organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1H-Benzotriazol-1-yl)-1-(4-ethyl­benzo­yl)ethyl 2-chloro­benzoate

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: wulanzeng@163.com

(Received 9 July 2009; accepted 12 August 2009; online 15 August 2009)

In the crystal structure of the title compound, C24H20ClN3O3, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into chains extended along the a axis. The crystal studied was found to be an inversion twin.

Related literature

For background to the pharmacological activity of 1H-benzotriazole and its derivative, see Chen & Wu (2005[Chen, Z.-Y. & Wu, M.-J. (2005). Org. Lett. 7, 475-477.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C24H20ClN3O3

  • Mr = 433.88

  • Orthorhombic, P 21 21 21

  • a = 9.433 (2) Å

  • b = 14.824 (4) Å

  • c = 15.239 (4) Å

  • V = 2131.0 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.15 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 13991 measured reflections

  • 5212 independent reflections

  • 2174 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.158

  • S = 0.91

  • 5212 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2244 Friedel pairs

  • Flack parameter: 0.57 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯O3i 0.97 2.51 3.162 (4) 125
C8—H8A⋯O2ii 0.98 2.42 3.397 (5) 171
C11—H11A⋯O2ii 0.93 2.56 3.431 (5) 155
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1H-Benzotriazole and its derivatives exhibit a broad spectrum of pharmacological activities such as antifungal, antitumor and antineoplastic activities (Chen & Wu, 2005). We report here the synthesis and structure of the title compound, (I) (Fig. 1), as part of our ongoing studies on new benzotriazole compounds with higher bioactivity.

All the bond lengths and angles in (I) are within their normal ranges (Allen et al., 1987). The benzotriazole ring system is essentially planar, with a dihedral angle of 1.97 (1)° between the triazole ring (atoms N1—N3/C1/C6) and the C1—C6 benzene ring. The dihedral angles between the mean planes of the benzotriazole system and the C10—C15 and C19—C24 aromatic rings are 9.25 (1)° and 87.55 (1)°, respectively. The dihedral angle between rings C10—C15 and C19—C24 is 85.25 (2)°. Molecule (I) is chiral: atom C8 has S configuration, but refinement showed the crystal to be a racemic twin.

Related literature top

For background to thepharmacological activity of 1H-benzotriazole and its derivative , see Chen & Wu (2005). For reference structural data, see: Allen et al. (1987).

Experimental top

Bromine (3.2 g, 0.02 mol) was added dropwise to a solution of 3-(1H-benzo[d][1,2,3]triazol-1-yl)-1-(4-ethylphenyl)propan-1-one (5.58 g, 0.02 mol) and sodium acetate (1.6 g, 0.02 mol) in acetic acid (50 ml). The reaction proceeded for 7 h. Water (50 ml) and chloroform (20 ml) were then added. The organic layer was washed successively with saturated sodium bicarbonate solution and brine, dried over anhydrous magnesium sulfate and the chloroform solution filtered. It was cooled with ice-water, and then an acetone solution (10 ml) of 2-chlorobenzoic acid (3.1 g, 0.02 mol) and triethylamine (2.8 ml) was added. The mixture was stirred with ice-water for 6 h. The solution was then filtered and concentrated. Colourless blocks of (I) were obtained by slow evaporation of an petroleum aether-ethylacetate (3:1 v/v) solution at room temperature over a period of one week.

Refinement top

The H atoms were geometrically placed (C—H = 0.93–0.97 Å), and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability ellipsoids (arbitrary spheres for the H atoms).
2-(1H-Benzotriazol-1-yl)-1-(4-ethylbenzoyl)ethyl 2-chlorobenzoate top
Crystal data top
C24H20ClN3O3F(000) = 904
Mr = 433.88Dx = 1.352 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5212 reflections
a = 9.433 (2) Åθ = 1.9–28.3°
b = 14.824 (4) ŵ = 0.21 mm1
c = 15.239 (4) ÅT = 293 K
V = 2131.0 (10) Å3Block, colourless
Z = 40.15 × 0.12 × 0.10 mm
Data collection top
Bruker SMART CCD
diffractometer
2174 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.078
Graphite monochromatorθmax = 28.3°, θmin = 1.9°
ω scansh = 1212
13991 measured reflectionsk = 1917
5212 independent reflectionsl = 2013
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.057 w = 1/[σ2(Fo2) + (0.0626P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.158(Δ/σ)max < 0.001
S = 0.91Δρmax = 0.22 e Å3
5212 reflectionsΔρmin = 0.20 e Å3
281 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0034 (10)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2214 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.57 (12)
Crystal data top
C24H20ClN3O3V = 2131.0 (10) Å3
Mr = 433.88Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.433 (2) ŵ = 0.21 mm1
b = 14.824 (4) ÅT = 293 K
c = 15.239 (4) Å0.15 × 0.12 × 0.10 mm
Data collection top
Bruker SMART CCD
diffractometer
2174 reflections with I > 2σ(I)
13991 measured reflectionsRint = 0.078
5212 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.158Δρmax = 0.22 e Å3
S = 0.91Δρmin = 0.20 e Å3
5212 reflectionsAbsolute structure: Flack (1983), 2214 Friedel pairs
281 parametersAbsolute structure parameter: 0.57 (12)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.15025 (14)0.62148 (8)0.24883 (9)0.0933 (5)
O10.1687 (2)0.61438 (14)0.03013 (16)0.0470 (6)
O20.3655 (3)0.73734 (15)0.08575 (17)0.0573 (7)
O30.0410 (3)0.69848 (17)0.12131 (18)0.0572 (7)
N10.2042 (3)0.6104 (2)0.15765 (19)0.0497 (8)
N20.1122 (4)0.6446 (2)0.2173 (2)0.0660 (10)
N30.0555 (4)0.5770 (3)0.2603 (2)0.0788 (11)
C10.1124 (5)0.4984 (3)0.2287 (3)0.0627 (12)
C20.0891 (5)0.4096 (3)0.2526 (3)0.0803 (14)
H2B0.02340.39520.29580.096*
C30.1639 (7)0.3446 (3)0.2116 (3)0.0887 (17)
H3B0.14970.28460.22700.106*
C40.2615 (6)0.3655 (3)0.1468 (3)0.0806 (14)
H4A0.31240.31900.12060.097*
C50.2858 (5)0.4534 (3)0.1199 (3)0.0669 (12)
H5A0.35070.46750.07600.080*
C60.2070 (4)0.5187 (3)0.1626 (3)0.0502 (10)
C70.2789 (4)0.6705 (2)0.0990 (2)0.0508 (10)
H7A0.36580.64150.07990.061*
H7B0.30470.72480.13080.061*
C80.1931 (4)0.6963 (2)0.0194 (2)0.0430 (9)
H8A0.10220.72210.03790.052*
C90.2747 (4)0.7649 (2)0.0346 (3)0.0433 (9)
C100.2528 (4)0.8626 (2)0.0197 (2)0.0433 (9)
C110.1516 (5)0.8960 (3)0.0356 (3)0.0705 (13)
H11A0.09110.85660.06490.085*
C120.1383 (5)0.9887 (3)0.0485 (3)0.0804 (15)
H12A0.06831.01030.08600.097*
C130.2257 (5)1.0486 (2)0.0072 (3)0.0656 (12)
C140.3253 (5)1.0147 (3)0.0490 (3)0.0650 (13)
H14A0.38491.05420.07890.078*
C150.3386 (4)0.9232 (2)0.0622 (3)0.0545 (10)
H15A0.40730.90200.10090.065*
C160.2116 (6)1.1492 (3)0.0229 (4)0.0990 (18)
H16A0.25171.16280.08000.119*
H16B0.26871.18030.02050.119*
C170.0676 (6)1.1865 (3)0.0198 (4)0.109 (2)
H17A0.07091.25010.03110.164*
H17B0.00991.15750.06340.164*
H17C0.02761.17610.03730.164*
C180.0826 (4)0.6257 (2)0.1005 (2)0.0443 (9)
C190.0495 (4)0.5386 (2)0.1438 (2)0.0459 (10)
C200.1196 (5)0.4611 (2)0.1187 (3)0.0602 (11)
H20A0.18790.46450.07480.072*
C210.0906 (6)0.3783 (3)0.1573 (3)0.0742 (14)
H21A0.13990.32700.13970.089*
C220.0106 (6)0.3724 (3)0.2212 (3)0.0772 (14)
H22A0.03060.31700.24710.093*
C230.0820 (5)0.4473 (3)0.2466 (3)0.0840 (15)
H23A0.15170.44280.28950.101*
C240.0519 (5)0.5315 (3)0.2090 (3)0.0589 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1010 (9)0.0888 (9)0.0902 (9)0.0149 (8)0.0451 (8)0.0174 (8)
O10.0570 (15)0.0334 (13)0.0505 (15)0.0011 (12)0.0078 (13)0.0052 (12)
O20.0568 (17)0.0499 (15)0.0652 (19)0.0002 (14)0.0106 (16)0.0067 (14)
O30.0709 (18)0.0426 (15)0.0583 (17)0.0093 (14)0.0145 (15)0.0040 (14)
N10.057 (2)0.0464 (19)0.0452 (18)0.0041 (16)0.0044 (17)0.0047 (16)
N20.074 (2)0.073 (2)0.051 (2)0.011 (2)0.004 (2)0.001 (2)
N30.091 (3)0.086 (3)0.060 (2)0.002 (2)0.016 (2)0.015 (2)
C10.078 (3)0.059 (3)0.052 (3)0.005 (3)0.005 (2)0.011 (2)
C20.103 (4)0.078 (3)0.060 (3)0.020 (3)0.019 (3)0.011 (3)
C30.131 (5)0.060 (3)0.075 (3)0.034 (3)0.003 (4)0.015 (3)
C40.108 (4)0.051 (3)0.083 (3)0.006 (3)0.014 (3)0.001 (3)
C50.084 (3)0.058 (3)0.059 (3)0.010 (2)0.000 (3)0.001 (2)
C60.058 (3)0.046 (2)0.046 (2)0.009 (2)0.009 (2)0.008 (2)
C70.057 (2)0.045 (2)0.051 (2)0.0063 (19)0.008 (2)0.0040 (19)
C80.049 (2)0.0317 (18)0.049 (2)0.0025 (16)0.0073 (19)0.0034 (18)
C90.039 (2)0.046 (2)0.044 (2)0.0013 (18)0.006 (2)0.0013 (19)
C100.049 (2)0.036 (2)0.045 (2)0.0026 (18)0.0024 (19)0.0004 (18)
C110.088 (3)0.040 (2)0.084 (3)0.009 (2)0.022 (3)0.007 (2)
C120.094 (4)0.044 (3)0.104 (4)0.000 (3)0.037 (3)0.013 (3)
C130.069 (3)0.037 (2)0.091 (3)0.003 (2)0.009 (3)0.002 (2)
C140.063 (3)0.044 (3)0.088 (3)0.011 (2)0.004 (3)0.014 (2)
C150.053 (2)0.050 (2)0.061 (2)0.000 (2)0.001 (2)0.004 (2)
C160.107 (4)0.039 (2)0.151 (5)0.004 (3)0.003 (4)0.013 (3)
C170.131 (5)0.053 (3)0.144 (5)0.018 (3)0.027 (4)0.011 (3)
C180.044 (2)0.042 (2)0.046 (2)0.0026 (19)0.0019 (19)0.000 (2)
C190.057 (2)0.042 (2)0.039 (2)0.007 (2)0.0058 (19)0.0021 (18)
C200.084 (3)0.044 (2)0.053 (2)0.002 (2)0.009 (2)0.001 (2)
C210.109 (4)0.037 (2)0.076 (3)0.000 (3)0.013 (3)0.003 (2)
C220.101 (4)0.056 (3)0.074 (3)0.021 (3)0.017 (3)0.027 (3)
C230.092 (4)0.085 (3)0.075 (3)0.019 (3)0.014 (3)0.029 (3)
C240.068 (3)0.054 (2)0.054 (3)0.005 (2)0.002 (2)0.012 (2)
Geometric parameters (Å, º) top
Cl1—C241.734 (4)C10—C151.373 (5)
O1—C181.355 (4)C11—C121.394 (5)
O1—C81.448 (4)C11—H11A0.9300
O2—C91.228 (4)C12—C131.364 (6)
O3—C181.191 (4)C12—H12A0.9300
N1—N21.355 (4)C13—C141.368 (6)
N1—C61.361 (4)C13—C161.516 (5)
N1—C71.445 (4)C14—C151.378 (5)
N2—N31.312 (4)C14—H14A0.9300
N3—C11.371 (5)C15—H15A0.9300
C1—C61.380 (6)C16—C171.468 (7)
C1—C21.382 (5)C16—H16A0.9700
C2—C31.348 (6)C16—H16B0.9700
C2—H2B0.9300C17—H17A0.9600
C3—C41.385 (7)C17—H17B0.9600
C3—H3B0.9300C17—H17C0.9600
C4—C51.385 (6)C18—C191.483 (5)
C4—H4A0.9300C19—C201.379 (5)
C5—C61.383 (5)C19—C241.383 (6)
C5—H5A0.9300C20—C211.389 (5)
C7—C81.508 (5)C20—H20A0.9300
C7—H7A0.9700C21—C221.367 (7)
C7—H7B0.9700C21—H21A0.9300
C8—C91.518 (5)C22—C231.355 (6)
C8—H8A0.9800C22—H22A0.9300
C9—C101.480 (5)C23—C241.403 (6)
C10—C111.367 (5)C23—H23A0.9300
C18—O1—C8113.8 (2)C13—C12—C11121.5 (4)
N2—N1—C6110.5 (3)C13—C12—H12A119.2
N2—N1—C7119.8 (3)C11—C12—H12A119.2
C6—N1—C7129.8 (3)C12—C13—C14117.7 (4)
N3—N2—N1108.1 (3)C12—C13—C16121.0 (5)
N2—N3—C1108.3 (3)C14—C13—C16121.3 (4)
N3—C1—C6108.9 (4)C13—C14—C15121.1 (4)
N3—C1—C2130.9 (4)C13—C14—H14A119.5
C6—C1—C2120.2 (4)C15—C14—H14A119.5
C3—C2—C1118.4 (4)C10—C15—C14121.5 (4)
C3—C2—H2B120.8C10—C15—H15A119.3
C1—C2—H2B120.8C14—C15—H15A119.3
C2—C3—C4121.2 (4)C17—C16—C13116.5 (4)
C2—C3—H3B119.4C17—C16—H16A108.2
C4—C3—H3B119.4C13—C16—H16A108.2
C5—C4—C3122.1 (5)C17—C16—H16B108.2
C5—C4—H4A118.9C13—C16—H16B108.2
C3—C4—H4A118.9H16A—C16—H16B107.3
C6—C5—C4115.5 (4)C16—C17—H17A109.5
C6—C5—H5A122.3C16—C17—H17B109.5
C4—C5—H5A122.3H17A—C17—H17B109.5
N1—C6—C1104.2 (4)C16—C17—H17C109.5
N1—C6—C5133.1 (4)H17A—C17—H17C109.5
C1—C6—C5122.6 (4)H17B—C17—H17C109.5
N1—C7—C8113.0 (3)O3—C18—O1121.4 (3)
N1—C7—H7A109.0O3—C18—C19126.9 (4)
C8—C7—H7A109.0O1—C18—C19111.7 (3)
N1—C7—H7B109.0C20—C19—C24117.9 (3)
C8—C7—H7B109.0C20—C19—C18120.0 (4)
H7A—C7—H7B107.8C24—C19—C18122.1 (3)
O1—C8—C7107.0 (3)C19—C20—C21121.6 (4)
O1—C8—C9111.0 (3)C19—C20—H20A119.2
C7—C8—C9109.5 (3)C21—C20—H20A119.2
O1—C8—H8A109.8C22—C21—C20119.7 (4)
C7—C8—H8A109.8C22—C21—H21A120.1
C9—C8—H8A109.8C20—C21—H21A120.1
O2—C9—C10121.3 (3)C23—C22—C21119.9 (4)
O2—C9—C8118.4 (3)C23—C22—H22A120.0
C10—C9—C8120.1 (3)C21—C22—H22A120.0
C11—C10—C15117.8 (3)C22—C23—C24120.8 (4)
C11—C10—C9123.1 (3)C22—C23—H23A119.6
C15—C10—C9119.1 (3)C24—C23—H23A119.6
C10—C11—C12120.4 (4)C19—C24—C23120.1 (4)
C10—C11—H11A119.8C19—C24—Cl1124.3 (3)
C12—C11—H11A119.8C23—C24—Cl1115.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O3i0.972.513.162 (4)125
C8—H8A···O2ii0.982.423.397 (5)171
C11—H11A···O2ii0.932.563.431 (5)155
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC24H20ClN3O3
Mr433.88
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.433 (2), 14.824 (4), 15.239 (4)
V3)2131.0 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13991, 5212, 2174
Rint0.078
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.158, 0.91
No. of reflections5212
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.20
Absolute structureFlack (1983), 2214 Friedel pairs
Absolute structure parameter0.57 (12)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O3i0.972.513.162 (4)125
C8—H8A···O2ii0.982.423.397 (5)171
C11—H11A···O2ii0.932.563.431 (5)155
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y+3/2, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z.-Y. & Wu, M.-J. (2005). Org. Lett. 7, 475-477.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds