metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1083-m1084

Aqua­bis­(5-methyl­pyrazine-2-carboxyl­ato)zinc(II) trihydrate

aEngineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, People's Republic of China
*Correspondence e-mail: qfzeng@wuse.edu.cn

(Received 9 August 2009; accepted 12 August 2009; online 19 August 2009)

In the title compound, [Zn(C6H5N2O2)2(H2O)]·3H2O, the ZnII centre is five-coordinated by two O,N-bidentate Schiff base ligands and one O atom from a water mol­ecule in a slightly distorted square-pyramidal geometry. In the crystal, the complex and uncoordinated water mol­ecules are linked by O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For background to the mol­ecular architecture and biological activity of benzoic acid–metal complexes, see: Cheng et al. (2006[Cheng, K., Zhu, H.-L. & Li, Y.-G. (2006). Z. Anorg. Allg. Chem. 632, 2326-2330.]); Yang et al. (2004[Yang, H.-L., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, m1213-m1214.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C6H5N2O2)2(H2O)]·3H2O

  • Mr = 411.67

  • Triclinic, [P \overline 1]

  • a = 8.134 (4) Å

  • b = 10.492 (5) Å

  • c = 10.982 (5) Å

  • α = 66.61 (2)°

  • β = 81.85 (2)°

  • γ = 78.33 (2)°

  • V = 840.3 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.51 mm−1

  • T = 296 K

  • 0.32 × 0.28 × 0.23 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.644, Tmax = 0.723

  • 4392 measured reflections

  • 2923 independent reflections

  • 2539 reflections with I > 2σ(I)

  • Rint = 0.018

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.109

  • S = 1.05

  • 2923 reflections

  • 260 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N1 1.989 (2)
Zn1—N3 1.985 (2)
Zn1—O2 1.951 (2)
Zn1—O4 1.957 (2)
Zn1—O5 2.245 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1i 0.93 2.35 3.204 (4) 153
C3—H3⋯O3ii 0.93 2.36 3.255 (4) 162
O8—H8B⋯N4ii 0.832 (10) 2.30 (2) 3.044 (4) 150 (3)
O6—H6E⋯O7 0.841 (10) 2.092 (11) 2.932 (4) 177 (4)
O6—H6D⋯O8 0.839 (10) 1.924 (14) 2.755 (4) 171 (4)
O8—H8A⋯O1 0.835 (10) 1.953 (13) 2.781 (4) 171 (4)
O7—H7B⋯O3iii 0.836 (10) 1.996 (18) 2.797 (3) 160 (4)
O7—H7A⋯N2iv 0.839 (10) 2.185 (18) 2.977 (4) 157 (3)
O5—H5B⋯O6v 0.835 (10) 1.924 (11) 2.754 (4) 172 (3)
O5—H5A⋯O7vi 0.830 (10) 2.034 (11) 2.861 (4) 175 (4)
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y+2, -z+1; (v) -x+1, -y+1, -z+2; (vi) x+1, y, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There has been much research interest in benzoic acid metal complexes due to their molecular architectures and biological activities (Cheng et al., 2006; Yang et al., 2004). In this work, we report here the crystal structure of the title compound, (I). In (I), all bond lengths are within normal ranges (Allen et al., 1987) (Fig. 1). The ZnII atom is five-coordinated by two O and two N atoms from the two Schiff base ligands and one O from the water molecule, forming a slightly distorted square pyramid coordination (Table 1). The mononuclear complex interacts with the solvent water molecules to form a three-dimensional network (Table 2).

Related literature top

For background to the molecular architecture and biological activity of benzoic acid–metal complexes, see: Cheng et al. (2006); Yang et al. (2004). For reference structural data, see: Allen et al. (1987);

Experimental top

A mixture of 5-methylpyrazine-2-carboxylic acid (276 mg, 2 mmol) and Zn(NO3)2.6H2O (1 mmol, 271 mg) in methanol (10 ml) was stirred for 3 h. After keeping the filtrate in air for 7 d, colourless blocks of (I) were formed.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93 Å for the aromatic H atoms and C—H = 0.96 Å for the aliphatic H atoms) and were refined as riding, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids.
Aquabis(5-methylpyrazine-2-carboxylato)zinc(II) trihydrate top
Crystal data top
[Zn(C6H5N2O2)2(H2O)]·3H2OZ = 2
Mr = 411.67F(000) = 424
Triclinic, P1Dx = 1.627 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.134 (4) ÅCell parameters from 25 reflections
b = 10.492 (5) Åθ = 9–12°
c = 10.982 (5) ŵ = 1.51 mm1
α = 66.61 (2)°T = 296 K
β = 81.85 (2)°Block, colourless
γ = 78.33 (2)°0.32 × 0.28 × 0.23 mm
V = 840.3 (7) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
2539 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
ω/2θ scansh = 99
Absorption correction: ψ scan
(North et al., 1968)
k = 1212
Tmin = 0.644, Tmax = 0.723l = 1313
4392 measured reflections3 standard reflections every 200 reflections
2923 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0629P)2 + 0.6023P]
where P = (Fo2 + 2Fc2)/3
2923 reflections(Δ/σ)max = 0.016
260 parametersΔρmax = 0.43 e Å3
12 restraintsΔρmin = 0.68 e Å3
Crystal data top
[Zn(C6H5N2O2)2(H2O)]·3H2Oγ = 78.33 (2)°
Mr = 411.67V = 840.3 (7) Å3
Triclinic, P1Z = 2
a = 8.134 (4) ÅMo Kα radiation
b = 10.492 (5) ŵ = 1.51 mm1
c = 10.982 (5) ÅT = 296 K
α = 66.61 (2)°0.32 × 0.28 × 0.23 mm
β = 81.85 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2539 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.018
Tmin = 0.644, Tmax = 0.7233 standard reflections every 200 reflections
4392 measured reflections intensity decay: 1%
2923 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03812 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.43 e Å3
2923 reflectionsΔρmin = 0.68 e Å3
260 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6126 (4)0.8388 (3)0.6598 (3)0.0398 (8)
C20.7345 (4)0.8625 (3)0.5379 (3)0.0328 (7)
C30.7920 (4)0.9875 (3)0.4653 (3)0.0402 (8)
H30.75511.06350.49120.048*
C40.9502 (4)0.8932 (3)0.3229 (3)0.0371 (7)
C50.8939 (4)0.7652 (3)0.3960 (3)0.0358 (7)
H50.93100.68910.37030.043*
C61.0683 (5)0.9107 (4)0.2018 (4)0.0555 (10)
H6A1.01630.98320.12570.083*
H6B1.09470.82370.18810.083*
H6C1.16990.93630.21390.083*
C70.6723 (4)0.3717 (3)0.5483 (3)0.0350 (7)
C80.5573 (4)0.3445 (3)0.6745 (3)0.0315 (7)
C90.4702 (4)0.2334 (3)0.7297 (3)0.0387 (7)
H90.48460.16730.69080.046*
C100.3477 (4)0.3130 (4)0.8926 (3)0.0381 (7)
C110.4392 (4)0.4242 (3)0.8389 (3)0.0362 (7)
H110.42810.48860.87930.043*
C120.2293 (5)0.2978 (4)1.0126 (4)0.0533 (10)
H12A0.11580.31460.98830.080*
H12B0.24210.36471.04870.080*
H12C0.25390.20421.07810.080*
H5A0.964 (4)0.540 (3)0.750 (3)0.040 (10)*
H7A0.070 (5)0.7757 (14)0.720 (4)0.056 (12)*
H8A0.406 (6)0.908 (4)0.855 (3)0.090 (18)*
H5B0.875 (4)0.438 (3)0.8366 (14)0.048 (11)*
H7B0.175 (4)0.675 (4)0.683 (3)0.076 (15)*
H8B0.329 (5)0.985 (2)0.929 (3)0.049 (12)*
H6D0.259 (6)0.734 (3)0.977 (4)0.088 (18)*
H6E0.183 (5)0.674 (4)0.915 (2)0.065 (14)*
N10.7865 (3)0.7518 (3)0.5033 (2)0.0317 (6)
N20.9005 (4)1.0029 (3)0.3579 (3)0.0417 (7)
N30.5426 (3)0.4391 (3)0.7298 (2)0.0318 (6)
N40.3644 (4)0.2175 (3)0.8390 (3)0.0405 (7)
O10.5584 (4)0.9371 (3)0.6954 (3)0.0624 (8)
O20.5775 (3)0.7154 (2)0.7156 (2)0.0423 (6)
O30.6850 (4)0.2940 (2)0.4880 (2)0.0514 (7)
O40.7438 (3)0.4786 (2)0.5142 (2)0.0394 (5)
O50.9020 (3)0.4833 (3)0.7568 (2)0.0449 (6)
O60.2178 (4)0.6625 (3)0.9876 (3)0.0635 (8)
O70.0982 (4)0.6891 (3)0.7377 (3)0.0494 (6)
O80.3459 (4)0.9068 (3)0.9238 (3)0.0654 (8)
Zn10.68363 (5)0.58672 (4)0.62838 (4)0.03747 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0472 (19)0.0338 (17)0.0442 (18)0.0088 (14)0.0072 (15)0.0233 (15)
C20.0402 (17)0.0294 (15)0.0330 (15)0.0068 (13)0.0022 (13)0.0157 (13)
C30.051 (2)0.0308 (16)0.0444 (18)0.0087 (14)0.0016 (15)0.0211 (15)
C40.0361 (17)0.0369 (17)0.0363 (16)0.0046 (13)0.0006 (13)0.0131 (14)
C50.0402 (18)0.0325 (16)0.0380 (17)0.0037 (13)0.0005 (14)0.0187 (14)
C60.059 (2)0.048 (2)0.050 (2)0.0061 (18)0.0150 (18)0.0161 (18)
C70.0468 (18)0.0249 (15)0.0339 (16)0.0017 (13)0.0005 (14)0.0146 (13)
C80.0359 (16)0.0247 (14)0.0368 (16)0.0031 (12)0.0015 (13)0.0158 (13)
C90.0465 (19)0.0318 (16)0.0431 (18)0.0077 (14)0.0030 (15)0.0190 (15)
C100.0327 (17)0.0417 (18)0.0410 (17)0.0068 (13)0.0010 (13)0.0178 (15)
C110.0392 (17)0.0352 (16)0.0406 (17)0.0054 (13)0.0015 (14)0.0226 (14)
C120.053 (2)0.062 (2)0.050 (2)0.0182 (18)0.0151 (17)0.0278 (19)
N10.0369 (14)0.0270 (12)0.0339 (13)0.0041 (10)0.0003 (11)0.0158 (11)
N20.0494 (17)0.0327 (14)0.0427 (15)0.0095 (12)0.0032 (13)0.0147 (12)
N30.0352 (14)0.0287 (13)0.0349 (13)0.0047 (10)0.0007 (11)0.0169 (11)
N40.0444 (16)0.0356 (14)0.0450 (16)0.0121 (12)0.0025 (13)0.0181 (13)
O10.092 (2)0.0378 (13)0.0634 (17)0.0178 (13)0.0312 (15)0.0344 (13)
O20.0563 (14)0.0331 (12)0.0444 (13)0.0164 (10)0.0166 (11)0.0243 (10)
O30.0831 (19)0.0376 (13)0.0436 (13)0.0201 (12)0.0148 (13)0.0273 (11)
O40.0550 (14)0.0322 (12)0.0372 (12)0.0144 (10)0.0103 (10)0.0205 (10)
O50.0494 (15)0.0442 (14)0.0403 (14)0.0148 (11)0.0000 (11)0.0127 (12)
O60.079 (2)0.071 (2)0.0412 (15)0.0360 (17)0.0014 (14)0.0121 (14)
O70.0609 (17)0.0442 (15)0.0444 (14)0.0189 (12)0.0128 (12)0.0185 (12)
O80.080 (2)0.0525 (18)0.0684 (19)0.0268 (15)0.0282 (16)0.0311 (15)
Zn10.0488 (3)0.0304 (2)0.0392 (2)0.01200 (16)0.00646 (16)0.01988 (17)
Geometric parameters (Å, º) top
C1—O11.224 (4)C10—N41.327 (4)
C1—O21.266 (4)C10—C111.394 (5)
C1—C21.516 (4)C10—C121.492 (5)
C2—N11.334 (4)C11—N31.336 (4)
C2—C31.373 (4)C11—H110.9300
C3—N21.345 (4)C12—H12A0.9600
C3—H30.9300C12—H12B0.9600
C4—N21.325 (4)C12—H12C0.9600
C4—C51.395 (5)Zn1—N11.989 (2)
C4—C61.497 (5)Zn1—N31.985 (2)
C5—N11.341 (4)Zn1—O21.951 (2)
C5—H50.9300Zn1—O41.957 (2)
C6—H6A0.9600Zn1—O52.245 (3)
C6—H6B0.9600O5—H5A0.830 (10)
C6—H6C0.9600O5—H5B0.835 (10)
C7—O31.221 (4)O6—H6D0.839 (10)
C7—O41.267 (4)O6—H6E0.841 (10)
C7—C81.518 (4)O7—H7A0.839 (10)
C8—N31.334 (4)O7—H7B0.836 (10)
C8—C91.370 (4)O8—H8A0.835 (10)
C9—N41.347 (4)O8—H8B0.832 (10)
C9—H90.9300
O1—C1—O2126.4 (3)N3—C11—H11119.7
O1—C1—C2118.7 (3)C10—C11—H11119.7
O2—C1—C2115.0 (3)C10—C12—H12A109.5
N1—C2—C3120.3 (3)C10—C12—H12B109.5
N1—C2—C1115.6 (3)H12A—C12—H12B109.5
C3—C2—C1124.1 (3)C10—C12—H12C109.5
N2—C3—C2121.7 (3)H12A—C12—H12C109.5
N2—C3—H3119.2H12B—C12—H12C109.5
C2—C3—H3119.2C2—N1—C5118.9 (3)
N2—C4—C5121.2 (3)C2—N1—Zn1110.7 (2)
N2—C4—C6118.0 (3)C5—N1—Zn1130.3 (2)
C5—C4—C6120.8 (3)C4—N2—C3117.8 (3)
N1—C5—C4120.0 (3)C8—N3—C11118.4 (3)
N1—C5—H5120.0C8—N3—Zn1111.5 (2)
C4—C5—H5120.0C11—N3—Zn1130.1 (2)
C4—C6—H6A109.5C10—N4—C9117.6 (3)
C4—C6—H6B109.5C1—O2—Zn1115.0 (2)
H6A—C6—H6B109.5C7—O4—Zn1115.3 (2)
C4—C6—H6C109.5Zn1—O5—H5A112 (2)
H6A—C6—H6C109.5Zn1—O5—H5B114 (2)
H6B—C6—H6C109.5H5A—O5—H5B110.6 (17)
O3—C7—O4126.2 (3)H6D—O6—H6E108.5 (17)
O3—C7—C8119.0 (3)H7A—O7—H7B109.8 (17)
O4—C7—C8114.8 (3)H8A—O8—H8B110.3 (18)
N3—C8—C9120.6 (3)O2—Zn1—O4166.16 (10)
N3—C8—C7115.2 (3)O2—Zn1—N395.36 (10)
C9—C8—C7124.2 (3)O4—Zn1—N383.22 (9)
N4—C9—C8121.7 (3)O2—Zn1—N183.64 (9)
N4—C9—H9119.2O4—Zn1—N195.00 (10)
C8—C9—H9119.2N3—Zn1—N1168.45 (10)
N4—C10—C11121.0 (3)O2—Zn1—O597.35 (10)
N4—C10—C12118.2 (3)O4—Zn1—O596.49 (10)
C11—C10—C12120.8 (3)N3—Zn1—O594.98 (10)
N3—C11—C10120.6 (3)N1—Zn1—O596.55 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.932.353.204 (4)153
C3—H3···O3ii0.932.363.255 (4)162
O8—H8B···N4ii0.83 (1)2.30 (2)3.044 (4)150 (3)
O6—H6E···O70.84 (1)2.09 (1)2.932 (4)177 (4)
O6—H6D···O80.84 (1)1.92 (1)2.755 (4)171 (4)
O8—H8A···O10.84 (1)1.95 (1)2.781 (4)171 (4)
O7—H7B···O3iii0.84 (1)2.00 (2)2.797 (3)160 (4)
O7—H7A···N2iv0.84 (1)2.19 (2)2.977 (4)157 (3)
O5—H5B···O6v0.84 (1)1.92 (1)2.754 (4)172 (3)
O5—H5A···O7vi0.83 (1)2.03 (1)2.861 (4)175 (4)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y+2, z+1; (v) x+1, y+1, z+2; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Zn(C6H5N2O2)2(H2O)]·3H2O
Mr411.67
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.134 (4), 10.492 (5), 10.982 (5)
α, β, γ (°)66.61 (2), 81.85 (2), 78.33 (2)
V3)840.3 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.51
Crystal size (mm)0.32 × 0.28 × 0.23
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.644, 0.723
No. of measured, independent and
observed [I > 2σ(I)] reflections
4392, 2923, 2539
Rint0.018
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.109, 1.05
No. of reflections2923
No. of parameters260
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.68

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—N11.989 (2)Zn1—O41.957 (2)
Zn1—N31.985 (2)Zn1—O52.245 (3)
Zn1—O21.951 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.932.353.204 (4)153
C3—H3···O3ii0.932.363.255 (4)162
O8—H8B···N4ii0.832 (10)2.30 (2)3.044 (4)150 (3)
O6—H6E···O70.841 (10)2.092 (11)2.932 (4)177 (4)
O6—H6D···O80.839 (10)1.924 (14)2.755 (4)171 (4)
O8—H8A···O10.835 (10)1.953 (13)2.781 (4)171 (4)
O7—H7B···O3iii0.836 (10)1.996 (18)2.797 (3)160 (4)
O7—H7A···N2iv0.839 (10)2.185 (18)2.977 (4)157 (3)
O5—H5B···O6v0.835 (10)1.924 (11)2.754 (4)172 (3)
O5—H5A···O7vi0.830 (10)2.034 (11)2.861 (4)175 (4)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y+2, z+1; (v) x+1, y+1, z+2; (vi) x+1, y, z.
 

Acknowledgements

The project was supported by the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, Educational Commission of Hubei Province (D20091703) and the Natural Science Foundation of Hubei Province (2008CDB038).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCheng, K., Zhu, H.-L. & Li, Y.-G. (2006). Z. Anorg. Allg. Chem. 632, 2326–2330.  Web of Science CSD CrossRef Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, H.-L., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, m1213–m1214.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1083-m1084
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds