metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1103-m1104

Di­chlorido{μ3-6,6′-dieth­­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenolato}octa­methyldi-μ3-oxido-tetra­tin(IV)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 6 August 2009; accepted 14 August 2009; online 19 August 2009)

In the title tetra­nuclear tin(IV) complex, [Sn4(CH3)8(C20H22N2O4)Cl2O2], there are three completely different tin-atom coordinations. One metal atom (site symmetry 2) adopts a distorted penta­gonal-bipyramidal SnC2N2O3 coordination arising from the N,N′,O,O′-tetra­dentate deprotonated Schiff base, two methyl groups in the axial sites and a μ3-O atom that also bonds to two further Sn atoms. Two symmetry-equivalent Sn atoms adopt very distorted SnC2O4 arrangements that could be described as penta­gonal-bipyramidal with one equatorial vertex missing and the C atoms in the axial site. The final Sn atom (site symmetry 2) adopts an SnC2Cl2O trigonal-bipyramidal arrangement, with Cl atoms in the axial sites. As well as the two Sn atoms, one O atom lies on a twofold rotation rotation axis, and another is disordered about the axis. The terminal eth­oxy group is disordered over two sets of sites with equal occupancy.

Related literature

For other organotin derivatives of 6,6′-dialk­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenol, see: Cunningham et al. (2004[Cunningham, D., Gilligan, K., Hannon, M., Kelly, C., McArdle, P. & O'Malley, A. (2004). Organometallics, 23, 984-994.]). For the crystal structure of 6,6′-dieth­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenol, see: Ber­mejo et al. (2007[Bermejo, M. R., Fernández, M. I., Gómez-Fórneas, E., González-Noya, A., Maneiro, M., Pedrido, R. & Rodríguez, M. J. (2007). Eur. J. Inorg. Chem. pp. 3789-3797.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn4(CH3)8(C20H22N2O4)Cl2O2]

  • Mr = 1052.33

  • Tetragonal, P 43 21 2

  • a = 9.8723 (1) Å

  • c = 38.0217 (5) Å

  • V = 3705.68 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.85 mm−1

  • T = 100 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.863, Tmax = 1.000 (expected range = 0.563–0.652)

  • 68779 measured reflections

  • 4259 independent reflections

  • 4089 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.072

  • S = 1.07

  • 4259 reflections

  • 198 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.69 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1694 Friedel pairs

  • Flack parameter: 0.00 (4)

Table 1
Selected geometric parameters (Å, °)

Sn1—O3 2.072 (4)
Sn1—C1 2.112 (5)
Sn1—O1 2.410 (3)
Sn1—N1 2.426 (4)
Sn2—O1 2.463 (3)
Sn2—O2 2.791 (4)
Sn2—O3 2.006 (2)
Sn2—C2 2.091 (5)
Sn2—C3 2.100 (5)
Sn2—O4 2.125 (17)
Sn3—O4 1.964 (5)
Sn3—C4 2.114 (5)
Sn3—Cl1 2.5829 (15)
C1i—Sn1—C1 173.9 (3)
C2—Sn2—C3 147.8 (2)
C4—Sn3—C4i 132.6 (3)
Symmetry code: (i) y, x, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For other organotin derivatives of 6,6'-dialkoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenol, see: Cunningham et al. (2004). For the crystal structure of 6,6'-diethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenol, see: Bermejo et al. (2007).

Experimental top

One mmol (0.36 g) of the Schiff base was synthesized in toluene according to a literature procedure (Bermejo et al., 2007) from 3-ethoxysalicylaldehyde and ethylenediamine. To the solution was added an excess of triethylamine (0.5 ml). A toluene solution of dimethyltin dichloride (0.20 g, 1 mmol) was added and the mixture heated. Yellow blocks of (I) were isolated from the cool filtered solution.

Refinement top

Hydrogen atoms were placed at calculated positions (C–H 0.95–0.99 Å) and were treated as riding on their parent atoms, with U(H) set to 1.2–1.5 times Ueq(C).

The ethoxy group in disordered over two positions in respect of the carbon atoms. The occupancy could not be refined, and was arbitrarily regarded as 0.5 each. The C–O distances were restrained to 1.45±0.01 Å and the C–C distances to 1.50±0.01 Å. The displacement factors of the primed atoms were set of those of the umprimed ones, and the anisotropic temperature factors were restrained to be nearly isotropic by tight restraints.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. The disorder in the ethyl groups are not shown. Unlabelled atoms are generated by the symmetry operation (y, x, –z).
Dichlorido{µ3-6,6'-diethoxy-2,2'-[ethane-1,2- diylbis(nitrilomethylidyne)]diphenolato}octamethyldi-µ3-oxido-tetratin(IV) top
Crystal data top
[Sn4(CH3)8(C20H22N2O4)Cl2O2]Dx = 1.886 Mg m3
Mr = 1052.33Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43212Cell parameters from 9779 reflections
Hall symbol: P4 nw 2abwθ = 2.1–26.5°
a = 9.8723 (1) ŵ = 2.85 mm1
c = 38.0217 (5) ÅT = 100 K
V = 3705.68 (6) Å3Block, yellow
Z = 40.20 × 0.18 × 0.15 mm
F(000) = 2040
Data collection top
Bruker SMART APEX
diffractometer
4259 independent reflections
Radiation source: fine-focus sealed tube4089 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.863, Tmax = 1.000k = 1212
68779 measured reflectionsl = 4948
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0361P)2 + 5.6973P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4259 reflectionsΔρmax = 0.42 e Å3
198 parametersΔρmin = 0.69 e Å3
10 restraintsAbsolute structure: Flack (1983), 1694 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (4)
Crystal data top
[Sn4(CH3)8(C20H22N2O4)Cl2O2]Z = 4
Mr = 1052.33Mo Kα radiation
Tetragonal, P43212µ = 2.85 mm1
a = 9.8723 (1) ÅT = 100 K
c = 38.0217 (5) Å0.20 × 0.18 × 0.15 mm
V = 3705.68 (6) Å3
Data collection top
Bruker SMART APEX
diffractometer
4259 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4089 reflections with I > 2σ(I)
Tmin = 0.863, Tmax = 1.000Rint = 0.029
68779 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.072Δρmax = 0.42 e Å3
S = 1.07Δρmin = 0.69 e Å3
4259 reflectionsAbsolute structure: Flack (1983), 1694 Friedel pairs
198 parametersAbsolute structure parameter: 0.00 (4)
10 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.17065 (3)0.17065 (3)0.00000.05087 (13)
Sn20.33507 (3)0.46713 (3)0.035901 (8)0.04062 (9)
Sn30.64067 (3)0.64067 (3)0.00000.03517 (10)
Cl10.51581 (18)0.74108 (17)0.05370 (4)0.0693 (4)
O10.1449 (3)0.3159 (3)0.05051 (8)0.0476 (8)
O20.1753 (4)0.5180 (4)0.09499 (11)0.0663 (11)
O30.3190 (3)0.3190 (3)0.00000.0383 (9)
O40.5075 (16)0.4933 (15)0.0032 (5)0.027 (2)0.50
N10.0212 (4)0.0806 (4)0.03231 (12)0.0486 (10)
C10.2924 (5)0.0328 (5)0.02834 (14)0.0505 (12)
H1A0.35820.00910.01240.076*
H1B0.23500.03760.03870.076*
H1C0.34060.08110.04710.076*
C20.4546 (6)0.3956 (6)0.07732 (13)0.0564 (13)
H2A0.52480.33520.06800.085*
H2B0.39770.34570.09400.085*
H2C0.49740.47230.08930.085*
C30.2074 (5)0.6200 (5)0.01652 (15)0.0509 (12)
H3A0.26160.70000.01050.076*
H3B0.14060.64410.03450.076*
H3C0.16060.58730.00450.076*
C40.8115 (6)0.5917 (6)0.03104 (17)0.0613 (15)
H4A0.80220.49910.04000.092*
H4B0.81770.65490.05080.092*
H4C0.89360.59830.01670.092*
C50.0612 (6)0.0545 (6)0.01965 (15)0.0645 (16)
H5A0.15470.07470.02750.077*
H5B0.00020.12370.02990.077*
C60.0948 (5)0.1346 (5)0.05572 (13)0.0465 (11)
H60.17470.08620.06170.056*
C70.0736 (5)0.2594 (5)0.07448 (12)0.0418 (10)
C80.1778 (5)0.2942 (6)0.09830 (14)0.0509 (12)
H80.25770.24060.09920.061*
C90.1654 (6)0.4048 (6)0.12023 (14)0.0575 (14)
H90.23720.42860.13570.069*
C100.0475 (6)0.4810 (6)0.11964 (12)0.0551 (14)
H100.03690.55480.13540.066*
C110.0529 (5)0.4504 (5)0.09661 (12)0.0452 (11)
C120.0447 (5)0.3385 (5)0.07272 (11)0.0399 (9)
C130.2125 (16)0.6125 (10)0.1229 (3)0.061 (2)*0.50
H13A0.31090.60700.12760.073*0.50
H13B0.16330.59000.14480.073*0.50
C140.1759 (17)0.7520 (13)0.1109 (4)0.080 (3)*0.50
H14A0.07820.75650.10650.120*0.50
H14B0.22520.77340.08930.120*0.50
H14C0.20010.81740.12930.120*0.50
C13'0.1933 (14)0.6412 (9)0.1157 (3)0.061 (2)*0.50
H13C0.29130.66280.11620.073*0.50
H13D0.16560.62140.14020.073*0.50
C14'0.1189 (16)0.7656 (14)0.1039 (5)0.080 (3)*0.50
H14D0.18080.82460.09080.120*0.50
H14E0.08410.81410.12450.120*0.50
H14F0.04320.73930.08870.120*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03415 (14)0.03415 (14)0.0843 (3)0.00937 (17)0.01282 (18)0.01282 (18)
Sn20.04630 (18)0.03956 (16)0.03599 (14)0.01171 (13)0.00052 (13)0.00805 (12)
Sn30.03041 (12)0.03041 (12)0.0447 (2)0.00586 (15)0.00722 (12)0.00722 (12)
Cl10.0783 (10)0.0730 (10)0.0567 (8)0.0163 (8)0.0115 (7)0.0226 (7)
O10.0442 (18)0.0470 (19)0.0516 (18)0.0007 (16)0.0139 (15)0.0160 (15)
O20.066 (3)0.068 (3)0.065 (2)0.014 (2)0.014 (2)0.035 (2)
O30.0332 (13)0.0332 (13)0.049 (2)0.0092 (17)0.0115 (14)0.0115 (14)
O40.031 (4)0.022 (3)0.029 (5)0.004 (3)0.006 (3)0.005 (3)
N10.048 (2)0.039 (2)0.059 (2)0.0105 (17)0.012 (2)0.0063 (19)
C10.052 (3)0.039 (2)0.061 (3)0.004 (2)0.007 (2)0.008 (2)
C20.058 (3)0.067 (3)0.044 (2)0.004 (3)0.007 (2)0.013 (2)
C30.042 (3)0.041 (3)0.070 (3)0.009 (2)0.003 (2)0.001 (2)
C40.044 (3)0.061 (3)0.079 (4)0.004 (2)0.027 (3)0.011 (3)
C50.054 (3)0.050 (3)0.090 (4)0.023 (2)0.024 (3)0.014 (3)
C60.040 (2)0.049 (3)0.051 (3)0.004 (2)0.008 (2)0.006 (2)
C70.046 (3)0.044 (3)0.035 (2)0.0085 (19)0.0034 (19)0.0063 (19)
C80.044 (3)0.058 (3)0.051 (3)0.007 (2)0.008 (2)0.008 (2)
C90.060 (3)0.070 (4)0.043 (3)0.017 (3)0.015 (3)0.003 (2)
C100.070 (4)0.059 (3)0.036 (2)0.018 (3)0.006 (2)0.007 (2)
C110.051 (3)0.049 (3)0.035 (2)0.009 (2)0.006 (2)0.004 (2)
C120.041 (2)0.048 (3)0.0302 (19)0.009 (2)0.0041 (17)0.0026 (19)
Geometric parameters (Å, º) top
Sn1—O32.072 (4)C2—H2B0.9800
Sn1—C1i2.112 (5)C2—H2C0.9800
Sn1—C12.112 (5)C3—H3A0.9800
Sn1—O12.410 (3)C3—H3B0.9800
Sn1—O1i2.410 (3)C3—H3C0.9800
Sn1—N1i2.426 (4)C4—H4A0.9800
Sn1—N12.426 (4)C4—H4B0.9800
Sn2—Cl13.310 (2)C4—H4C0.9800
Sn2—O12.463 (3)C5—C5i1.497 (12)
Sn2—O22.791 (4)C5—H5A0.9900
Sn2—O32.006 (2)C5—H5B0.9900
Sn2—C22.091 (5)C6—C71.439 (7)
Sn2—C32.100 (5)C6—H60.9500
Sn2—O42.125 (17)C7—C121.406 (7)
Sn2—O4i2.192 (16)C7—C81.414 (7)
Sn2—Sn2i3.2943 (6)C8—C91.379 (8)
Sn3—O41.964 (5)C8—H80.9500
Sn3—O4i1.964 (5)C9—C101.386 (9)
Sn3—C42.114 (5)C9—H90.9500
Sn3—C4i2.114 (5)C10—C111.356 (7)
Sn3—Cl12.5829 (15)C10—H100.9500
Sn3—Cl1i2.5829 (15)C11—C121.432 (7)
O1—C121.320 (5)C13—C141.493 (9)
O2—C111.381 (7)C13—H13A0.9900
O2—C131.459 (8)C13—H13B0.9900
O2—C13'1.460 (8)C14—H14A0.9800
O3—Sn2i2.006 (2)C14—H14B0.9800
O4—O4i0.31 (4)C14—H14C0.9800
O4—Sn2i2.192 (16)C13'—C14'1.499 (9)
N1—C61.267 (6)C13'—H13C0.9900
N1—C51.472 (6)C13'—H13D0.9900
C1—H1A0.9800C14'—H14D0.9800
C1—H1B0.9800C14'—H14E0.9800
C1—H1C0.9800C14'—H14F0.9800
C2—H2A0.9800
O3—Sn1—C1i93.05 (15)C6—N1—Sn1130.5 (3)
O3—Sn1—C193.04 (15)C5—N1—Sn1112.1 (3)
C1i—Sn1—C1173.9 (3)Sn1—C1—H1A109.5
O3—Sn1—O169.76 (8)Sn1—C1—H1B109.5
C1i—Sn1—O189.99 (17)H1A—C1—H1B109.5
C1—Sn1—O192.12 (17)Sn1—C1—H1C109.5
O3—Sn1—O1i69.76 (8)H1A—C1—H1C109.5
C1i—Sn1—O1i92.12 (17)H1B—C1—H1C109.5
C1—Sn1—O1i89.99 (17)Sn2—C2—H2A109.5
O1—Sn1—O1i139.52 (16)Sn2—C2—H2B109.5
O3—Sn1—N1i144.20 (10)H2A—C2—H2B109.5
C1i—Sn1—N1i87.14 (19)Sn2—C2—H2C109.5
C1—Sn1—N1i87.92 (18)H2A—C2—H2C109.5
O1—Sn1—N1i146.01 (13)H2B—C2—H2C109.5
O1i—Sn1—N1i74.46 (13)Sn2—C3—H3A109.5
O3—Sn1—N1144.20 (10)Sn2—C3—H3B109.5
C1i—Sn1—N187.92 (18)H3A—C3—H3B109.5
C1—Sn1—N187.14 (19)Sn2—C3—H3C109.5
O1—Sn1—N174.46 (13)H3A—C3—H3C109.5
O1i—Sn1—N1146.01 (13)H3B—C3—H3C109.5
N1i—Sn1—N171.6 (2)Sn3—C4—H4A109.5
O3—Sn2—C2108.10 (17)Sn3—C4—H4B109.5
O3—Sn2—C3103.75 (16)H4A—C4—H4B109.5
C2—Sn2—C3147.8 (2)Sn3—C4—H4C109.5
O3—Sn2—O475.7 (4)H4A—C4—H4C109.5
C2—Sn2—O491.7 (5)H4B—C4—H4C109.5
C3—Sn2—O4100.8 (5)N1—C5—C5i110.7 (4)
O3—Sn2—O4i74.2 (4)N1—C5—H5A109.5
C2—Sn2—O4i99.8 (5)C5i—C5—H5A109.5
C3—Sn2—O4i93.4 (5)N1—C5—H5B109.5
O4—Sn2—O4i8.1 (10)C5i—C5—H5B109.5
O3—Sn2—O169.60 (11)H5A—C5—H5B108.1
C2—Sn2—O193.19 (18)N1—C6—C7128.7 (5)
C3—Sn2—O193.30 (17)N1—C6—H6115.7
O4—Sn2—O1144.8 (4)C7—C6—H6115.7
O4i—Sn2—O1143.8 (4)C12—C7—C8120.0 (5)
O3—Sn2—Sn2i34.82 (9)C12—C7—C6125.0 (4)
C2—Sn2—Sn2i105.49 (17)C8—C7—C6114.8 (5)
C3—Sn2—Sn2i103.37 (16)C9—C8—C7121.0 (5)
O4—Sn2—Sn2i41.0 (4)C9—C8—H8119.5
O4i—Sn2—Sn2i39.5 (4)C7—C8—H8119.5
O1—Sn2—Sn2i104.40 (7)C8—C9—C10119.6 (5)
O4—Sn3—O4i9.1 (10)C8—C9—H9120.2
O4—Sn3—C4109.3 (6)C10—C9—H9120.2
O4i—Sn3—C4118.2 (6)C11—C10—C9120.2 (5)
O4—Sn3—C4i118.2 (6)C11—C10—H10119.9
O4i—Sn3—C4i109.3 (6)C9—C10—H10119.9
C4—Sn3—C4i132.6 (3)C10—C11—O2124.1 (5)
O4—Sn3—Cl185.2 (6)C10—C11—C12122.6 (5)
O4i—Sn3—Cl187.2 (6)O2—C11—C12113.2 (4)
C4—Sn3—Cl191.55 (19)O1—C12—C7124.0 (4)
C4i—Sn3—Cl191.49 (19)O1—C12—C11119.6 (4)
O4—Sn3—Cl1i87.2 (6)C7—C12—C11116.4 (4)
O4i—Sn3—Cl1i85.2 (6)O2—C13—C14108.0 (10)
C4—Sn3—Cl1i91.49 (19)O2—C13—H13A110.1
C4i—Sn3—Cl1i91.55 (19)C14—C13—H13A110.1
Cl1—Sn3—Cl1i172.42 (8)O2—C13—H13B110.1
C12—O1—Sn1133.6 (3)C14—C13—H13B110.1
C12—O1—Sn2127.8 (3)H13A—C13—H13B108.4
Sn1—O1—Sn295.76 (11)O2—C13'—C14'117.5 (10)
C11—O2—C13119.8 (7)O2—C13'—H13C107.9
C11—O2—C13'119.0 (7)C14'—C13'—H13C107.9
Sn2—O3—Sn2i110.36 (18)O2—C13'—H13D107.9
Sn2—O3—Sn1124.82 (9)C14'—C13'—H13D107.9
Sn2i—O3—Sn1124.82 (9)H13C—C13'—H13D107.2
O4i—O4—Sn385.4 (5)C13'—C14'—H14D109.5
O4i—O4—Sn298 (6)C13'—C14'—H14E109.5
Sn3—O4—Sn2131.5 (10)H14D—C14'—H14E109.5
O4i—O4—Sn2i73 (6)C13'—C14'—H14F109.5
Sn3—O4—Sn2i127.4 (9)H14D—C14'—H14F109.5
Sn2—O4—Sn2i99.5 (2)H14E—C14'—H14F109.5
C6—N1—C5117.2 (4)
O3—Sn1—O1—C12162.8 (4)O3—Sn2—O4—O4i78 (5)
C1i—Sn1—O1—C1269.6 (4)C2—Sn2—O4—O4i174 (6)
C1—Sn1—O1—C12104.7 (4)C3—Sn2—O4—O4i23 (6)
O1i—Sn1—O1—C12162.8 (4)O1—Sn2—O4—O4i88 (6)
N1i—Sn1—O1—C1215.3 (6)Sn2i—Sn2—O4—O4i75 (5)
N1—Sn1—O1—C1218.3 (4)O3—Sn2—O4—Sn3169.5 (13)
O3—Sn1—O1—Sn21.46 (6)C2—Sn2—O4—Sn382.3 (12)
C1i—Sn1—O1—Sn291.79 (18)C3—Sn2—O4—Sn367.9 (12)
C1—Sn1—O1—Sn293.93 (18)O4i—Sn2—O4—Sn391 (6)
O1i—Sn1—O1—Sn21.46 (6)O1—Sn2—O4—Sn3179.8 (5)
N1i—Sn1—O1—Sn2176.7 (2)Sn2i—Sn2—O4—Sn3165.9 (17)
N1—Sn1—O1—Sn2179.63 (16)O3—Sn2—O4—Sn2i3.6 (5)
O3—Sn2—O1—C12164.5 (4)C2—Sn2—O4—Sn2i111.9 (6)
C2—Sn2—O1—C1287.4 (4)C3—Sn2—O4—Sn2i98.0 (6)
C3—Sn2—O1—C1261.0 (4)O4i—Sn2—O4—Sn2i75 (5)
O4—Sn2—O1—C12175.1 (9)O1—Sn2—O4—Sn2i13.9 (13)
O4i—Sn2—O1—C12161.3 (9)O3—Sn1—N1—C619.7 (6)
Sn2i—Sn2—O1—C12165.7 (3)C1i—Sn1—N1—C672.6 (5)
O3—Sn2—O1—Sn11.51 (7)C1—Sn1—N1—C6110.9 (5)
C2—Sn2—O1—Sn1109.65 (19)O1—Sn1—N1—C617.9 (5)
C3—Sn2—O1—Sn1101.95 (18)O1i—Sn1—N1—C6163.3 (4)
O4—Sn2—O1—Sn112.1 (9)N1i—Sn1—N1—C6160.3 (6)
O4i—Sn2—O1—Sn11.7 (9)O3—Sn1—N1—C5165.8 (3)
Sn2i—Sn2—O1—Sn12.76 (12)C1i—Sn1—N1—C5101.8 (4)
C2—Sn2—O3—Sn2i91.27 (17)C1—Sn1—N1—C574.6 (4)
C3—Sn2—O3—Sn2i93.72 (16)O1—Sn1—N1—C5167.6 (4)
O4—Sn2—O3—Sn2i4.2 (5)O1i—Sn1—N1—C511.1 (5)
O4i—Sn2—O3—Sn2i4.1 (5)N1i—Sn1—N1—C514.2 (3)
O1—Sn2—O3—Sn2i177.87 (9)C6—N1—C5—C5i134.5 (6)
C2—Sn2—O3—Sn188.73 (17)Sn1—N1—C5—C5i40.7 (7)
C3—Sn2—O3—Sn186.28 (16)C5—N1—C6—C7174.7 (5)
O4—Sn2—O3—Sn1175.8 (5)Sn1—N1—C6—C711.1 (8)
O4i—Sn2—O3—Sn1175.9 (5)N1—C6—C7—C127.7 (8)
O1—Sn2—O3—Sn12.13 (9)N1—C6—C7—C8177.8 (5)
Sn2i—Sn2—O3—Sn1180.0C12—C7—C8—C90.4 (7)
C1i—Sn1—O3—Sn286.70 (15)C6—C7—C8—C9174.3 (5)
C1—Sn1—O3—Sn293.30 (15)C7—C8—C9—C101.8 (8)
O1—Sn1—O3—Sn22.17 (9)C8—C9—C10—C112.7 (8)
O1i—Sn1—O3—Sn2177.83 (9)C9—C10—C11—O2177.8 (5)
N1i—Sn1—O3—Sn2176.03 (19)C9—C10—C11—C121.5 (8)
N1—Sn1—O3—Sn23.97 (19)C13—O2—C11—C1011.1 (9)
C1i—Sn1—O3—Sn2i93.30 (15)C13'—O2—C11—C108.6 (9)
C1—Sn1—O3—Sn2i86.70 (15)C13—O2—C11—C12165.5 (7)
O1—Sn1—O3—Sn2i177.83 (9)C13'—O2—C11—C12174.7 (6)
O1i—Sn1—O3—Sn2i2.17 (9)Sn1—O1—C12—C710.6 (7)
N1i—Sn1—O3—Sn2i3.97 (19)Sn2—O1—C12—C7166.8 (3)
N1—Sn1—O3—Sn2i176.03 (19)Sn1—O1—C12—C11168.7 (3)
C4—Sn3—O4—O4i167 (8)Sn2—O1—C12—C1112.5 (6)
C4i—Sn3—O4—O4i13 (9)C8—C7—C12—O1177.7 (4)
Cl1—Sn3—O4—O4i103 (8)C6—C7—C12—O18.1 (7)
Cl1i—Sn3—O4—O4i77 (8)C8—C7—C12—C111.6 (7)
O4i—Sn3—O4—Sn297 (9)C6—C7—C12—C11172.6 (5)
C4—Sn3—O4—Sn295.4 (12)C10—C11—C12—O1178.7 (5)
C4i—Sn3—O4—Sn283.7 (12)O2—C11—C12—O14.6 (7)
Cl1—Sn3—O4—Sn25.4 (11)C10—C11—C12—C70.7 (7)
Cl1i—Sn3—O4—Sn2174.0 (11)O2—C11—C12—C7176.0 (4)
O4i—Sn3—O4—Sn2i65 (8)C11—O2—C13—C1496.5 (12)
C4—Sn3—O4—Sn2i102.3 (10)C13'—O2—C13—C144 (3)
C4i—Sn3—O4—Sn2i78.6 (13)C11—O2—C13'—C14'71.7 (14)
Cl1—Sn3—O4—Sn2i167.7 (11)C13—O2—C13'—C14'169 (5)
Cl1i—Sn3—O4—Sn2i11.7 (11)
Symmetry code: (i) y, x, z.

Experimental details

Crystal data
Chemical formula[Sn4(CH3)8(C20H22N2O4)Cl2O2]
Mr1052.33
Crystal system, space groupTetragonal, P43212
Temperature (K)100
a, c (Å)9.8723 (1), 38.0217 (5)
V3)3705.68 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.85
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.863, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
68779, 4259, 4089
Rint0.029
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.072, 1.07
No. of reflections4259
No. of parameters198
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.69
Absolute structureFlack (1983), 1694 Friedel pairs
Absolute structure parameter0.00 (4)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Selected geometric parameters (Å, º) top
Sn1—O32.072 (4)Sn2—C22.091 (5)
Sn1—C12.112 (5)Sn2—C32.100 (5)
Sn1—O12.410 (3)Sn2—O42.125 (17)
Sn1—N12.426 (4)Sn3—O41.964 (5)
Sn2—O12.463 (3)Sn3—C42.114 (5)
Sn2—O22.791 (4)Sn3—Cl12.5829 (15)
Sn2—O32.006 (2)
C1i—Sn1—C1173.9 (3)C4—Sn3—C4i132.6 (3)
C2—Sn2—C3147.8 (2)
Symmetry code: (i) y, x, z.
 

Acknowledgements

We thank the University of Malaya (RG020/09AFR) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBermejo, M. R., Fernández, M. I., Gómez-Fórneas, E., González-Noya, A., Maneiro, M., Pedrido, R. & Rodríguez, M. J. (2007). Eur. J. Inorg. Chem. pp. 3789–3797.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCunningham, D., Gilligan, K., Hannon, M., Kelly, C., McArdle, P. & O'Malley, A. (2004). Organometallics, 23, 984–994.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1103-m1104
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds