metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Dioxido­tetra­pyridine­rhenium(V) triiodide

aUniversity of Wrocław, Faculty of Chemistry, 14 Joliot-Curie St, 50-383 Wrocław, Poland
*Correspondence e-mail: martakrawczyk.re@gmail.com

(Received 31 July 2009; accepted 2 August 2009; online 12 August 2009)

In the title salt, [ReO2(C5H5N)4]I3, the cation and anion are both located on centres of symmetry. The ReV atom adopts a trans-ReO2N4 octa­hedral coordination and short intra­molecular C—H⋯O contacts occur within the cation. In the crystal, the cations form layers perpendicular to [100] and a weak C—H⋯O inter­action links the cations.

Related literature

For related structures containing the same cation, see: Calvo et al. (1971[Calvo, C., Krishnamachari, N. & Lock, C. J. L. (1971). J . Cryst. Mol. Struct. 1, 161-172.]); Lock & Turner (1978[Lock, C. J. L. & Turner, G. (1978). Acta Cryst. B34, 923-927.]); Luck & O'Neill (2001[Luck, R. L. & O'Neill, R. S. (2001). Polyhedron, 28, 773-782.]). For further synthetic details, see: Johnson et al. (1967[Johnson, N. P., Lock, C. J. L. & Wilkinson, G. (1967). Inorg. Synth. 9, 145-148.]). For background to aromatic ππ stacking, see: Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]).

[Scheme 1]

Experimental

Crystal data
  • [ReO2(C5H5N)4]I3

  • Mr = 915.30

  • Triclinic, [P \overline 1]

  • a = 7.993 (3) Å

  • b = 9.100 (3) Å

  • c = 9.356 (3) Å

  • α = 92.45 (4)°

  • β = 102.41 (4)°

  • γ = 104.10 (4)°

  • V = 641.3 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 8.37 mm−1

  • T = 100 K

  • 0.10 × 0.10 × 0.07 mm

Data collection
  • Oxford Diffraction Xcalibur PX KM-4-CCD diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Poland, Wrocław, Poland.]) Tmin = 0.411, Tmax = 0.656

  • 11244 measured reflections

  • 4298 independent reflections

  • 3593 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.031

  • S = 1.04

  • 4298 reflections

  • 139 parameters

  • H-atom parameters constrained

  • Δρmax = 1.40 e Å−3

  • Δρmin = −1.08 e Å−3

Table 1
Selected bond lengths (Å)

Re—O 1.7649 (18)
Re—N1 2.1411 (19)
Re—N2 2.1442 (18)
I1—I2 2.9222 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O 0.95 2.39 2.914 (3) 114
C25—H25⋯O 0.95 2.38 2.906 (3) 115
C11—H11⋯Oi 0.95 2.39 2.913 (3) 115
C21—H21⋯Oi 0.95 2.37 2.908 (3) 115
C22—H22⋯Oii 0.95 2.41 3.309 (3) 157
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Poland, Wrocław, Poland.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Poland, Wrocław, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The crystal structure of a salt containing [ReO2(C5H5N)4]+ cation was first investigated by Calvo et al., (1971). The authors obtained dioxidotetra(pyridine)rhenium(V) chloride dihydrate in the reaction between trichloridooxidobis(triphenylphosphine)rhenium(V) (Johnson et al., 1967) and hot pyridine used in excess. The crystal structure of [ReO2(C5H5N)4]Cl.2H2O was redetermined by Lock & Turner (1978). The cation [ReO2(C5H5N)4]+ was also described by Luck & O'Neill (2001) as [ReO2(C5H5N)4[OH].1.75H2O salt. This salt was prepared by dissolving ReCl(H2)(PMePh2)4 in the mixture of benzene, pyridine, water and hexane.

The crystal structure of trans-dioxidotetra(pyridine)rhenium(V) triiodide comprises of [ReO2(C5H5N)4]+ cations and I3- anions (Fig. 1). Both ions are located on centres of symmetry. The cation is a distorted octahedron, with two oxido (terminal) ligands in trans arrangement and four pyridine ligands in equatorial positions.

The average Re—O and Re—N bond distances equal 1.765 (2), 2.143 (2) Å, respectively, and are in good agreement with values reported by Calvo et al., (1971), Lock & Turner (1978) and Luck & O'Neill (2001). Moreover, comparing the values of O—Re—O angle comparatively small differences between previous and present results can be observed. In the crystal structure reported here this angle equals 180° and reported for other salts is 171 (1)° (Calvo et al., 1971) and 174.5 (4)° (Lock & Turner, 1978). Similarly, the value of N—Re—Ntrans angles in [ReO2(C5H5N)4]I3 equals 180° and the analogous complex cations that have been determined previously have near linear arrangement of the N—Re—Ntrans moiety. These angles are 176 (2) and 170 (1)° (Calvo et al., 1971), and 173.9 (4) and 175.2 (6)° (Lock & Turner, 1978). The comparatively weak intramolecular hydrogen bonds such as C—H···O can be observed (Fig. 2, Table 2).

The molecular packing in the crystal structure can be described as layers perpendicular to [100] direction which consist of the complex cations (Fig. 3). The I3- anions are located between the layers of [ReO2(C5H5N)4]+ cations. In the crystal packing there are intermolecular stacking interactions between pyridine rings with centroid-centroid distance of 3.831 (2) Å and a slip angle 25°. These values are comparable with the corresponding values reported for transition-metal pyridine fragments (Janiak, 2000). (The ring centroid contacts range between 3.4 and 3.8 Å and the angle averages 27°).

Related literature top

For related structures containing the same cation, see: Calvo et al., (1971); Lock & Turner (1978); Luck & O'Neill (2001). For further synthetic details, see: Johnson et al. (1967). For background to aromatic ππ stacking, see: Janiak (2000).

Experimental top

Rhenium(III) iodide 0.2982 g (0.1753 mmol) was refluxed in dry pyridine (5 ml) (62 mmol) for 3 h at 423 K. The mixture was allowed to evaporate in air at high temperature to give a greenish brown precipitate. The complex was recrystallized from methanol to yield orange blocks of (I).

Refinement top

All hydrogen atoms were placed in calculated positions and refined using riding model [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The highest peak and the deepest hole in the final difference map were 1.07 Å from N1 and 0.78 Å from Re, respectively.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHEXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing ellipsoids drawn at the 30% probability level. The unlabelled atoms of the cation are generated by the symmetry operation (1–x, 1–y, 1–z) and the unlabelled I atom by (2–x, 2–y, 2–z).
[Figure 2] Fig. 2. A part of the crystal structure showing formation of C—H···O hydrogen bonding. [symmetry code (i) -x + 1, -y + 1, -z + 1; (ii) x - 1, y, z.]
[Figure 3] Fig. 3. A packing diagram of (I) showing layers of cations and anions. Hydrogen atoms are omitted for clarity.
trans-dioxidotetra(pyridine)rhenium(V) triiodide top
Crystal data top
[ReO2(C5H5N)4]I3Z = 1
Mr = 915.30F(000) = 418
Triclinic, P1Dx = 2.370 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.993 (3) ÅCell parameters from 11676 reflections
b = 9.100 (3) Åθ = 4.5–38.4°
c = 9.356 (3) ŵ = 8.37 mm1
α = 92.45 (4)°T = 100 K
β = 102.41 (4)°Block, orange
γ = 104.10 (4)°0.10 × 0.10 × 0.07 mm
V = 641.3 (4) Å3
Data collection top
Oxford Diffraction Xcalibur PX KM-4-CCD
diffractometer
4298 independent reflections
Radiation source: fine-focus sealed tube3593 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 32.5°, θmin = 4.5°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
h = 1211
Tmin = 0.411, Tmax = 0.656k = 913
11244 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.031H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.008P)2]
where P = (Fo2 + 2Fc2)/3
4298 reflections(Δ/σ)max = 0.003
139 parametersΔρmax = 1.40 e Å3
0 restraintsΔρmin = 1.08 e Å3
Crystal data top
[ReO2(C5H5N)4]I3γ = 104.10 (4)°
Mr = 915.30V = 641.3 (4) Å3
Triclinic, P1Z = 1
a = 7.993 (3) ÅMo Kα radiation
b = 9.100 (3) ŵ = 8.37 mm1
c = 9.356 (3) ÅT = 100 K
α = 92.45 (4)°0.10 × 0.10 × 0.07 mm
β = 102.41 (4)°
Data collection top
Oxford Diffraction Xcalibur PX KM-4-CCD
diffractometer
4298 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
3593 reflections with I > 2σ(I)
Tmin = 0.411, Tmax = 0.656Rint = 0.027
11244 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.031H-atom parameters constrained
S = 1.04Δρmax = 1.40 e Å3
4298 reflectionsΔρmin = 1.08 e Å3
139 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re0.50000.50000.50000.01065 (3)
I10.92874 (2)1.171742 (18)0.747033 (17)0.02194 (4)
I21.00001.00001.00000.01924 (5)
O0.7122 (2)0.62887 (16)0.53698 (16)0.0144 (3)
N10.5561 (2)0.4374 (2)0.71983 (19)0.0132 (4)
C110.4386 (3)0.3225 (2)0.7640 (2)0.0159 (5)
H110.33180.27070.69570.019*
C120.4708 (3)0.2798 (3)0.9045 (3)0.0213 (5)
H120.38730.19880.93150.026*
C130.6234 (3)0.3541 (3)1.0059 (3)0.0225 (6)
H130.64680.32511.10310.027*
C140.7421 (3)0.4718 (3)0.9631 (3)0.0223 (5)
H140.84800.52601.03100.027*
C150.7045 (3)0.5096 (3)0.8203 (2)0.0176 (5)
H150.78720.59030.79180.021*
N20.3956 (2)0.6744 (2)0.58055 (19)0.0126 (4)
C210.2226 (3)0.6460 (3)0.5840 (2)0.0148 (5)
H210.14810.54670.55060.018*
C220.1494 (3)0.7552 (3)0.6340 (2)0.0173 (5)
H220.02680.73120.63370.021*
C230.2564 (3)0.8991 (3)0.6844 (3)0.0196 (5)
H230.20920.97620.71920.024*
C240.4346 (3)0.9288 (3)0.6833 (3)0.0229 (6)
H240.51191.02650.71900.027*
C250.4992 (3)0.8152 (2)0.6299 (3)0.0189 (5)
H250.62110.83740.62790.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re0.00779 (7)0.01136 (7)0.01158 (6)0.00084 (5)0.00184 (5)0.00043 (5)
I10.01743 (9)0.02567 (9)0.02152 (8)0.00406 (7)0.00338 (7)0.00427 (7)
I20.01598 (12)0.02278 (12)0.01852 (11)0.00268 (10)0.00608 (9)0.00035 (9)
O0.0099 (8)0.0144 (8)0.0166 (8)0.0008 (7)0.0020 (7)0.0025 (7)
N10.0123 (10)0.0131 (9)0.0145 (9)0.0044 (8)0.0026 (8)0.0003 (8)
C110.0131 (12)0.0146 (11)0.0182 (11)0.0002 (10)0.0043 (10)0.0013 (9)
C120.0291 (15)0.0172 (12)0.0199 (12)0.0060 (12)0.0101 (11)0.0051 (10)
C130.0314 (16)0.0256 (13)0.0152 (11)0.0152 (13)0.0064 (11)0.0039 (10)
C140.0191 (14)0.0289 (14)0.0170 (12)0.0088 (12)0.0019 (10)0.0021 (11)
C150.0141 (12)0.0178 (12)0.0181 (11)0.0005 (10)0.0029 (10)0.0013 (10)
N20.0098 (10)0.0145 (9)0.0123 (9)0.0015 (8)0.0019 (8)0.0004 (8)
C210.0110 (12)0.0148 (11)0.0144 (11)0.0006 (10)0.0009 (9)0.0027 (9)
C220.0112 (12)0.0230 (13)0.0182 (11)0.0046 (11)0.0040 (10)0.0020 (10)
C230.0192 (13)0.0187 (12)0.0236 (12)0.0080 (11)0.0076 (11)0.0006 (10)
C240.0171 (13)0.0140 (12)0.0361 (14)0.0007 (11)0.0087 (12)0.0061 (11)
C250.0127 (12)0.0163 (12)0.0268 (13)0.0003 (10)0.0067 (10)0.0006 (10)
Geometric parameters (Å, º) top
Re—Oi1.7649 (18)C13—H130.9500
Re—O1.7649 (18)C14—C151.382 (3)
Re—N1i2.1411 (19)C14—H140.9500
Re—N12.1411 (19)C15—H150.9500
Re—N2i2.1442 (18)N2—C251.344 (3)
Re—N22.1442 (18)N2—C211.351 (3)
I1—I22.9222 (12)C21—C221.382 (3)
I2—I1ii2.9222 (12)C21—H210.9500
N1—C151.346 (3)C22—C231.378 (3)
N1—C111.368 (3)C22—H220.9500
C11—C121.375 (3)C23—C241.386 (3)
C11—H110.9500C23—H230.9500
C12—C131.375 (4)C24—C251.383 (3)
C12—H120.9500C24—H240.9500
C13—C141.383 (3)C25—H250.9500
Oi—Re—O180.0C12—C13—H13120.8
Oi—Re—N1i89.50 (8)C14—C13—H13120.8
O—Re—N1i90.50 (8)C15—C14—C13119.2 (3)
Oi—Re—N190.50 (8)C15—C14—H14120.4
O—Re—N189.50 (8)C13—C14—H14120.4
N1i—Re—N1180.0N1—C15—C14123.0 (2)
Oi—Re—N2i89.76 (7)N1—C15—H15118.5
O—Re—N2i90.24 (7)C14—C15—H15118.5
N1i—Re—N2i88.04 (7)C25—N2—C21117.65 (18)
N1—Re—N2i91.96 (7)C25—N2—Re121.51 (15)
Oi—Re—N290.24 (7)C21—N2—Re120.85 (15)
O—Re—N289.76 (7)N2—C21—C22122.8 (2)
N1i—Re—N291.96 (7)N2—C21—H21118.6
N1—Re—N288.04 (7)C22—C21—H21118.6
N2i—Re—N2180.0C23—C22—C21119.2 (2)
I1—I2—I1ii180.0C23—C22—H22120.4
C15—N1—C11117.36 (19)C21—C22—H22120.4
C15—N1—Re122.15 (15)C22—C23—C24118.4 (2)
C11—N1—Re120.48 (16)C22—C23—H23120.8
N1—C11—C12121.8 (2)C24—C23—H23120.8
N1—C11—H11119.1C25—C24—C23119.5 (2)
C12—C11—H11119.1C25—C24—H24120.2
C13—C12—C11120.3 (2)C23—C24—H24120.2
C13—C12—H12119.9N2—C25—C24122.4 (2)
C11—C12—H12119.9N2—C25—H25118.8
C12—C13—C14118.5 (2)C24—C25—H25118.8
Oi—Re—N1—C15173.72 (16)Oi—Re—N2—C25179.56 (17)
O—Re—N1—C156.28 (16)O—Re—N2—C250.44 (17)
N2i—Re—N1—C1596.50 (16)N1i—Re—N2—C2590.05 (18)
N2—Re—N1—C1583.50 (16)N1—Re—N2—C2589.95 (18)
Oi—Re—N1—C115.08 (14)Oi—Re—N2—C210.76 (16)
O—Re—N1—C11174.92 (14)O—Re—N2—C21179.24 (16)
N2i—Re—N1—C1184.70 (15)N1i—Re—N2—C2190.27 (17)
N2—Re—N1—C1195.30 (15)N1—Re—N2—C2189.73 (17)
C15—N1—C11—C121.0 (3)C25—N2—C21—C220.8 (3)
Re—N1—C11—C12179.90 (15)Re—N2—C21—C22179.55 (16)
N1—C11—C12—C130.7 (3)N2—C21—C22—C230.8 (3)
C11—C12—C13—C140.2 (3)C21—C22—C23—C240.2 (3)
C12—C13—C14—C150.7 (3)C22—C23—C24—C251.1 (4)
C11—N1—C15—C140.5 (3)C21—N2—C25—C240.2 (3)
Re—N1—C15—C14179.34 (16)Re—N2—C25—C24179.47 (18)
C13—C14—C15—N10.4 (3)C23—C24—C25—N21.1 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O0.952.392.914 (3)114
C25—H25···O0.952.382.906 (3)115
C11—H11···Oi0.952.392.913 (3)115
C21—H21···Oi0.952.372.908 (3)115
C22—H22···Oiii0.952.413.309 (3)157
Symmetry codes: (i) x+1, y+1, z+1; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula[ReO2(C5H5N)4]I3
Mr915.30
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.993 (3), 9.100 (3), 9.356 (3)
α, β, γ (°)92.45 (4), 102.41 (4), 104.10 (4)
V3)641.3 (4)
Z1
Radiation typeMo Kα
µ (mm1)8.37
Crystal size (mm)0.10 × 0.10 × 0.07
Data collection
DiffractometerOxford Diffraction Xcalibur PX KM-4-CCD
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.411, 0.656
No. of measured, independent and
observed [I > 2σ(I)] reflections
11244, 4298, 3593
Rint0.027
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.031, 1.04
No. of reflections4298
No. of parameters139
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.40, 1.08

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), XP in SHEXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2009).

Selected bond lengths (Å) top
Re—O1.7649 (18)Re—N22.1442 (18)
Re—N12.1411 (19)I1—I22.9222 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O0.952.392.914 (3)114
C25—H25···O0.952.382.906 (3)115
C11—H11···Oi0.952.392.913 (3)115
C21—H21···Oi0.952.372.908 (3)115
C22—H22···Oii0.952.413.309 (3)157
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.
 

References

First citationCalvo, C., Krishnamachari, N. & Lock, C. J. L. (1971). J . Cryst. Mol. Struct. 1, 161–172.  CSD CrossRef CAS Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationJohnson, N. P., Lock, C. J. L. & Wilkinson, G. (1967). Inorg. Synth. 9, 145–148.  CrossRef CAS Google Scholar
First citationLock, C. J. L. & Turner, G. (1978). Acta Cryst. B34, 923–927.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationLuck, R. L. & O'Neill, R. S. (2001). Polyhedron, 28, 773–782.  Web of Science CSD CrossRef Google Scholar
First citationOxford Diffraction (2006). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Poland, Wrocław, Poland.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds