organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

o-Toluene­sulfonamide: a redetermination

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 10 August 2009; accepted 24 August 2009; online 29 August 2009)

The structure of the title compound, C7H9NO2S, was previously determined from powder diffraction data [Tremayne, Seaton & Glidewell (2002). Acta Cryst. B58, 823–834]. It has now been refined to a significantly higher precision. The amino N-atom is bent with a C—C—S—N torsion angle of −65.8 (2)deg;. In the crystal, mol­ecules are packed into a three-dimensional framework/supramolecular structure through hydrogen bonds between the two H atoms of the sulfonamide group and sulfonyl O atoms of neighbouring mol­ecules.

Related literature

For our studies of the effect of substituents on the solid state structures of sulfonamides, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Kozisek, J. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 656-660.], 2009[Gowda, B. T., Foro, S., Shakuntala, K. & Fuess, H. (2009). Acta Cryst. E65, o2144.]); Gowda, Srilatha et al. (2007[Gowda, B. T., Srilatha, Foro, S., Kozisek, J. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 417-424.]). For the parent benzene­sulfonamide, see: Gowda, Nayak et al. (2007[Gowda, B. T., Nayak, R., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2967.]). For other aryl sulfonamides, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Kozisek, J. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 656-660.], 2009[Gowda, B. T., Foro, S., Shakuntala, K. & Fuess, H. (2009). Acta Cryst. E65, o2144.]); Gowda, Srilatha et al. (2007[Gowda, B. T., Srilatha, Foro, S., Kozisek, J. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 417-424.]); Jones & Weinkauf (1993[Jones, P. G. & Weinkauf, A. (1993). Z. Kristallogr. 208, 128-129.]); Kumar et al. (1992[Kumar, S. V., Senadhi, S. E. & Rao, L. M. (1992). Z. Kristallogr. 202, 1-6.]); O'Connor & Maslen (1965[O'Connor, B. H. & Maslen, E. N. (1965). Acta Cryst. 18, 363-366.]). For the powder structure of the title compound, see: Tremayne et al. (2002[Tremayne, M., Seaton, C. C. & Glidewell, C. (2002). Acta Cryst. B58, 823-834.]).

[Scheme 1]

Experimental

Crystal data
  • C7H9NO2S

  • Mr = 171.21

  • Tetragonal, I 41 /a

  • a = 18.670 (3) Å

  • c = 9.057 (1) Å

  • V = 3157.0 (8) Å3

  • Z = 16

  • Cu Kα radiation

  • μ = 3.24 mm−1

  • T = 299 K

  • 0.40 × 0.35 × 0.02 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.324, Tmax = 0.938

  • 5320 measured reflections

  • 1403 independent reflections

  • 1290 reflections with I > 2σ(I)

  • Rint = 0.059

  • 3 standard reflections frequency: 120 min intensity decay: 1.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.101

  • S = 1.07

  • 1403 reflections

  • 108 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯O2i 0.839 (16) 2.193 (18) 3.003 (2) 162 (2)
N1—H12⋯O1ii 0.841 (16) 2.138 (17) 2.964 (2) 167 (2)
Symmetry codes: (i) [y-{\script{1\over 4}}, -x+{\script{1\over 4}}, -z+{\script{1\over 4}}]; (ii) [-y+{\script{1\over 4}}, x-{\script{1\over 4}}, z-{\script{1\over 4}}].

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The chemistry of sulfonamides is of interest as they show distinct physical, chemical and biological properties. Many arylsulfonamides exhibit pharmacological, fungicidal and herbicidal activities. In the present work, the structure of (I) has been determined as part of our work to explore the effect of substituents on the solid state structures of sulfonamides (Gowda et al., 2003, 2009; Gowda, Srilatha et al., 2007).

The structure of (I) solved from X-ray powder data has been reported (Tremayne et al., 2002) and the present single-crystal X-ray study confirms the powder diffraction structural parameters. (I) crystallizes in the tetragonal I 41/a space group, in contrast to the monoclinic Pc space group observed with the parent benzenesulfonamide (BSA)(Gowda, Nayak et al., 2007), the monoclinic cc space group for 2-chlorobenzenesulfonamide (2CBSA)(Gowda et al., 2009), the orthorhombic Pbca space group for both 4-fluorobenzenesulfonamide (Jones & Weinkauf, 1993) and 4-aminobenzenesulfonamide (O'Connor & Maslen, 1965), and the monoclinic P21/n space group for both 4-chlorobenzenesulfonamide and 4-bromobenzenesulfonamide (Gowda et al., 2003), and 4-methylbenzenesulfonamide (Kumar et al., 1992). The orientation of the amino group with respect to the ring is given by the C–C–S–N torsional angle of -65.8 (2)°, compared to the values of -78.1 (10)° for BSA and 64.0 (2)° for 2CBSA. In (I), the molecules are packed into layers paralel to the b-axis through N1—H11···O1(S) and N1—H12···O2(S) intermolecular hydrogen bonding (Table 1 & Fig.2).

Related literature top

For our studies of the effect of substituents on the solid state structures of sulfonamides, see: Gowda et al. (2003, 2009); Gowda, Srilatha et al. (2007). For the parent benzenesulfonamide, see: Gowda, Nayak et al. (2007). For other aryl sulfonamides, see: Gowda et al. (2003, 2009); Gowda, Srilatha et al. (2007); Jones & Weinkauf (1993); Kumar et al. (1992); O'Connor & Maslen (1965). For the powder structure of the title compound, see: Tremayne et al. (2002)

Experimental top

The purity of the commmercial sample (TCI, Tokyo) was checked and characterized by its infrared spectra. The single crystals used in X-ray diffraction studies were grown from ethanol by a slow evaporation of the solvent at room temperature.

Refinement top

The H atoms of the NH2 group were located in difference map and refined with restrained geometry to 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93–0.96 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
o-Toluenesulfonamide top
Crystal data top
C7H9NO2SDx = 1.441 Mg m3
Mr = 171.21Cu Kα radiation, λ = 1.54180 Å
Tetragonal, I41/aCell parameters from 25 reflections
Hall symbol: -I 4adθ = 4.7–17.9°
a = 18.670 (3) ŵ = 3.24 mm1
c = 9.057 (1) ÅT = 299 K
V = 3157.0 (8) Å3Prism, colourless
Z = 160.40 × 0.35 × 0.02 mm
F(000) = 1440
Data collection top
Enraf–Nonius CAD-4
diffractometer
1290 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.059
Graphite monochromatorθmax = 66.8°, θmin = 4.7°
ω/2θ scansh = 2222
Absorption correction: ψ scan
(North et al., 1968)
k = 2222
Tmin = 0.324, Tmax = 0.938l = 100
5320 measured reflections3 standard reflections every 120 min
1403 independent reflections intensity decay: 1.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0529P)2 + 2.2812P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1403 reflectionsΔρmax = 0.28 e Å3
108 parametersΔρmin = 0.41 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00227 (18)
Crystal data top
C7H9NO2SZ = 16
Mr = 171.21Cu Kα radiation
Tetragonal, I41/aµ = 3.24 mm1
a = 18.670 (3) ÅT = 299 K
c = 9.057 (1) Å0.40 × 0.35 × 0.02 mm
V = 3157.0 (8) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1290 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.059
Tmin = 0.324, Tmax = 0.9383 standard reflections every 120 min
5320 measured reflections intensity decay: 1.5%
1403 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0392 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.28 e Å3
1403 reflectionsΔρmin = 0.41 e Å3
108 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.13337 (2)0.12556 (2)0.26312 (5)0.0365 (2)
O10.20600 (8)0.10124 (10)0.24990 (15)0.0543 (5)
O20.11947 (10)0.20074 (8)0.25836 (16)0.0612 (5)
N10.09068 (10)0.08933 (10)0.13117 (18)0.0454 (4)
H110.0510 (10)0.1073 (12)0.108 (3)0.054*
H120.1053 (12)0.0484 (10)0.107 (3)0.054*
C10.10065 (9)0.09226 (9)0.43325 (19)0.0329 (4)
C20.03095 (11)0.10630 (10)0.4810 (2)0.0395 (5)
C30.01179 (12)0.07885 (12)0.6185 (2)0.0522 (5)
H30.03410.08730.65420.063*
C40.05868 (14)0.03960 (13)0.7032 (2)0.0575 (6)
H40.04410.02220.79460.069*
C50.12671 (13)0.02595 (13)0.6539 (2)0.0545 (6)
H50.15830.00070.71130.065*
C60.14805 (11)0.05211 (11)0.5179 (2)0.0430 (5)
H60.19400.04290.48320.052*
C70.02347 (13)0.14733 (13)0.3939 (3)0.0609 (6)
H7A0.03440.12180.30470.073*
H7B0.00460.19370.36950.073*
H7C0.06630.15290.45150.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0422 (3)0.0384 (3)0.0289 (3)0.00894 (17)0.00042 (16)0.00272 (16)
O10.0375 (8)0.0865 (12)0.0388 (8)0.0106 (7)0.0015 (6)0.0054 (7)
O20.1032 (14)0.0364 (8)0.0441 (9)0.0154 (8)0.0039 (8)0.0066 (6)
N10.0483 (10)0.0500 (10)0.0378 (9)0.0088 (8)0.0116 (7)0.0078 (7)
C10.0401 (10)0.0305 (8)0.0281 (8)0.0057 (7)0.0005 (7)0.0006 (7)
C20.0427 (11)0.0357 (10)0.0401 (10)0.0035 (8)0.0019 (8)0.0061 (7)
C30.0541 (13)0.0591 (13)0.0435 (11)0.0101 (10)0.0151 (9)0.0081 (9)
C40.0769 (16)0.0612 (14)0.0345 (10)0.0178 (12)0.0063 (10)0.0060 (10)
C50.0673 (15)0.0549 (13)0.0413 (12)0.0066 (10)0.0086 (10)0.0160 (9)
C60.0445 (11)0.0439 (11)0.0405 (10)0.0014 (8)0.0025 (8)0.0056 (8)
C70.0474 (12)0.0632 (14)0.0721 (16)0.0123 (11)0.0017 (11)0.0027 (12)
Geometric parameters (Å, º) top
S1—O21.4281 (16)C3—C41.375 (4)
S1—O11.4349 (16)C3—H30.9300
S1—N11.5877 (17)C4—C51.370 (3)
S1—C11.7703 (17)C4—H40.9300
N1—H110.839 (16)C5—C61.384 (3)
N1—H120.841 (16)C5—H50.9300
C1—C61.390 (3)C6—H60.9300
C1—C21.396 (3)C7—H7A0.9600
C2—C31.394 (3)C7—H7B0.9600
C2—C71.497 (3)C7—H7C0.9600
O2—S1—O1118.70 (11)C2—C3—H3119.0
O2—S1—N1107.74 (10)C5—C4—C3120.5 (2)
O1—S1—N1106.07 (9)C5—C4—H4119.8
O2—S1—C1107.98 (9)C3—C4—H4119.8
O1—S1—C1106.72 (8)C4—C5—C6119.4 (2)
N1—S1—C1109.41 (9)C4—C5—H5120.3
S1—N1—H11117.3 (17)C6—C5—H5120.3
S1—N1—H12114.9 (17)C5—C6—C1119.9 (2)
H11—N1—H12126 (2)C5—C6—H6120.1
C6—C1—C2121.59 (17)C1—C6—H6120.1
C6—C1—S1116.72 (15)C2—C7—H7A109.5
C2—C1—S1121.69 (14)C2—C7—H7B109.5
C3—C2—C1116.55 (19)H7A—C7—H7B109.5
C3—C2—C7119.0 (2)C2—C7—H7C109.5
C1—C2—C7124.44 (19)H7A—C7—H7C109.5
C4—C3—C2122.1 (2)H7B—C7—H7C109.5
C4—C3—H3119.0
O2—S1—C1—C6128.04 (16)S1—C1—C2—C72.5 (3)
O1—S1—C1—C60.61 (17)C1—C2—C3—C40.3 (3)
N1—S1—C1—C6114.96 (15)C7—C2—C3—C4178.8 (2)
O2—S1—C1—C251.23 (17)C2—C3—C4—C50.2 (3)
O1—S1—C1—C2179.89 (15)C3—C4—C5—C60.1 (4)
N1—S1—C1—C265.77 (17)C4—C5—C6—C10.4 (3)
C6—C1—C2—C30.9 (3)C2—C1—C6—C50.9 (3)
S1—C1—C2—C3178.38 (14)S1—C1—C6—C5178.33 (17)
C6—C1—C2—C7178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O2i0.84 (2)2.19 (2)3.003 (2)162 (2)
N1—H12···O1ii0.84 (2)2.14 (2)2.964 (2)167 (2)
Symmetry codes: (i) y1/4, x+1/4, z+1/4; (ii) y+1/4, x1/4, z1/4.

Experimental details

Crystal data
Chemical formulaC7H9NO2S
Mr171.21
Crystal system, space groupTetragonal, I41/a
Temperature (K)299
a, c (Å)18.670 (3), 9.057 (1)
V3)3157.0 (8)
Z16
Radiation typeCu Kα
µ (mm1)3.24
Crystal size (mm)0.40 × 0.35 × 0.02
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.324, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
5320, 1403, 1290
Rint0.059
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.101, 1.07
No. of reflections1403
No. of parameters108
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.41

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O2i0.839 (16)2.193 (18)3.003 (2)162 (2)
N1—H12···O1ii0.841 (16)2.138 (17)2.964 (2)167 (2)
Symmetry codes: (i) y1/4, x+1/4, z+1/4; (ii) y+1/4, x1/4, z1/4.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for an extension of his research fellowship.

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGowda, B. T., Foro, S., Shakuntala, K. & Fuess, H. (2009). Acta Cryst. E65, o2144.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Kozisek, J. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 656–660.  CAS Google Scholar
First citationGowda, B. T., Nayak, R., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2967.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Srilatha, Foro, S., Kozisek, J. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 417–424.  CAS Google Scholar
First citationJones, P. G. & Weinkauf, A. (1993). Z. Kristallogr. 208, 128–129.  CrossRef CAS Google Scholar
First citationKumar, S. V., Senadhi, S. E. & Rao, L. M. (1992). Z. Kristallogr. 202, 1–6.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationO'Connor, B. H. & Maslen, E. N. (1965). Acta Cryst. 18, 363–366.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTremayne, M., Seaton, C. C. & Glidewell, C. (2002). Acta Cryst. B58, 823–834.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds