organic compounds
o-Toluenesulfonamide: a redetermination
aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com
The structure of the title compound, C7H9NO2S, was previously determined from powder diffraction data [Tremayne, Seaton & Glidewell (2002). Acta Cryst. B58, 823–834]. It has now been refined to a significantly higher precision. The amino N-atom is bent with a C—C—S—N torsion angle of −65.8 (2)deg;. In the crystal, molecules are packed into a three-dimensional framework/supramolecular structure through hydrogen bonds between the two H atoms of the sulfonamide group and sulfonyl O atoms of neighbouring molecules.
Related literature
For our studies of the effect of substituents on the solid state structures of et al. (2003, 2009); Gowda, Srilatha et al. (2007). For the parent benzenesulfonamide, see: Gowda, Nayak et al. (2007). For other aryl see: Gowda et al. (2003, 2009); Gowda, Srilatha et al. (2007); Jones & Weinkauf (1993); Kumar et al. (1992); O'Connor & Maslen (1965). For the powder structure of the title compound, see: Tremayne et al. (2002).
see: GowdaExperimental
Crystal data
|
Refinement
|
Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809033686/fl2262sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809033686/fl2262Isup2.hkl
The purity of the commmercial sample (TCI, Tokyo) was checked and characterized by its infrared spectra. The single crystals used in X-ray diffraction studies were grown from ethanol by a slow evaporation of the solvent at room temperature.
The H atoms of the NH2 group were located in difference map and refined with restrained geometry to 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93–0.96 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).
Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell
CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C7H9NO2S | Dx = 1.441 Mg m−3 |
Mr = 171.21 | Cu Kα radiation, λ = 1.54180 Å |
Tetragonal, I41/a | Cell parameters from 25 reflections |
Hall symbol: -I 4ad | θ = 4.7–17.9° |
a = 18.670 (3) Å | µ = 3.24 mm−1 |
c = 9.057 (1) Å | T = 299 K |
V = 3157.0 (8) Å3 | Prism, colourless |
Z = 16 | 0.40 × 0.35 × 0.02 mm |
F(000) = 1440 |
Enraf–Nonius CAD-4 diffractometer | 1290 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.059 |
Graphite monochromator | θmax = 66.8°, θmin = 4.7° |
ω/2θ scans | h = −22→22 |
Absorption correction: ψ scan (North et al., 1968) | k = −22→22 |
Tmin = 0.324, Tmax = 0.938 | l = −10→0 |
5320 measured reflections | 3 standard reflections every 120 min |
1403 independent reflections | intensity decay: 1.5% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.101 | w = 1/[σ2(Fo2) + (0.0529P)2 + 2.2812P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
1403 reflections | Δρmax = 0.28 e Å−3 |
108 parameters | Δρmin = −0.41 e Å−3 |
2 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00227 (18) |
C7H9NO2S | Z = 16 |
Mr = 171.21 | Cu Kα radiation |
Tetragonal, I41/a | µ = 3.24 mm−1 |
a = 18.670 (3) Å | T = 299 K |
c = 9.057 (1) Å | 0.40 × 0.35 × 0.02 mm |
V = 3157.0 (8) Å3 |
Enraf–Nonius CAD-4 diffractometer | 1290 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.059 |
Tmin = 0.324, Tmax = 0.938 | 3 standard reflections every 120 min |
5320 measured reflections | intensity decay: 1.5% |
1403 independent reflections |
R[F2 > 2σ(F2)] = 0.039 | 2 restraints |
wR(F2) = 0.101 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.28 e Å−3 |
1403 reflections | Δρmin = −0.41 e Å−3 |
108 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.13337 (2) | 0.12556 (2) | 0.26312 (5) | 0.0365 (2) | |
O1 | 0.20600 (8) | 0.10124 (10) | 0.24990 (15) | 0.0543 (5) | |
O2 | 0.11947 (10) | 0.20074 (8) | 0.25836 (16) | 0.0612 (5) | |
N1 | 0.09068 (10) | 0.08933 (10) | 0.13117 (18) | 0.0454 (4) | |
H11 | 0.0510 (10) | 0.1073 (12) | 0.108 (3) | 0.054* | |
H12 | 0.1053 (12) | 0.0484 (10) | 0.107 (3) | 0.054* | |
C1 | 0.10065 (9) | 0.09226 (9) | 0.43325 (19) | 0.0329 (4) | |
C2 | 0.03095 (11) | 0.10630 (10) | 0.4810 (2) | 0.0395 (5) | |
C3 | 0.01179 (12) | 0.07885 (12) | 0.6185 (2) | 0.0522 (5) | |
H3 | −0.0341 | 0.0873 | 0.6542 | 0.063* | |
C4 | 0.05868 (14) | 0.03960 (13) | 0.7032 (2) | 0.0575 (6) | |
H4 | 0.0441 | 0.0222 | 0.7946 | 0.069* | |
C5 | 0.12671 (13) | 0.02595 (13) | 0.6539 (2) | 0.0545 (6) | |
H5 | 0.1583 | −0.0007 | 0.7113 | 0.065* | |
C6 | 0.14805 (11) | 0.05211 (11) | 0.5179 (2) | 0.0430 (5) | |
H6 | 0.1940 | 0.0429 | 0.4832 | 0.052* | |
C7 | −0.02347 (13) | 0.14733 (13) | 0.3939 (3) | 0.0609 (6) | |
H7A | −0.0344 | 0.1218 | 0.3047 | 0.073* | |
H7B | −0.0046 | 0.1937 | 0.3695 | 0.073* | |
H7C | −0.0663 | 0.1529 | 0.4515 | 0.073* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0422 (3) | 0.0384 (3) | 0.0289 (3) | −0.00894 (17) | −0.00042 (16) | 0.00272 (16) |
O1 | 0.0375 (8) | 0.0865 (12) | 0.0388 (8) | −0.0106 (7) | 0.0015 (6) | 0.0054 (7) |
O2 | 0.1032 (14) | 0.0364 (8) | 0.0441 (9) | −0.0154 (8) | 0.0039 (8) | 0.0066 (6) |
N1 | 0.0483 (10) | 0.0500 (10) | 0.0378 (9) | 0.0088 (8) | −0.0116 (7) | −0.0078 (7) |
C1 | 0.0401 (10) | 0.0305 (8) | 0.0281 (8) | −0.0057 (7) | −0.0005 (7) | −0.0006 (7) |
C2 | 0.0427 (11) | 0.0357 (10) | 0.0401 (10) | −0.0035 (8) | 0.0019 (8) | −0.0061 (7) |
C3 | 0.0541 (13) | 0.0591 (13) | 0.0435 (11) | −0.0101 (10) | 0.0151 (9) | −0.0081 (9) |
C4 | 0.0769 (16) | 0.0612 (14) | 0.0345 (10) | −0.0178 (12) | 0.0063 (10) | 0.0060 (10) |
C5 | 0.0673 (15) | 0.0549 (13) | 0.0413 (12) | −0.0066 (10) | −0.0086 (10) | 0.0160 (9) |
C6 | 0.0445 (11) | 0.0439 (11) | 0.0405 (10) | −0.0014 (8) | −0.0025 (8) | 0.0056 (8) |
C7 | 0.0474 (12) | 0.0632 (14) | 0.0721 (16) | 0.0123 (11) | 0.0017 (11) | 0.0027 (12) |
S1—O2 | 1.4281 (16) | C3—C4 | 1.375 (4) |
S1—O1 | 1.4349 (16) | C3—H3 | 0.9300 |
S1—N1 | 1.5877 (17) | C4—C5 | 1.370 (3) |
S1—C1 | 1.7703 (17) | C4—H4 | 0.9300 |
N1—H11 | 0.839 (16) | C5—C6 | 1.384 (3) |
N1—H12 | 0.841 (16) | C5—H5 | 0.9300 |
C1—C6 | 1.390 (3) | C6—H6 | 0.9300 |
C1—C2 | 1.396 (3) | C7—H7A | 0.9600 |
C2—C3 | 1.394 (3) | C7—H7B | 0.9600 |
C2—C7 | 1.497 (3) | C7—H7C | 0.9600 |
O2—S1—O1 | 118.70 (11) | C2—C3—H3 | 119.0 |
O2—S1—N1 | 107.74 (10) | C5—C4—C3 | 120.5 (2) |
O1—S1—N1 | 106.07 (9) | C5—C4—H4 | 119.8 |
O2—S1—C1 | 107.98 (9) | C3—C4—H4 | 119.8 |
O1—S1—C1 | 106.72 (8) | C4—C5—C6 | 119.4 (2) |
N1—S1—C1 | 109.41 (9) | C4—C5—H5 | 120.3 |
S1—N1—H11 | 117.3 (17) | C6—C5—H5 | 120.3 |
S1—N1—H12 | 114.9 (17) | C5—C6—C1 | 119.9 (2) |
H11—N1—H12 | 126 (2) | C5—C6—H6 | 120.1 |
C6—C1—C2 | 121.59 (17) | C1—C6—H6 | 120.1 |
C6—C1—S1 | 116.72 (15) | C2—C7—H7A | 109.5 |
C2—C1—S1 | 121.69 (14) | C2—C7—H7B | 109.5 |
C3—C2—C1 | 116.55 (19) | H7A—C7—H7B | 109.5 |
C3—C2—C7 | 119.0 (2) | C2—C7—H7C | 109.5 |
C1—C2—C7 | 124.44 (19) | H7A—C7—H7C | 109.5 |
C4—C3—C2 | 122.1 (2) | H7B—C7—H7C | 109.5 |
C4—C3—H3 | 119.0 | ||
O2—S1—C1—C6 | −128.04 (16) | S1—C1—C2—C7 | 2.5 (3) |
O1—S1—C1—C6 | 0.61 (17) | C1—C2—C3—C4 | −0.3 (3) |
N1—S1—C1—C6 | 114.96 (15) | C7—C2—C3—C4 | 178.8 (2) |
O2—S1—C1—C2 | 51.23 (17) | C2—C3—C4—C5 | −0.2 (3) |
O1—S1—C1—C2 | 179.89 (15) | C3—C4—C5—C6 | 0.1 (4) |
N1—S1—C1—C2 | −65.77 (17) | C4—C5—C6—C1 | 0.4 (3) |
C6—C1—C2—C3 | 0.9 (3) | C2—C1—C6—C5 | −0.9 (3) |
S1—C1—C2—C3 | −178.38 (14) | S1—C1—C6—C5 | 178.33 (17) |
C6—C1—C2—C7 | −178.2 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H11···O2i | 0.84 (2) | 2.19 (2) | 3.003 (2) | 162 (2) |
N1—H12···O1ii | 0.84 (2) | 2.14 (2) | 2.964 (2) | 167 (2) |
Symmetry codes: (i) y−1/4, −x+1/4, −z+1/4; (ii) −y+1/4, x−1/4, z−1/4. |
Experimental details
Crystal data | |
Chemical formula | C7H9NO2S |
Mr | 171.21 |
Crystal system, space group | Tetragonal, I41/a |
Temperature (K) | 299 |
a, c (Å) | 18.670 (3), 9.057 (1) |
V (Å3) | 3157.0 (8) |
Z | 16 |
Radiation type | Cu Kα |
µ (mm−1) | 3.24 |
Crystal size (mm) | 0.40 × 0.35 × 0.02 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.324, 0.938 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5320, 1403, 1290 |
Rint | 0.059 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.101, 1.07 |
No. of reflections | 1403 |
No. of parameters | 108 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.28, −0.41 |
Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H11···O2i | 0.839 (16) | 2.193 (18) | 3.003 (2) | 162 (2) |
N1—H12···O1ii | 0.841 (16) | 2.138 (17) | 2.964 (2) | 167 (2) |
Symmetry codes: (i) y−1/4, −x+1/4, −z+1/4; (ii) −y+1/4, x−1/4, z−1/4. |
Acknowledgements
BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for an extension of his research fellowship.
References
Enraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Gowda, B. T., Foro, S., Shakuntala, K. & Fuess, H. (2009). Acta Cryst. E65, o2144. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Jyothi, K., Kozisek, J. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 656–660. CAS Google Scholar
Gowda, B. T., Nayak, R., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2967. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Srilatha, Foro, S., Kozisek, J. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 417–424. CAS Google Scholar
Jones, P. G. & Weinkauf, A. (1993). Z. Kristallogr. 208, 128–129. CrossRef CAS Google Scholar
Kumar, S. V., Senadhi, S. E. & Rao, L. M. (1992). Z. Kristallogr. 202, 1–6. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
O'Connor, B. H. & Maslen, E. N. (1965). Acta Cryst. 18, 363–366. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Tremayne, M., Seaton, C. C. & Glidewell, C. (2002). Acta Cryst. B58, 823–834. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The chemistry of sulfonamides is of interest as they show distinct physical, chemical and biological properties. Many arylsulfonamides exhibit pharmacological, fungicidal and herbicidal activities. In the present work, the structure of (I) has been determined as part of our work to explore the effect of substituents on the solid state structures of sulfonamides (Gowda et al., 2003, 2009; Gowda, Srilatha et al., 2007).
The structure of (I) solved from X-ray powder data has been reported (Tremayne et al., 2002) and the present single-crystal X-ray study confirms the powder diffraction structural parameters. (I) crystallizes in the tetragonal I 41/a space group, in contrast to the monoclinic Pc space group observed with the parent benzenesulfonamide (BSA)(Gowda, Nayak et al., 2007), the monoclinic cc space group for 2-chlorobenzenesulfonamide (2CBSA)(Gowda et al., 2009), the orthorhombic Pbca space group for both 4-fluorobenzenesulfonamide (Jones & Weinkauf, 1993) and 4-aminobenzenesulfonamide (O'Connor & Maslen, 1965), and the monoclinic P21/n space group for both 4-chlorobenzenesulfonamide and 4-bromobenzenesulfonamide (Gowda et al., 2003), and 4-methylbenzenesulfonamide (Kumar et al., 1992). The orientation of the amino group with respect to the ring is given by the C–C–S–N torsional angle of -65.8 (2)°, compared to the values of -78.1 (10)° for BSA and 64.0 (2)° for 2CBSA. In (I), the molecules are packed into layers paralel to the b-axis through N1—H11···O1(S) and N1—H12···O2(S) intermolecular hydrogen bonding (Table 1 & Fig.2).