organic compounds
2,2,2-Tribromo-N-phenylacetamide
aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com
In the title compound, C8H6Br3NO, the N—H bond is anti to the carbonyl bond in the side chain. The N—H hydrogen atom is involved in a two-centered bond as it shows simultaneous N—H⋯Br intra- and N—H⋯O intermolecular interactions in the structure. In the crystal, molecules are packed into column-like chains along the b axis through the N—H⋯O hydrogen bonds.
Related literature
For the preparation of the compound, see: Gowda et al. (2003). For related structures, see: Brown et al. (1966); Dou et al. (1994); Gowda et al. (2007, 2009).
Experimental
Crystal data
|
Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S160053680903298X/fl2260sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680903298X/fl2260Isup2.hkl
The title compound was prepared from aniline, tribromoacetic acid and phosphorylchloride according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was further characterized by recording its infrared spectra. Single crystals of the title compound used for X-ray diffraction studies were obtained by a slow evaporation from petroleum ether at room temperature.
The H atoms were positioned with idealized geometry using a riding model [N—H = 0.86 Å, C—H = 0.93 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).
The Uij components of C2, C3, C4 and C5 were restrained to approximate isotropic behavoir.
The residual electron-density features are located in the region of Br3 and Br1. The highest peak is 1.25 Å from Br3 and the deepest hole is 0.75 Å from Br1.
Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell
CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C8H6Br3NO | F(000) = 696 |
Mr = 371.87 | Dx = 2.230 Mg m−3 |
Orthorhombic, Pca21 | Cu Kα radiation, λ = 1.54180 Å |
Hall symbol: P 2c -2ac | Cell parameters from 25 reflections |
a = 10.1863 (8) Å | θ = 4.8–20.7° |
b = 9.1483 (7) Å | µ = 13.22 mm−1 |
c = 11.8856 (9) Å | T = 299 K |
V = 1107.59 (15) Å3 | Needle, colourless |
Z = 4 | 0.50 × 0.18 × 0.13 mm |
Enraf–Nonius CAD-4 diffractometer | 1237 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.052 |
Graphite monochromator | θmax = 67.0°, θmin = 4.8° |
ω/2θ scans | h = −12→0 |
Absorption correction: ψ scan (North et al., 1968) | k = −10→10 |
Tmin = 0.037, Tmax = 0.178 | l = −11→14 |
2653 measured reflections | 3 standard reflections every 120 min |
1311 independent reflections | intensity decay: 1.5% |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.079 | w = 1/[σ2(Fo2) + (0.1659P)2 + 2.9656P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.237 | (Δ/σ)max = 0.002 |
S = 1.05 | Δρmax = 1.86 e Å−3 |
1311 reflections | Δρmin = −1.18 e Å−3 |
119 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
25 restraints | Extinction coefficient: 0.0035 (8) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 276 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.00 (13) |
C8H6Br3NO | V = 1107.59 (15) Å3 |
Mr = 371.87 | Z = 4 |
Orthorhombic, Pca21 | Cu Kα radiation |
a = 10.1863 (8) Å | µ = 13.22 mm−1 |
b = 9.1483 (7) Å | T = 299 K |
c = 11.8856 (9) Å | 0.50 × 0.18 × 0.13 mm |
Enraf–Nonius CAD-4 diffractometer | 1237 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.052 |
Tmin = 0.037, Tmax = 0.178 | 3 standard reflections every 120 min |
2653 measured reflections | intensity decay: 1.5% |
1311 independent reflections |
R[F2 > 2σ(F2)] = 0.079 | H-atom parameters constrained |
wR(F2) = 0.237 | Δρmax = 1.86 e Å−3 |
S = 1.05 | Δρmin = −1.18 e Å−3 |
1311 reflections | Absolute structure: Flack (1983), 276 Friedel pairs |
119 parameters | Absolute structure parameter: 0.00 (13) |
25 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2439 (16) | 0.3139 (13) | 0.6091 (14) | 0.057 (3) | |
C2 | 0.1483 (19) | 0.2891 (18) | 0.6869 (19) | 0.078 (4) | |
H2 | 0.0753 | 0.3500 | 0.6914 | 0.094* | |
C3 | 0.162 (3) | 0.169 (3) | 0.761 (3) | 0.110 (7) | |
H3 | 0.1010 | 0.1557 | 0.8185 | 0.132* | |
C4 | 0.256 (3) | 0.077 (2) | 0.751 (2) | 0.095 (5) | |
H4 | 0.2575 | −0.0070 | 0.7947 | 0.114* | |
C5 | 0.3521 (19) | 0.1043 (17) | 0.6774 (19) | 0.079 (4) | |
H5 | 0.4247 | 0.0427 | 0.6773 | 0.095* | |
C6 | 0.3495 (16) | 0.2176 (13) | 0.6019 (17) | 0.065 (4) | |
H6 | 0.4153 | 0.2297 | 0.5484 | 0.078* | |
C7 | 0.3328 (12) | 0.5181 (14) | 0.5056 (12) | 0.053 (3) | |
C8 | 0.3002 (15) | 0.6556 (17) | 0.4339 (16) | 0.069 (4) | |
N1 | 0.2341 (10) | 0.4331 (11) | 0.5359 (12) | 0.058 (2) | |
H1N | 0.1579 | 0.4526 | 0.5085 | 0.069* | |
O1 | 0.4489 (8) | 0.5008 (11) | 0.5332 (12) | 0.076 (4) | |
Br1 | 0.1668 (3) | 0.6121 (3) | 0.3197 (2) | 0.0988 (9) | |
Br2 | 0.2294 (3) | 0.80125 (17) | 0.5320 (2) | 0.1007 (10) | |
Br3 | 0.4497 (2) | 0.7263 (3) | 0.3550 (3) | 0.1230 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.049 (6) | 0.064 (7) | 0.059 (8) | −0.012 (6) | −0.003 (6) | 0.003 (6) |
C2 | 0.075 (8) | 0.080 (7) | 0.079 (8) | −0.011 (6) | 0.014 (7) | 0.021 (6) |
C3 | 0.112 (11) | 0.110 (9) | 0.108 (11) | −0.016 (8) | 0.014 (9) | 0.020 (8) |
C4 | 0.106 (9) | 0.085 (7) | 0.095 (10) | −0.013 (8) | −0.013 (8) | 0.014 (7) |
C5 | 0.082 (8) | 0.069 (6) | 0.087 (9) | −0.002 (6) | −0.016 (7) | 0.004 (6) |
C6 | 0.060 (8) | 0.052 (6) | 0.083 (10) | 0.004 (5) | −0.022 (7) | 0.001 (6) |
C7 | 0.038 (5) | 0.066 (6) | 0.054 (7) | 0.001 (4) | 0.005 (5) | 0.017 (6) |
C8 | 0.057 (8) | 0.068 (7) | 0.081 (11) | 0.014 (6) | 0.006 (7) | 0.020 (7) |
N1 | 0.037 (5) | 0.068 (5) | 0.068 (7) | 0.005 (4) | −0.007 (5) | 0.008 (6) |
O1 | 0.035 (4) | 0.085 (6) | 0.109 (10) | −0.008 (4) | −0.007 (5) | 0.042 (7) |
Br1 | 0.1101 (17) | 0.1157 (14) | 0.0705 (12) | −0.0051 (11) | −0.0328 (12) | 0.0179 (10) |
Br2 | 0.164 (2) | 0.0664 (9) | 0.0719 (12) | 0.0155 (10) | 0.0171 (14) | 0.0000 (8) |
Br3 | 0.0680 (11) | 0.1321 (19) | 0.169 (3) | 0.0095 (10) | 0.0356 (14) | 0.091 (2) |
C1—C2 | 1.36 (3) | C5—H5 | 0.9300 |
C1—C6 | 1.39 (2) | C6—H6 | 0.9300 |
C1—N1 | 1.399 (19) | C7—O1 | 1.237 (16) |
C2—C3 | 1.42 (3) | C7—N1 | 1.321 (16) |
C2—H2 | 0.9300 | C7—C8 | 1.555 (18) |
C3—C4 | 1.27 (4) | C8—Br3 | 1.902 (16) |
C3—H3 | 0.9300 | C8—Br2 | 1.913 (17) |
C4—C5 | 1.34 (4) | C8—Br1 | 1.960 (19) |
C4—H4 | 0.9300 | N1—H1N | 0.8600 |
C5—C6 | 1.37 (2) | ||
C2—C1—C6 | 119.3 (15) | C5—C6—C1 | 116.9 (18) |
C2—C1—N1 | 120.1 (15) | C5—C6—H6 | 121.6 |
C6—C1—N1 | 120.6 (15) | C1—C6—H6 | 121.6 |
C1—C2—C3 | 118.7 (19) | O1—C7—N1 | 125.5 (11) |
C1—C2—H2 | 120.6 | O1—C7—C8 | 117.0 (11) |
C3—C2—H2 | 120.6 | N1—C7—C8 | 117.5 (11) |
C4—C3—C2 | 122 (3) | C7—C8—Br3 | 111.9 (9) |
C4—C3—H3 | 119.2 | C7—C8—Br2 | 108.1 (11) |
C2—C3—H3 | 119.2 | Br3—C8—Br2 | 111.4 (9) |
C3—C4—C5 | 119 (2) | C7—C8—Br1 | 111.3 (11) |
C3—C4—H4 | 120.3 | Br3—C8—Br1 | 106.4 (9) |
C5—C4—H4 | 120.3 | Br2—C8—Br1 | 107.6 (7) |
C4—C5—C6 | 123.6 (18) | C7—N1—C1 | 125.0 (11) |
C4—C5—H5 | 118.2 | C7—N1—H1N | 117.5 |
C6—C5—H5 | 118.2 | C1—N1—H1N | 117.5 |
C6—C1—C2—C3 | 2 (3) | N1—C7—C8—Br3 | −159.7 (12) |
N1—C1—C2—C3 | −179.1 (19) | O1—C7—C8—Br2 | −100.0 (14) |
C1—C2—C3—C4 | −5 (4) | N1—C7—C8—Br2 | 77.2 (16) |
C2—C3—C4—C5 | 8 (4) | O1—C7—C8—Br1 | 142.1 (13) |
C3—C4—C5—C6 | −7 (4) | N1—C7—C8—Br1 | −40.7 (17) |
C4—C5—C6—C1 | 4 (3) | O1—C7—N1—C1 | 4 (3) |
C2—C1—C6—C5 | −2 (2) | C8—C7—N1—C1 | −173.4 (14) |
N1—C1—C6—C5 | 179.6 (15) | C2—C1—N1—C7 | 139.6 (18) |
O1—C7—C8—Br3 | 23.1 (19) | C6—C1—N1—C7 | −42 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.86 | 2.19 | 2.967 (13) | 150 |
N1—H1N···Br1 | 0.86 | 2.68 | 3.123 (13) | 114 |
Symmetry code: (i) x−1/2, −y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C8H6Br3NO |
Mr | 371.87 |
Crystal system, space group | Orthorhombic, Pca21 |
Temperature (K) | 299 |
a, b, c (Å) | 10.1863 (8), 9.1483 (7), 11.8856 (9) |
V (Å3) | 1107.59 (15) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 13.22 |
Crystal size (mm) | 0.50 × 0.18 × 0.13 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.037, 0.178 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2653, 1311, 1237 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.079, 0.237, 1.05 |
No. of reflections | 1311 |
No. of parameters | 119 |
No. of restraints | 25 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.86, −1.18 |
Absolute structure | Flack (1983), 276 Friedel pairs |
Absolute structure parameter | 0.00 (13) |
Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.86 | 2.19 | 2.967 (13) | 150.0 |
N1—H1N···Br1 | 0.86 | 2.68 | 3.123 (13) | 113.6 |
Symmetry code: (i) x−1/2, −y+1, z. |
Acknowledgements
BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for resumption of his research fellowship.
References
Brown, C. J. (1966). Acta Cryst. 21, 442–445. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Dou, S., Gowda, B. T., Paulus, H. & Weiss, A. (1994). Z. Naturforsch. Teil A, 49, 1136–1144. CAS Google Scholar
Enraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gowda, B. T., Paulus, H., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 331–337. CAS Google Scholar
Gowda, B. T., Svoboda, I., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o1955. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801–806. CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The structure of (I) has been determined (Fig. 1) as part of a study on the effect of ring and side chain substituents on the structures of N-aromatic amides (Dou et al., 1994; Gowda et al., 2007, 2009). The N—H bond in (I) is anti to the C=O bond in the side chain, similar to that observed in N-(phenyl)acetamide (Brown, 1966), 2,2,2-trichloro-N-(phenyl)acetamide (Dou et al., 1994), 2,2,2-trimethyl-N-(phenyl)acetamide (Gowda et al., 2007) and other amides (Gowda et al., 2009). The N—H hydrogen atom is involved as the donor in a two-centered bond; an intramolecular N—H···Br bond and an intermolecular N—H···O bond (Table 1). The N1—H1N···O1 bonds involved in the formation of molecular chains in the direction of the b-axis are shown Fig. 2.