, and the two benzene rings are approximately perpendicular with a dihedral angle of 85.91 (4)°. In the crystal intermolecular C—H···O hydrogen bonds link the molecules into an infinite three-dimensional supramolecular network. The molecules are held together by intermolecular hydrogen bonds (Table 1) to form infinite zigzag chains along the a axis and wave-like layers parallel to the ac plane (Fig. 2). In addition, the interesting features of the crystal structure are short intermolecular O···O and N···O interactions that form infinite helical chains along the b axis as depicted in Fig. 3. The O···O and N···O distances of 2.998 (2) and 2.968 (3) Å, respectively, are significantly shorter than the sum of the van der Waals radii of the relevant atoms. Thus, the zigzag and helical chains form a three-dimensional supramolecular structure through the crosslinked hydrogen-bonded and short intermolecular O···O and N···O interactions (Fig. 4).

Related literature top

For general background to Schiff base complexes and their applications, see: Niederhoffer et al. (1984); Zhang et al. (1990); Tisato et al. (1994); Lacroix (2001); Sundari et al. (1997); Koehler et al. (1964); Cordes & Jencks (1962); Akine et al. (2006). For related structures, see: Fun et al. (2008a,b); Kia et al. (2009); Shi et al. (2007); Ren et al. (2008); Ding et al. (2009); Dong et al. (2008a). For a related Schiff base bisoxime compound synthesized using a similar route, see: Dong et al. (2008b).

Experimental top

The title compound was synthesized according to an analogous method reported earlier (Dong et al., 2008b). To an ethanol solution (2 ml) of p-nitrobenzene (186.6 mg, 1.235 mmol) was added dropwise an ethanol solution (3 ml) of 1,3-bis(aminooxy)propane (51.3 mg, 0.473 mmol). The mixture was stirred at 328 K for 3 h. After cooling to room temperature, the precipitate was filtered off, and washed successively with ethanol and n-hexane, respectively. The product was dried in vacuo and purified by recrystallization from ethanol to yield 127.8 mg of (1); Yield, 71.8%. m. p. 427–429 K. Anal. Calcd. for C17H16N4O6: C, 54.84; H, 4.33; N, 15.05; Found: C, 55.06; H, 4.29; N, 15.04.

Colorless needle-like single crystals suitable for X-ray diffraction studies were obtained after about two weeks by slow evaporation from a chloroform-N,N-dimethylformamide of mixed solution of the title compound at room temperature.

Refinement top

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.97 (CH2) and 0.93 Å (CH), and Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(O).Since it was not possible to determine the absolute configuration of the molecule from the experimental data the Friedel equivalents were merged prior to final refinement cycles.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. The intermolecular hydrogen bonds and short O···O and N···O interactions (dashed lines), showing zigzag chains along a axis and wave-like layers parallel to the ac plane.
[Figure 3] Fig. 3. The infinite helical chains along b axis linked by short O···O and N···O interactions, other atoms are omitted for clarity.
[Figure 4] Fig. 4. Part of the three-dimensional supramolecular network structure of the title compound.
1,3-Bis[(4-nitrobenzylidene)aminooxy]propane top
Crystal data top
C17H16N4O6F(000) = 388
Mr = 372.34Dx = 1.419 Mg m3
Monoclinic, C2Melting point = 427–429 K
Hall symbol: C 2yMo Kα radiation, λ = 0.71073 Å
a = 29.005 (3) ÅCell parameters from 773 reflections
b = 4.7878 (5) Åθ = 2.9–25.3°
c = 6.3579 (7) ŵ = 0.11 mm1
β = 99.144 (1)°T = 298 K
V = 871.71 (16) Å3Needle-like, colorless
Z = 20.45 × 0.17 × 0.06 mm
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
872 independent reflections
Radiation source: fine-focus sealed tube675 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2334
Tmin = 0.952, Tmax = 0.993k = 55
2321 measured reflectionsl = 77
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0524P)2]
where P = (Fo2 + 2Fc2)/3
872 reflections(Δ/σ)max < 0.001
123 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C17H16N4O6V = 871.71 (16) Å3
Mr = 372.34Z = 2
Monoclinic, C2Mo Kα radiation
a = 29.005 (3) ŵ = 0.11 mm1
b = 4.7878 (5) ÅT = 298 K
c = 6.3579 (7) Å0.45 × 0.17 × 0.06 mm
β = 99.144 (1)°
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
872 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
675 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.993Rint = 0.049
2321 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.094H-atom parameters constrained
S = 0.96Δρmax = 0.13 e Å3
872 reflectionsΔρmin = 0.19 e Å3
123 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.93031 (9)0.2933 (7)0.6567 (4)0.0497 (7)
N20.79744 (9)1.2194 (6)0.1169 (4)0.0479 (7)
O10.94454 (7)0.1141 (6)0.8289 (3)0.0560 (7)
O20.76377 (8)1.3375 (6)0.1705 (3)0.0643 (7)
O30.81103 (8)1.2669 (6)0.0530 (3)0.0656 (8)
C10.98599 (10)0.0342 (8)0.8012 (4)0.0508 (9)
H1A1.01060.09560.78150.061*
H1B0.97990.15510.67750.061*
C21.00000.2040 (12)1.00000.0511 (12)
H2A0.97410.32361.02030.061*0.50
H2B1.02590.32360.97970.061*0.50
C30.89337 (11)0.4213 (8)0.6853 (5)0.0486 (9)
H30.88090.38400.80820.058*
C40.86975 (10)0.6240 (8)0.5337 (4)0.0418 (8)
C50.88617 (10)0.6955 (7)0.3454 (4)0.0501 (9)
H50.91300.61150.31200.060*
C60.86237 (10)0.8918 (7)0.2086 (5)0.0481 (9)
H60.87330.94220.08410.058*
C70.82254 (10)1.0105 (7)0.2594 (4)0.0405 (7)
C80.80565 (10)0.9443 (8)0.4438 (4)0.0470 (9)
H80.77871.02800.47560.056*
C90.82958 (10)0.7517 (8)0.5798 (4)0.0473 (8)
H90.81860.70610.70530.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0561 (17)0.0467 (17)0.0439 (14)0.0031 (16)0.0009 (12)0.0075 (15)
N20.0530 (16)0.0421 (18)0.0486 (14)0.0031 (15)0.0076 (13)0.0048 (14)
O10.0543 (14)0.0622 (16)0.0514 (12)0.0090 (13)0.0083 (10)0.0130 (13)
O20.0691 (15)0.0610 (18)0.0650 (14)0.0177 (15)0.0178 (12)0.0114 (14)
O30.0766 (15)0.0688 (19)0.0547 (12)0.0025 (15)0.0208 (11)0.0196 (15)
C10.0476 (17)0.047 (2)0.0561 (19)0.0001 (18)0.0044 (15)0.0014 (17)
C20.049 (3)0.044 (3)0.057 (3)0.0000.001 (2)0.000
C30.0467 (17)0.051 (2)0.0488 (18)0.002 (2)0.0108 (15)0.0082 (18)
C40.0441 (17)0.0393 (19)0.0408 (15)0.0048 (16)0.0034 (14)0.0022 (16)
C50.0471 (18)0.056 (3)0.0495 (17)0.0035 (19)0.0136 (15)0.0007 (18)
C60.0535 (19)0.052 (2)0.0405 (16)0.0020 (19)0.0125 (14)0.0062 (16)
C70.0457 (16)0.0351 (18)0.0395 (15)0.0039 (15)0.0032 (13)0.0016 (14)
C80.0469 (18)0.048 (2)0.0486 (18)0.0014 (18)0.0165 (15)0.0034 (17)
C90.0480 (17)0.051 (2)0.0448 (16)0.0022 (18)0.0139 (13)0.0090 (17)
Geometric parameters (Å, º) top
N1—C31.273 (4)C3—C41.459 (4)
N1—O11.401 (3)C3—H30.9300
N2—O21.223 (3)C4—C91.388 (4)
N2—O31.229 (3)C4—C51.399 (4)
N2—C71.464 (4)C5—C61.387 (4)
O1—C11.431 (3)C5—H50.9300
C1—C21.503 (5)C6—C71.371 (4)
C1—H1A0.9700C6—H60.9300
C1—H1B0.9700C7—C81.378 (4)
C2—C1i1.503 (5)C8—C91.374 (5)
C2—H2A0.9700C8—H80.9300
C2—H2B0.9700C9—H90.9300
C3—N1—O1109.5 (2)C4—C3—H3118.5
O2—N2—O3122.8 (3)C9—C4—C5119.0 (3)
O2—N2—C7119.0 (2)C9—C4—C3118.4 (3)
O3—N2—C7118.2 (3)C5—C4—C3122.7 (3)
N1—O1—C1110.9 (2)C6—C5—C4119.9 (3)
O1—C1—C2106.5 (2)C6—C5—H5120.0
O1—C1—H1A110.4C4—C5—H5120.0
C2—C1—H1A110.4C7—C6—C5119.2 (3)
O1—C1—H1B110.4C7—C6—H6120.4
C2—C1—H1B110.4C5—C6—H6120.4
H1A—C1—H1B108.6C6—C7—C8122.1 (3)
C1i—C2—C1114.5 (5)C6—C7—N2119.5 (3)
C1i—C2—H2A108.6C8—C7—N2118.4 (3)
C1—C2—H2A108.6C9—C8—C7118.5 (3)
C1i—C2—H2B108.6C9—C8—H8120.7
C1—C2—H2B108.6C7—C8—H8120.7
H2A—C2—H2B107.6C8—C9—C4121.3 (3)
N1—C3—C4122.9 (3)C8—C9—H9119.3
N1—C3—H3118.5C4—C9—H9119.3
C3—N1—O1—C1179.8 (3)C5—C6—C7—N2179.5 (3)
N1—O1—C1—C2176.2 (3)O2—N2—C7—C6175.2 (3)
O1—C1—C2—C1i64.9 (2)O3—N2—C7—C65.4 (4)
O1—N1—C3—C4179.9 (3)O2—N2—C7—C83.4 (4)
N1—C3—C4—C9179.9 (3)O3—N2—C7—C8176.0 (3)
N1—C3—C4—C50.6 (5)C6—C7—C8—C90.3 (5)
C9—C4—C5—C60.1 (5)N2—C7—C8—C9178.9 (3)
C3—C4—C5—C6179.4 (3)C7—C8—C9—C40.4 (5)
C4—C5—C6—C70.9 (5)C5—C4—C9—C80.5 (5)
C5—C6—C7—C81.0 (5)C3—C4—C9—C8179.9 (3)
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3ii0.932.403.206 (4)145
C9—H9···O3ii0.932.633.395 (4)139
C9—H9···O2iii0.932.713.374 (4)129
Symmetry codes: (ii) x, y1, z+1; (iii) x+3/2, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC17H16N4O6
Mr372.34
Crystal system, space groupMonoclinic, C2
Temperature (K)298
a, b, c (Å)29.005 (3), 4.7878 (5), 6.3579 (7)
β (°) 99.144 (1)
V3)871.71 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.45 × 0.17 × 0.06
Data collection
DiffractometerSiemens SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.952, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
2321, 872, 675
Rint0.049
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.094, 0.96
No. of reflections872
No. of parameters123
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.19

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.932.403.206 (4)144.9
C9—H9···O3i0.932.633.395 (4)139.4
C9—H9···O2ii0.932.713.374 (4)129.3
Symmetry codes: (i) x, y1, z+1; (ii) x+3/2, y1/2, z+1.
 

Acknowledgements

This work was supported by the Foundation of the Education Department of Gansu Province (No. 0904-11) and the `Jing Lan' Talent Engineering Funds of Lanzhou Jiaotong University, which are gratefully acknowledged.

References

First citationAkine, S., Dong, W. K. & Nabeshima, T. (2006). Inorg. Chem. 45, 4677–4684.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCordes, E. H. & Jencks, W. P. (1962). J. Am. Chem. Soc. 84, 832–837.  CrossRef CAS Web of Science Google Scholar
First citationDing, Y.-J., Xue, Z.-L., Dong, W.-K., Sun, Y.-X. & Wu, J.-C. (2009). Acta Cryst. E65, o1193.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W.-K., Ding, Y.-J., Luo, Y.-L., Yan, H.-B. & Wang, L. (2008a). Acta Cryst. E64, o1636.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W.-K., He, X.-N., Li, L., Lv, Z.-W. & Tong, J.-F. (2008b). Acta Cryst. E64, o1405.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008a). Acta Cryst. E64, o1374–o1375.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008b). Acta Cryst. E64, o1471.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKia, R., Fun, H.-K. & Kargar, H. (2009). Acta Cryst. E65, o682–o683.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoehler, K., Sandstrom, W. & Cordes, E. H. (1964). J. Am. Chem. Soc. 86, 2413–2419.  CrossRef CAS Web of Science Google Scholar
First citationLacroix, P. G. (2001). Eur. J. Inorg. Chem. 2, 339–348.  CrossRef Google Scholar
First citationNiederhoffer, E. C., Timmons, J. H. & Martell, A. E. (1984). Chem. Rev. 84, 137–203.  CrossRef CAS Web of Science Google Scholar
First citationRen, Z.-L., Dong, W.-K., Bai, W.-J., He, X.-N. & Wang, L. (2008). Acta Cryst. E64, o1678.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, J., Dong, W., Zhang, Y. & Gao, S. (2007). Acta Cryst. E63, o4080.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSundari, S. S., Dhathathreyan, A., Kanthimathi, M. & Balachandran, U. N. (1997). Langmuir, 13, 4923–4925.  CrossRef CAS Web of Science Google Scholar
First citationTisato, J., Refosco, F. & Bandoli, F. (1994). Coord. Chem. Rev. 135–136, 325–397.  CrossRef Web of Science Google Scholar
First citationZhang, W., Loebach, J. L., Wilson, S. R. & Jacobsen, E. N. (1990). J. Am. Chem. Soc. 112, 2801–2803.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2141-o2142
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds