metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[iodidocopper(I)]-μ-4,4′,6,6′-tetra­methyl-2,2′-(ethyl­enedi­thio)di­pyrimidine-κ2N:N′]

aKey Laboratory of Special Display Technology, Hefei University of Technology, Ministry of Education, Hefei 230009, People's Republic of China, bAcademy of Opto-Electronic Technology, Hefei University of Technology, Ministry of Education, Hefei 230009, People's Republic of China, and cDepartment of Chemistry, Anhui University, Hefei 230039, People's Republic of China
*Correspondence e-mail: bozhilu@mail.ustc.edu.cn

(Received 20 July 2009; accepted 15 August 2009; online 22 August 2009)

In the title coordination polymer, [CuI(C14H18N4S2)]n, the CuI center is trigonally coordinated by two pyrimidine N-atom donors from two distinct dithio­ether ligands and one iodide anion. The Cu and I atoms are located on a twofold axis, whereas the midpoint of the central C—C bond of the dithio­ether ligand is located on an inversion center. Each organic ligand, acting in a bidentate mode, bridges two CuI ions, resulting in the formation of polymeric zigzag chains. The dihedral angle between the two pyrimidine units bonded to the metal center is 88.01 (2)°. The crystal packing is mainly stabilized by van der Waals forces and ππ stacking inter­actions, with an inter­planar distance between the pyrimidine rings of adjacent chains of 3.638 (3) Å.

Related literature

For applications of closed-shell metal atoms or ions, see: Catalano et al. (2000[Catalano, V. J., Benett, B. L., Yson, R. L. & Noll, B. C. (2000). J. Am. Chem. Soc. 122, 10056-10057.]). For applications of conjugated multi-branched mol­ecules in optical materials, see: Nishihara et al. (1989[Nishihara, H., Haruna, M. & Suhara, T. (1989). Optical Intergrated Circuits. McGraw-Hill, New York.]); Roberto et al. (2000[Roberto, D., Ugo, R., Bruni, S., Cariati, E., Cariati, F., Fantucci, P., Invernizzi, I., Quici, S., Ledoux, I. & Zyss, J. (2000). Organometallics, 19, 1775-1788.]). For the structures of CuI complexes with similar ligands, see: Shi et al. (2008[Shi, W. J., Ruan, C. X., Li, Z., Li, M. & Li, D. (2008). CrystEngComm, 10, 778-783.]).

[Scheme 1]

Experimental

Crystal data
  • [CuI(C14H18N4S2)]

  • Mr = 496.88

  • Monoclinic, C 2/c

  • a = 14.201 (5) Å

  • b = 8.064 (5) Å

  • c = 16.940 (5) Å

  • β = 111.655 (5)°

  • V = 1803.0 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.16 mm−1

  • T = 293 K

  • 0.33 × 0.24 × 0.21 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.419, Tmax = 0.515

  • 5585 measured reflections

  • 2070 independent reflections

  • 1942 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.053

  • S = 1.09

  • 2070 reflections

  • 103 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected geometric parameters (Å, °)

I1—Cu1 2.5191 (16)
Cu1—N2 2.0327 (16)
N2i—Cu1—N2 118.55 (10)
N2i—Cu1—I1 120.72 (5)
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Previous studies have shown that the bonding interaction between closed-shell metal atoms or ions is gaining increasing attention (Catalano et al., 2000), there are a few reports of similar association in the case of alkyl copper (I) complexes. Heterocycle-based aromatic systems with conjugated multi-branched structure possess potential applications in optical image processing, all-optical switching, and integrated optical devices (Nishihara et al., 1989; Roberto et al., 2000). Pyrimidine is a π-electron deficient with its ionization potential value of 10.41 eV and metal complexes of such ligand has been reported (Shi et al., 2008). On the other hand, pyrimidine ring has well known reactivity in the positions 4 and 6, which can easily undergo reactions with an aromatic aldehyde in solvent-free condition. Therefore we pay our attention to the pyrimidine system. As part of our ongoing investigation on d10 ions and pyrimidine derivatives, the title compound, has been prepared and its crystal structure is presented here.

The molecular structure of the title compound shows that Cu atom coordinated in a triangle-planar configuration (Fig. 1) with two equal Cu—N and one Cu—I bonds (Table 1). The dihedral angles formed by the two pyrimidine rings (N1, C2, N2, C6, C5, C3 and N1A, C2A, N2A, C6A, C5A, C3A) is 88.01 (2)°. Each ligand, acting in a bidentate mode, bridges two Cu ions, resulting in the formation of polymeric zigzag chains. The crystal packing is mainly stabilized by van der Waals forces and π-π interactions, with the shortest distance of 3.938 (3)Å along c axis.

Related literature top

For applications of closed-shell metal atoms or ions, see: Catalano et al. (2000). For applications of conjugated multi-branched molecules in optical materials, see: Nishihara et al. (1989); Roberto et al. (2000). For the structures of CuI complexes with similar ligands, see: Shi et al. (2008).

Experimental top

A mixture of 4,4',6,6'-tetramethyl-2,2'-(ethylenedithio)dipyrimidine (0.30 mmol) and CuI (0.30 mmol) was heated at 363 K with CHCl3 (20 ml) as a solvent for 10 h. The red powder of the title compound was filtered and washed thoroughly with water and then air dried (yield 55%). Single crystals suitable for X-ray analysis were obtained by slow evaporation from a dichloromethane/2-propanol (3:1) solution.

Refinement top

All H atoms were positioned geometrically with C—H =0.97 and 0.96 Å for methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for methylene H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title compound showing 30% probability displacement ellipsoids. Atoms labelled with the suffixes A, B and C are at the symmetry positions (1 - x, y, 0.5 - z), (1 - x, 1 - y, -z) and (x, 1 - y, -1/2 + z), respectively.
catena-Poly[[iodidocopper(I)]-µ-4,4',6,6'-tetramethyl-2,2'- (ethylenedithio)dipyrimidine-κ2N:N'] top
Crystal data top
[CuI(C14H18N4S2)]F(000) = 976
Mr = 496.88Dx = 1.830 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 4275 reflections
a = 14.201 (5) Åθ = 3.0–27.5°
b = 8.064 (5) ŵ = 3.16 mm1
c = 16.940 (5) ÅT = 293 K
β = 111.655 (5)°Prism, yellow
V = 1803.0 (14) Å30.33 × 0.24 × 0.21 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2070 independent reflections
Radiation source: sealed tube1942 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 1814
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 109
Tmin = 0.419, Tmax = 0.515l = 2121
5585 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0273P)2 + 1.5073P]
where P = (Fo2 + 2Fc2)/3
2070 reflections(Δ/σ)max = 0.001
103 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[CuI(C14H18N4S2)]V = 1803.0 (14) Å3
Mr = 496.88Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.201 (5) ŵ = 3.16 mm1
b = 8.064 (5) ÅT = 293 K
c = 16.940 (5) Å0.33 × 0.24 × 0.21 mm
β = 111.655 (5)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2070 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1942 reflections with I > 2σ(I)
Tmin = 0.419, Tmax = 0.515Rint = 0.012
5585 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.053H-atom parameters constrained
S = 1.09Δρmax = 0.51 e Å3
2070 reflectionsΔρmin = 0.37 e Å3
103 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.50000.19054 (3)0.25000.04737 (8)
Cu10.50000.12185 (4)0.25000.03416 (9)
S10.52076 (4)0.34963 (8)0.11434 (3)0.04371 (14)
N10.32885 (12)0.4555 (2)0.05807 (11)0.0342 (3)
N20.38109 (11)0.2506 (2)0.16787 (9)0.0290 (3)
C50.21161 (14)0.3484 (3)0.11508 (12)0.0344 (4)
H50.14660.34680.11610.041*
C30.23460 (14)0.4530 (2)0.06006 (12)0.0340 (4)
C60.28616 (14)0.2463 (3)0.16853 (11)0.0317 (4)
C10.52381 (15)0.5214 (3)0.04659 (12)0.0366 (4)
H1A0.48810.61490.05840.044*
H1B0.59360.55450.05970.044*
C20.39619 (13)0.3559 (2)0.11190 (11)0.0298 (3)
C40.15807 (18)0.5669 (3)0.00052 (16)0.0505 (5)
H4A0.17290.67910.02020.076*
H4B0.09160.53740.00170.076*
H4C0.16050.55750.05520.076*
C70.26594 (15)0.1282 (3)0.22824 (14)0.0437 (5)
H7A0.27540.01650.21280.066*
H7B0.19750.14190.22520.066*
H7C0.31190.15000.28510.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.04987 (13)0.03860 (12)0.05587 (13)0.0000.02211 (9)0.000
Cu10.03150 (16)0.0412 (2)0.03022 (16)0.0000.01191 (12)0.000
S10.0306 (2)0.0610 (3)0.0444 (3)0.0086 (2)0.0194 (2)0.0221 (2)
N10.0331 (8)0.0374 (9)0.0338 (8)0.0040 (6)0.0144 (6)0.0047 (6)
N20.0270 (7)0.0335 (7)0.0272 (7)0.0021 (6)0.0107 (5)0.0004 (6)
C50.0261 (8)0.0388 (10)0.0398 (10)0.0015 (7)0.0138 (7)0.0044 (8)
C30.0315 (9)0.0344 (10)0.0346 (9)0.0022 (7)0.0106 (7)0.0033 (7)
C60.0305 (8)0.0352 (9)0.0308 (8)0.0052 (7)0.0130 (7)0.0036 (7)
C10.0331 (9)0.0444 (11)0.0337 (10)0.0086 (8)0.0141 (8)0.0027 (8)
C20.0292 (8)0.0343 (9)0.0283 (8)0.0006 (7)0.0133 (7)0.0001 (7)
C40.0399 (11)0.0518 (13)0.0563 (13)0.0140 (10)0.0136 (10)0.0122 (11)
C70.0338 (10)0.0531 (13)0.0470 (11)0.0064 (9)0.0183 (8)0.0099 (10)
Geometric parameters (Å, º) top
I1—Cu12.5191 (16)C3—C41.495 (3)
Cu1—N2i2.0327 (16)C6—C71.492 (3)
Cu1—N22.0327 (16)C1—C1ii1.510 (4)
S1—C21.7550 (19)C1—H1A0.9700
S1—C11.809 (2)C1—H1B0.9700
N1—C21.322 (2)C4—H4A0.9600
N1—C31.351 (2)C4—H4B0.9600
N2—C21.348 (2)C4—H4C0.9600
N2—C61.353 (2)C7—H7A0.9600
C5—C31.382 (3)C7—H7B0.9600
C5—C61.383 (3)C7—H7C0.9600
C5—H50.9300
N2i—Cu1—N2118.55 (10)S1—C1—H1A109.1
N2i—Cu1—I1120.72 (5)C1ii—C1—H1B109.1
N2—Cu1—I1120.72 (5)S1—C1—H1B109.1
C2—S1—C1102.87 (9)H1A—C1—H1B107.8
C2—N1—C3116.41 (16)N1—C2—N2127.28 (16)
C2—N2—C6116.10 (16)N1—C2—S1120.02 (13)
C2—N2—Cu1119.73 (12)N2—C2—S1112.69 (13)
C6—N2—Cu1124.04 (13)C3—C4—H4A109.5
C3—C5—C6119.38 (17)C3—C4—H4B109.5
C3—C5—H5120.3H4A—C4—H4B109.5
C6—C5—H5120.3C3—C4—H4C109.5
N1—C3—C5120.57 (17)H4A—C4—H4C109.5
N1—C3—C4117.01 (18)H4B—C4—H4C109.5
C5—C3—C4122.42 (18)C6—C7—H7A109.5
N2—C6—C5120.24 (17)C6—C7—H7B109.5
N2—C6—C7117.63 (17)H7A—C7—H7B109.5
C5—C6—C7122.13 (17)C6—C7—H7C109.5
C1ii—C1—S1112.45 (19)H7A—C7—H7C109.5
C1ii—C1—H1A109.1H7B—C7—H7C109.5
N2i—Cu1—N2—C259.68 (13)C3—C5—C6—N21.1 (3)
I1—Cu1—N2—C2120.32 (13)C3—C5—C6—C7178.78 (19)
N2i—Cu1—N2—C6115.97 (16)C2—S1—C1—C1ii79.7 (2)
I1—Cu1—N2—C664.03 (16)C3—N1—C2—N20.9 (3)
C2—N1—C3—C51.1 (3)C3—N1—C2—S1179.92 (14)
C2—N1—C3—C4179.03 (19)C6—N2—C2—N10.3 (3)
C6—C5—C3—N10.2 (3)Cu1—N2—C2—N1175.69 (15)
C6—C5—C3—C4179.9 (2)C6—N2—C2—S1178.79 (13)
C2—N2—C6—C51.3 (3)Cu1—N2—C2—S15.22 (18)
Cu1—N2—C6—C5174.53 (14)C1—S1—C2—N19.16 (18)
C2—N2—C6—C7178.58 (18)C1—S1—C2—N2171.68 (14)
Cu1—N2—C6—C75.6 (2)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[CuI(C14H18N4S2)]
Mr496.88
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)14.201 (5), 8.064 (5), 16.940 (5)
β (°) 111.655 (5)
V3)1803.0 (14)
Z4
Radiation typeMo Kα
µ (mm1)3.16
Crystal size (mm)0.33 × 0.24 × 0.21
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.419, 0.515
No. of measured, independent and
observed [I > 2σ(I)] reflections
5585, 2070, 1942
Rint0.012
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.053, 1.09
No. of reflections2070
No. of parameters103
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.37

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
I1—Cu12.5191 (16)Cu1—N22.0327 (16)
N2i—Cu1—N2118.55 (10)N2i—Cu1—I1120.72 (5)
Symmetry code: (i) x+1, y, z+1/2.
 

Acknowledgements

We thank Professor W.-T. Yu of Shan Dong University for his assistance with the X-ray structure determinations.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCatalano, V. J., Benett, B. L., Yson, R. L. & Noll, B. C. (2000). J. Am. Chem. Soc. 122, 10056–10057.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNishihara, H., Haruna, M. & Suhara, T. (1989). Optical Intergrated Circuits. McGraw-Hill, New York.  Google Scholar
First citationRoberto, D., Ugo, R., Bruni, S., Cariati, E., Cariati, F., Fantucci, P., Invernizzi, I., Quici, S., Ledoux, I. & Zyss, J. (2000). Organometallics, 19, 1775–1788.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, W. J., Ruan, C. X., Li, Z., Li, M. & Li, D. (2008). CrystEngComm, 10, 778–783.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds