organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-Di­methyl­amino-1-(2-pyrid­yl)prop-2-en-1-one

aCollege of Chemistry and Biology, Beihua University, Jilin 132013, People's Republic of China
*Correspondence e-mail: nilei_bh@163.com

(Received 9 July 2009; accepted 31 July 2009; online 8 August 2009)

The mol­ecule of the title compound, C10H12N2O, is approximately planar, with an r.m.s. deviation of 0.072 Å from the mean plane for the non-H atoms. It was synthesized from 2-acetyl­pyridine and N,N-dimethyl­formamide dimethyl acetal in a one-step reaction.

Related literature

For background to related heteroaromatic compounds, see: Zhang et al. (2009[Zhang, X., Dou, J., Wei, P., Li, D., Li, B., Shi, C. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325-3332.]); Liu et al. (2009[Liu, Y., Turner, D. B., Singh, T. N., Angeles-Boza, A. M., Chouai, A., Dunbar, K. R. & Turro, C. (2009). J. Am. Chem. Soc. 131, 26-27.]); Kida et al. (2009[Kida, N., Hikita, M., Kashima, I., Okubo, M., Itoi, M., Enomoto, M., Kato, K., Takata, M. & Kojima, N. (2009). J. Am. Chem. Soc. 131, 212-220.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N2O

  • Mr = 176.22

  • Monoclinic, P 21 /n

  • a = 5.6670 (11) Å

  • b = 23.117 (5) Å

  • c = 7.6880 (15) Å

  • β = 108.17 (3)°

  • V = 956.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.990, Tmax = 0.994

  • 7131 measured reflections

  • 1775 independent reflections

  • 1403 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.143

  • S = 1.00

  • 1775 reflections

  • 121 parameters

  • H-atom parameters not refined

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Derives of heteroaromatic ligands have proven to be extremely popular amongst coordination chemists for a wide range of applications because of their ease of synthesis, ease of functionalization, and the steric protection which they afford to metal centres (Zhang et al.; Liu et al.; Kida et al.). Here, we report the synthesis and structure of the title compound, (I).

As shown in Fig. 1, non-hydrogen atoms including the pyridine ring, N,N-Dimethylamino, and prop-2-en-1-one are coplanar with Rms deviation of fitted atoms being 0.0724 Å. The title compound is synthesized from 2-acetylpyridine and N,N-dimethylformamide-dimethyl acetal by one step.

Related literature top

For background to related heteroaromatic compounds, see: Zhang et al. (2009); Liu et al. (2009); Kida et al. (2009).

Experimental top

A mixture of 2-acetylpyridine(10 mmol) and N,N-dimethylformamide-dimethyl acetal(40 ml) was refluxed for four hours. After concentration in vacuo, recrystallization of the orange residue from ethanol afforded yellow blocks of (I). Anal. Calc. for C10H12N2O: C 68.10, H 6.81, N 15.89%; Found: C 68.02, H 6.63, N 15.79%.

Refinement top

All H atoms were geometrically positioned (C—H = 0.93–0.97Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability displacement ellipsoids for the non-hydrogen atoms.
(E)-3-Dimethylamino-1-(2-pyridyl)prop-2-en-1-one top
Crystal data top
C10H12N2OF(000) = 376
Mr = 176.22Dx = 1.223 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1775 reflections
a = 5.6670 (11) Åθ = 1.8–25.5°
b = 23.117 (5) ŵ = 0.08 mm1
c = 7.6880 (15) ÅT = 295 K
β = 108.17 (3)°Block, yellow
V = 956.9 (3) Å30.12 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1775 independent reflections
Radiation source: fine-focus sealed tube1403 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 66
Tmin = 0.990, Tmax = 0.994k = 2728
7131 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters not refined
S = 1.00 w = 1/[σ2(Fo2) + (0.087P)2 + 0.1213P]
where P = (Fo2 + 2Fc2)/3
1775 reflections(Δ/σ)max < 0.001
121 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C10H12N2OV = 956.9 (3) Å3
Mr = 176.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.6670 (11) ŵ = 0.08 mm1
b = 23.117 (5) ÅT = 295 K
c = 7.6880 (15) Å0.12 × 0.10 × 0.08 mm
β = 108.17 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
1775 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1403 reflections with I > 2σ(I)
Tmin = 0.990, Tmax = 0.994Rint = 0.027
7131 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.143H-atom parameters not refined
S = 1.00Δρmax = 0.18 e Å3
1775 reflectionsΔρmin = 0.15 e Å3
121 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3675 (4)0.01987 (8)0.3188 (3)0.0664 (6)
H1A0.25620.00800.29450.100*
H1B0.52320.00160.30920.100*
H1C0.29640.03510.44010.100*
C20.5845 (4)0.11075 (9)0.1969 (3)0.0674 (6)
H2A0.50720.14810.20790.101*
H2B0.63850.10380.30170.101*
H2C0.72510.10960.08790.101*
C30.2893 (3)0.06861 (7)0.0630 (2)0.0456 (4)
H30.18430.03770.06330.055*
C40.3024 (3)0.11046 (7)0.0648 (2)0.0464 (4)
H40.40060.14300.07030.056*
C50.1648 (3)0.10380 (7)0.1890 (2)0.0445 (4)
C60.1719 (3)0.15207 (6)0.3237 (2)0.0423 (4)
C70.0089 (3)0.15063 (8)0.4258 (2)0.0533 (5)
H70.10380.12040.41180.064*
C80.0165 (4)0.19467 (9)0.5484 (2)0.0615 (5)
H80.09160.19470.61790.074*
C90.1851 (4)0.23816 (8)0.5661 (2)0.0608 (5)
H90.19510.26820.64840.073*
C100.3406 (4)0.23655 (8)0.4592 (2)0.0584 (5)
H100.45490.26640.47200.070*
N10.4076 (3)0.06659 (6)0.18682 (18)0.0500 (4)
N20.3368 (3)0.19482 (6)0.33867 (18)0.0505 (4)
O10.0370 (3)0.06092 (5)0.19576 (18)0.0657 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0977 (16)0.0551 (11)0.0587 (11)0.0089 (10)0.0423 (11)0.0012 (9)
C20.0611 (12)0.0857 (14)0.0628 (12)0.0074 (10)0.0303 (10)0.0026 (10)
C30.0508 (9)0.0462 (9)0.0432 (9)0.0036 (7)0.0197 (7)0.0052 (7)
C40.0487 (9)0.0464 (9)0.0466 (9)0.0007 (7)0.0185 (7)0.0010 (7)
C50.0491 (9)0.0431 (9)0.0427 (9)0.0008 (7)0.0164 (7)0.0007 (7)
C60.0457 (9)0.0423 (9)0.0387 (8)0.0060 (7)0.0128 (7)0.0034 (6)
C70.0541 (10)0.0571 (11)0.0531 (10)0.0016 (8)0.0232 (8)0.0037 (8)
C80.0649 (12)0.0701 (13)0.0560 (11)0.0110 (10)0.0284 (9)0.0077 (9)
C90.0763 (13)0.0555 (11)0.0482 (10)0.0122 (9)0.0161 (9)0.0103 (8)
C100.0730 (12)0.0476 (10)0.0519 (10)0.0048 (9)0.0158 (9)0.0051 (8)
N10.0591 (9)0.0520 (8)0.0462 (8)0.0031 (6)0.0271 (7)0.0023 (6)
N20.0581 (9)0.0476 (8)0.0466 (8)0.0037 (7)0.0178 (7)0.0031 (6)
O10.0896 (10)0.0554 (8)0.0676 (9)0.0208 (7)0.0472 (8)0.0144 (6)
Geometric parameters (Å, º) top
C1—N11.451 (2)C5—O11.2384 (18)
C1—H1A0.9600C5—C61.514 (2)
C1—H1B0.9600C6—N21.340 (2)
C1—H1C0.9600C6—C71.386 (2)
C2—N11.450 (2)C7—C81.379 (2)
C2—H2A0.9600C7—H70.9300
C2—H2B0.9600C8—C91.364 (3)
C2—H2C0.9600C8—H80.9300
C3—N11.325 (2)C9—C101.380 (3)
C3—C41.364 (2)C9—H90.9300
C3—H30.9300C10—N21.333 (2)
C4—C51.417 (2)C10—H100.9300
C4—H40.9300
N1—C1—H1A109.5C4—C5—C6118.57 (14)
N1—C1—H1B109.5N2—C6—C7122.61 (15)
H1A—C1—H1B109.5N2—C6—C5118.10 (14)
N1—C1—H1C109.5C7—C6—C5119.29 (15)
H1A—C1—H1C109.5C8—C7—C6119.01 (17)
H1B—C1—H1C109.5C8—C7—H7120.5
N1—C2—H2A109.5C6—C7—H7120.5
N1—C2—H2B109.5C9—C8—C7118.94 (17)
H2A—C2—H2B109.5C9—C8—H8120.5
N1—C2—H2C109.5C7—C8—H8120.5
H2A—C2—H2C109.5C8—C9—C10118.55 (16)
H2B—C2—H2C109.5C8—C9—H9120.7
N1—C3—C4128.04 (15)C10—C9—H9120.7
N1—C3—H3116.0N2—C10—C9123.96 (17)
C4—C3—H3116.0N2—C10—H10118.0
C3—C4—C5119.39 (15)C9—C10—H10118.0
C3—C4—H4120.3C3—N1—C2121.81 (14)
C5—C4—H4120.3C3—N1—C1121.65 (15)
O1—C5—C4124.55 (15)C2—N1—C1116.54 (14)
O1—C5—C6116.87 (14)C10—N2—C6116.93 (15)

Experimental details

Crystal data
Chemical formulaC10H12N2O
Mr176.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)5.6670 (11), 23.117 (5), 7.6880 (15)
β (°) 108.17 (3)
V3)956.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.990, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
7131, 1775, 1403
Rint0.027
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.143, 1.00
No. of reflections1775
No. of parameters121
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.18, 0.15

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge financial support from the Science Foundation of Beihua University.

References

First citationBruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKida, N., Hikita, M., Kashima, I., Okubo, M., Itoi, M., Enomoto, M., Kato, K., Takata, M. & Kojima, N. (2009). J. Am. Chem. Soc. 131, 212–220.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, Y., Turner, D. B., Singh, T. N., Angeles-Boza, A. M., Chouai, A., Dunbar, K. R. & Turro, C. (2009). J. Am. Chem. Soc. 131, 26–27.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X., Dou, J., Wei, P., Li, D., Li, B., Shi, C. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325–3332.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds