organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2,2-Tri­bromo-N-phenyl­acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 7 August 2009; accepted 19 August 2009; online 22 August 2009)

In the title compound, C8H6Br3NO, the N—H bond is anti to the carbonyl bond in the side chain. The N—H hydrogen atom is involved in a two-centered bond as it shows simultaneous N—H⋯Br intra- and N—H⋯O inter­molecular inter­actions in the structure. In the crystal, mol­ecules are packed into column-like chains along the b axis through the N—H⋯O hydrogen bonds.

Related literature

For the preparation of the compound, see: Gowda et al. (2003[Gowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801-806.]). For related structures, see: Brown et al. (1966[Brown, C. J. (1966). Acta Cryst. 21, 442-445.]); Dou et al. (1994[Dou, S., Gowda, B. T., Paulus, H. & Weiss, A. (1994). Z. Naturforsch. Teil A, 49, 1136-1144.]); Gowda et al. (2007[Gowda, B. T., Paulus, H., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 331-337.], 2009[Gowda, B. T., Svoboda, I., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o1955.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6Br3NO

  • Mr = 371.87

  • Orthorhombic, P c a 21

  • a = 10.1863 (8) Å

  • b = 9.1483 (7) Å

  • c = 11.8856 (9) Å

  • V = 1107.59 (15) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 13.22 mm−1

  • T = 299 K

  • 0.50 × 0.18 × 0.13 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.037, Tmax = 0.178

  • 2653 measured reflections

  • 1311 independent reflections

  • 1237 reflections with I > 2σ(I)

  • Rint = 0.052

  • 3 standard reflections frequency: 120 min intensity decay: 1.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.237

  • S = 1.05

  • 1311 reflections

  • 119 parameters

  • 25 restraints

  • H-atom parameters constrained

  • Δρmax = 1.86 e Å−3

  • Δρmin = −1.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 276 Friedel pairs

  • Flack parameter: 0.00 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 2.19 2.967 (13) 150
N1—H1N⋯Br1 0.86 2.68 3.123 (13) 114
Symmetry code: (i) [x-{\script{1\over 2}}, -y+1, z].

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The structure of (I) has been determined (Fig. 1) as part of a study on the effect of ring and side chain substituents on the structures of N-aromatic amides (Dou et al., 1994; Gowda et al., 2007, 2009). The N—H bond in (I) is anti to the C=O bond in the side chain, similar to that observed in N-(phenyl)acetamide (Brown, 1966), 2,2,2-trichloro-N-(phenyl)acetamide (Dou et al., 1994), 2,2,2-trimethyl-N-(phenyl)acetamide (Gowda et al., 2007) and other amides (Gowda et al., 2009). The N—H hydrogen atom is involved as the donor in a two-centered bond; an intramolecular N—H···Br bond and an intermolecular N—H···O bond (Table 1). The N1—H1N···O1 bonds involved in the formation of molecular chains in the direction of the b-axis are shown Fig. 2.

Related literature top

For the preparation of the compound, see: Gowda et al. (2003). For related structures, see: Brown et al. (1966); Dou et al. (1994); Gowda et al. (2007, 2009).

Experimental top

The title compound was prepared from aniline, tribromoacetic acid and phosphorylchloride according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was further characterized by recording its infrared spectra. Single crystals of the title compound used for X-ray diffraction studies were obtained by a slow evaporation from petroleum ether at room temperature.

Refinement top

The H atoms were positioned with idealized geometry using a riding model [N—H = 0.86 Å, C—H = 0.93 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

The Uij components of C2, C3, C4 and C5 were restrained to approximate isotropic behavoir.

The residual electron-density features are located in the region of Br3 and Br1. The highest peak is 1.25 Å from Br3 and the deepest hole is 0.75 Å from Br1.

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonds shown as dashed lines.
2,2,2-Tribromo-N-phenylacetamide top
Crystal data top
C8H6Br3NOF(000) = 696
Mr = 371.87Dx = 2.230 Mg m3
Orthorhombic, Pca21Cu Kα radiation, λ = 1.54180 Å
Hall symbol: P 2c -2acCell parameters from 25 reflections
a = 10.1863 (8) Åθ = 4.8–20.7°
b = 9.1483 (7) ŵ = 13.22 mm1
c = 11.8856 (9) ÅT = 299 K
V = 1107.59 (15) Å3Needle, colourless
Z = 40.50 × 0.18 × 0.13 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1237 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.052
Graphite monochromatorθmax = 67.0°, θmin = 4.8°
ω/2θ scansh = 120
Absorption correction: ψ scan
(North et al., 1968)
k = 1010
Tmin = 0.037, Tmax = 0.178l = 1114
2653 measured reflections3 standard reflections every 120 min
1311 independent reflections intensity decay: 1.5%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.079 w = 1/[σ2(Fo2) + (0.1659P)2 + 2.9656P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.237(Δ/σ)max = 0.002
S = 1.05Δρmax = 1.86 e Å3
1311 reflectionsΔρmin = 1.18 e Å3
119 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
25 restraintsExtinction coefficient: 0.0035 (8)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 276 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.00 (13)
Crystal data top
C8H6Br3NOV = 1107.59 (15) Å3
Mr = 371.87Z = 4
Orthorhombic, Pca21Cu Kα radiation
a = 10.1863 (8) ŵ = 13.22 mm1
b = 9.1483 (7) ÅT = 299 K
c = 11.8856 (9) Å0.50 × 0.18 × 0.13 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1237 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.052
Tmin = 0.037, Tmax = 0.1783 standard reflections every 120 min
2653 measured reflections intensity decay: 1.5%
1311 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.079H-atom parameters constrained
wR(F2) = 0.237Δρmax = 1.86 e Å3
S = 1.05Δρmin = 1.18 e Å3
1311 reflectionsAbsolute structure: Flack (1983), 276 Friedel pairs
119 parametersAbsolute structure parameter: 0.00 (13)
25 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2439 (16)0.3139 (13)0.6091 (14)0.057 (3)
C20.1483 (19)0.2891 (18)0.6869 (19)0.078 (4)
H20.07530.35000.69140.094*
C30.162 (3)0.169 (3)0.761 (3)0.110 (7)
H30.10100.15570.81850.132*
C40.256 (3)0.077 (2)0.751 (2)0.095 (5)
H40.25750.00700.79470.114*
C50.3521 (19)0.1043 (17)0.6774 (19)0.079 (4)
H50.42470.04270.67730.095*
C60.3495 (16)0.2176 (13)0.6019 (17)0.065 (4)
H60.41530.22970.54840.078*
C70.3328 (12)0.5181 (14)0.5056 (12)0.053 (3)
C80.3002 (15)0.6556 (17)0.4339 (16)0.069 (4)
N10.2341 (10)0.4331 (11)0.5359 (12)0.058 (2)
H1N0.15790.45260.50850.069*
O10.4489 (8)0.5008 (11)0.5332 (12)0.076 (4)
Br10.1668 (3)0.6121 (3)0.3197 (2)0.0988 (9)
Br20.2294 (3)0.80125 (17)0.5320 (2)0.1007 (10)
Br30.4497 (2)0.7263 (3)0.3550 (3)0.1230 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.049 (6)0.064 (7)0.059 (8)0.012 (6)0.003 (6)0.003 (6)
C20.075 (8)0.080 (7)0.079 (8)0.011 (6)0.014 (7)0.021 (6)
C30.112 (11)0.110 (9)0.108 (11)0.016 (8)0.014 (9)0.020 (8)
C40.106 (9)0.085 (7)0.095 (10)0.013 (8)0.013 (8)0.014 (7)
C50.082 (8)0.069 (6)0.087 (9)0.002 (6)0.016 (7)0.004 (6)
C60.060 (8)0.052 (6)0.083 (10)0.004 (5)0.022 (7)0.001 (6)
C70.038 (5)0.066 (6)0.054 (7)0.001 (4)0.005 (5)0.017 (6)
C80.057 (8)0.068 (7)0.081 (11)0.014 (6)0.006 (7)0.020 (7)
N10.037 (5)0.068 (5)0.068 (7)0.005 (4)0.007 (5)0.008 (6)
O10.035 (4)0.085 (6)0.109 (10)0.008 (4)0.007 (5)0.042 (7)
Br10.1101 (17)0.1157 (14)0.0705 (12)0.0051 (11)0.0328 (12)0.0179 (10)
Br20.164 (2)0.0664 (9)0.0719 (12)0.0155 (10)0.0171 (14)0.0000 (8)
Br30.0680 (11)0.1321 (19)0.169 (3)0.0095 (10)0.0356 (14)0.091 (2)
Geometric parameters (Å, º) top
C1—C21.36 (3)C5—H50.9300
C1—C61.39 (2)C6—H60.9300
C1—N11.399 (19)C7—O11.237 (16)
C2—C31.42 (3)C7—N11.321 (16)
C2—H20.9300C7—C81.555 (18)
C3—C41.27 (4)C8—Br31.902 (16)
C3—H30.9300C8—Br21.913 (17)
C4—C51.34 (4)C8—Br11.960 (19)
C4—H40.9300N1—H1N0.8600
C5—C61.37 (2)
C2—C1—C6119.3 (15)C5—C6—C1116.9 (18)
C2—C1—N1120.1 (15)C5—C6—H6121.6
C6—C1—N1120.6 (15)C1—C6—H6121.6
C1—C2—C3118.7 (19)O1—C7—N1125.5 (11)
C1—C2—H2120.6O1—C7—C8117.0 (11)
C3—C2—H2120.6N1—C7—C8117.5 (11)
C4—C3—C2122 (3)C7—C8—Br3111.9 (9)
C4—C3—H3119.2C7—C8—Br2108.1 (11)
C2—C3—H3119.2Br3—C8—Br2111.4 (9)
C3—C4—C5119 (2)C7—C8—Br1111.3 (11)
C3—C4—H4120.3Br3—C8—Br1106.4 (9)
C5—C4—H4120.3Br2—C8—Br1107.6 (7)
C4—C5—C6123.6 (18)C7—N1—C1125.0 (11)
C4—C5—H5118.2C7—N1—H1N117.5
C6—C5—H5118.2C1—N1—H1N117.5
C6—C1—C2—C32 (3)N1—C7—C8—Br3159.7 (12)
N1—C1—C2—C3179.1 (19)O1—C7—C8—Br2100.0 (14)
C1—C2—C3—C45 (4)N1—C7—C8—Br277.2 (16)
C2—C3—C4—C58 (4)O1—C7—C8—Br1142.1 (13)
C3—C4—C5—C67 (4)N1—C7—C8—Br140.7 (17)
C4—C5—C6—C14 (3)O1—C7—N1—C14 (3)
C2—C1—C6—C52 (2)C8—C7—N1—C1173.4 (14)
N1—C1—C6—C5179.6 (15)C2—C1—N1—C7139.6 (18)
O1—C7—C8—Br323.1 (19)C6—C1—N1—C742 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.192.967 (13)150
N1—H1N···Br10.862.683.123 (13)114
Symmetry code: (i) x1/2, y+1, z.

Experimental details

Crystal data
Chemical formulaC8H6Br3NO
Mr371.87
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)299
a, b, c (Å)10.1863 (8), 9.1483 (7), 11.8856 (9)
V3)1107.59 (15)
Z4
Radiation typeCu Kα
µ (mm1)13.22
Crystal size (mm)0.50 × 0.18 × 0.13
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.037, 0.178
No. of measured, independent and
observed [I > 2σ(I)] reflections
2653, 1311, 1237
Rint0.052
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.237, 1.05
No. of reflections1311
No. of parameters119
No. of restraints25
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.86, 1.18
Absolute structureFlack (1983), 276 Friedel pairs
Absolute structure parameter0.00 (13)

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.192.967 (13)150.0
N1—H1N···Br10.862.683.123 (13)113.6
Symmetry code: (i) x1/2, y+1, z.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for resumption of his research fellowship.

References

First citationBrown, C. J. (1966). Acta Cryst. 21, 442–445.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDou, S., Gowda, B. T., Paulus, H. & Weiss, A. (1994). Z. Naturforsch. Teil A, 49, 1136–1144.  CAS Google Scholar
First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Paulus, H., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 331–337.  CAS Google Scholar
First citationGowda, B. T., Svoboda, I., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o1955.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801–806.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds