organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Furylmethyl­amino­meth­yl)-4-sulfanylphenol

aEngineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, People's Republic of China
*Correspondence e-mail: qfzeng@wuse.edu.cn

(Received 14 August 2009; accepted 15 August 2009; online 22 August 2009)

In the title compound, C12H13NO2S, the dihedral angle between the furan and benzene rings is 62.2 (2)° and an intra­molecular O—H⋯N hydrogen bond is formed. In the crystal, mol­ecules are linked by weak inter­molecular N—H⋯S hydrogen bonds.

Related literature

For background, see: Shi et al. (2007[Shi, L., Ge, H.-M., Tan, S.-H., Li, H.-Q., Song, Y.-C., Zhu, H.-L. & Tan, R.-X. (2007). Eur. J. Med. Chem. 42, 558-564.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13NO2S

  • Mr = 235.29

  • Orthorhombic, P 21 21 21

  • a = 5.5778 (12) Å

  • b = 13.589 (3) Å

  • c = 14.943 (3) Å

  • V = 1132.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.10 mm

Data collection
  • Enraf–Nonius CAD4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.924, Tmax = 0.974

  • 2528 measured reflections

  • 2216 independent reflections

  • 1811 reflections with I > 2σ(I)

  • Rint = 0.034

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.166

  • S = 1.06

  • 2216 reflections

  • 150 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.46 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 900 Friedel pairs

  • Flack parameter: 0.00 (17)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N1 0.82 2.04 2.692 (5) 136
N1—H1C⋯S1i 0.93 (5) 2.90 (4) 3.605 (3) 134 (3)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+2, z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There has been much research interest in Schiff base compounds due to their biological activities (Shi et al., 2007). In this work, we report here the crystal structure of the title compound, (I). In (I), all bond lengths are within normal ranges (Allen et al., 1987) (Fig. 1). There are an intramolecular O-H···N hydrogen bond and an intermolecular N-H···S hydrogen bond in (I).

Related literature top

For background, see: Shi et al. (2007). For reference structural data, see: Allen et al. (1987).

Experimental top

A mixture of 2-hydroxy-5-mercaptobenzaldehyde (154 mg, 1 mmol) and furan-2-ylmethanamine (97 mg, 1 mmol) were stirred in methanol (10 ml) for 2 h. Then NaBH4 (76 mg, 2 mmol) was added to the reaction solution slowly, and stirred at room temperature for 2 h. The mixture was evaporated under vacuum, and dissolved in dichloromethane (5 ml). The solution was washed with saturated NaCl solution and water, respectively, dried over anhydrous sodium sulfate, and evaporated. Purification by silica gel afforded pure product. Colourless blocks of (I) were obtained by recrystallization of the pure product in methanol.

Refinement top

The N-bound H atom was located in a difference map and its position was freely refined. The other H atoms were positioned geometrically (C—H = 0.93–0.97Å, O—H = 0.82Å, S—H = 1.20Å) and refined as riding, with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids.
2-(2-Furylmethylaminomethyl)-4-sulfanylphenol top
Crystal data top
C12H13NO2SF(000) = 496
Mr = 235.29Dx = 1.380 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 5.5778 (12) Åθ = 9–12°
b = 13.589 (3) ŵ = 0.27 mm1
c = 14.943 (3) ÅT = 293 K
V = 1132.6 (4) Å3Block, colorless
Z = 40.30 × 0.30 × 0.10 mm
Data collection top
Enraf–Nonius CAD4
diffractometer
1811 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 26.0°, θmin = 2.0°
ω/2θ scansh = 60
Absorption correction: ψ scan
(North et al., 1968)
k = 1616
Tmin = 0.924, Tmax = 0.974l = 180
2528 measured reflections3 standard reflections every 200 reflections
2216 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.058 w = 1/[σ2(Fo2) + (0.1031P)2 + 0.1612P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.166(Δ/σ)max = 0.002
S = 1.06Δρmax = 0.35 e Å3
2216 reflectionsΔρmin = 0.46 e Å3
150 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.058 (9)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 900 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.00 (17)
Crystal data top
C12H13NO2SV = 1132.6 (4) Å3
Mr = 235.29Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.5778 (12) ŵ = 0.27 mm1
b = 13.589 (3) ÅT = 293 K
c = 14.943 (3) Å0.30 × 0.30 × 0.10 mm
Data collection top
Enraf–Nonius CAD4
diffractometer
1811 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.034
Tmin = 0.924, Tmax = 0.9743 standard reflections every 200 reflections
2528 measured reflections intensity decay: 1%
2216 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.166Δρmax = 0.35 e Å3
S = 1.06Δρmin = 0.46 e Å3
2216 reflectionsAbsolute structure: Flack (1983), 900 Friedel pairs
150 parametersAbsolute structure parameter: 0.00 (17)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2480 (7)0.7259 (3)0.4206 (3)0.0591 (10)
H10.39480.72880.45010.071*
C20.1233 (8)0.6441 (3)0.4068 (3)0.0581 (9)
H20.16590.58070.42390.070*
C30.0881 (8)0.6728 (3)0.3607 (3)0.0564 (10)
H30.21080.63120.34200.068*
C40.0791 (6)0.7696 (3)0.3490 (2)0.0480 (8)
C50.2431 (8)0.8424 (3)0.3079 (3)0.0600 (10)
H5A0.27950.89330.35120.072*
H5B0.39230.81000.29200.072*
C60.1385 (8)0.8197 (2)0.1507 (2)0.0526 (9)
H6A0.05510.75970.16710.063*
H6B0.30230.80250.13540.063*
C70.0183 (6)0.8652 (2)0.0710 (2)0.0422 (8)
C80.1130 (6)0.8552 (2)0.0141 (2)0.0449 (8)
H80.25580.82090.02190.054*
C90.0009 (7)0.8953 (3)0.0874 (3)0.0481 (8)
C100.2099 (8)0.9468 (3)0.0782 (3)0.0591 (10)
H100.28560.97370.12800.071*
C110.3069 (7)0.9583 (3)0.0062 (3)0.0613 (11)
H110.44800.99390.01340.074*
C120.1958 (6)0.9172 (3)0.0804 (3)0.0502 (9)
H1C0.230 (9)0.942 (3)0.212 (3)0.060*
N10.1391 (7)0.8878 (2)0.2275 (2)0.0550 (8)
O10.1310 (6)0.8050 (2)0.38570 (18)0.0632 (8)
O20.2984 (5)0.9310 (2)0.1623 (2)0.0696 (8)
H2A0.21700.90380.20070.104*
S10.1282 (2)0.88051 (8)0.19340 (6)0.0635 (4)
H1A0.34230.87700.18630.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.041 (2)0.091 (3)0.0460 (19)0.001 (2)0.0025 (17)0.011 (2)
C20.052 (2)0.063 (2)0.059 (2)0.006 (2)0.005 (2)0.0063 (17)
C30.053 (2)0.058 (2)0.057 (2)0.0042 (18)0.010 (2)0.0024 (18)
C40.0402 (19)0.062 (2)0.0419 (17)0.0025 (16)0.0010 (15)0.0007 (16)
C50.058 (2)0.068 (2)0.054 (2)0.015 (2)0.007 (2)0.0067 (19)
C60.055 (2)0.0490 (18)0.054 (2)0.0003 (19)0.002 (2)0.0033 (16)
C70.0361 (17)0.0396 (16)0.0508 (19)0.0041 (15)0.0016 (15)0.0001 (14)
C80.0382 (17)0.0426 (16)0.0540 (19)0.0009 (15)0.0022 (17)0.0009 (14)
C90.047 (2)0.0470 (18)0.0501 (19)0.0058 (17)0.0034 (17)0.0017 (15)
C100.054 (2)0.057 (2)0.066 (2)0.0046 (19)0.017 (2)0.0031 (19)
C110.041 (2)0.060 (2)0.083 (3)0.0110 (17)0.007 (2)0.002 (2)
C120.0385 (19)0.0486 (18)0.064 (2)0.0037 (15)0.0074 (17)0.0040 (17)
N10.064 (2)0.0487 (16)0.0518 (16)0.0126 (18)0.0062 (16)0.0024 (14)
O10.0598 (17)0.0678 (16)0.0619 (16)0.0180 (15)0.0025 (15)0.0038 (12)
O20.0543 (17)0.0815 (18)0.0731 (19)0.0024 (15)0.0224 (15)0.0063 (15)
S10.0710 (7)0.0711 (7)0.0486 (5)0.0030 (6)0.0064 (5)0.0029 (4)
Geometric parameters (Å, º) top
C1—C21.328 (6)C6—H6B0.9700
C1—O11.361 (5)C7—C81.383 (5)
C1—H10.9300C7—C121.394 (5)
C2—C31.420 (6)C8—C91.379 (5)
C2—H20.9300C8—H80.9300
C3—C41.327 (5)C9—C101.366 (6)
C3—H30.9300C9—S11.752 (4)
C4—O11.381 (5)C10—C111.382 (6)
C4—C51.481 (5)C10—H100.9300
C5—N11.470 (5)C11—C121.388 (6)
C5—H5A0.9700C11—H110.9300
C5—H5B0.9700C12—O21.365 (5)
C6—N11.473 (5)N1—H1C0.93 (5)
C6—C71.501 (5)O2—H2A0.8200
C6—H6A0.9700S1—H1A1.2000
C2—C1—O1110.5 (3)C8—C7—C12118.0 (3)
C2—C1—H1124.8C8—C7—C6121.2 (3)
O1—C1—H1124.8C12—C7—C6120.7 (3)
C1—C2—C3106.3 (4)C9—C8—C7121.0 (3)
C1—C2—H2126.8C9—C8—H8119.5
C3—C2—H2126.8C7—C8—H8119.5
C4—C3—C2107.7 (4)C10—C9—C8121.1 (4)
C4—C3—H3126.1C10—C9—S1120.0 (3)
C2—C3—H3126.1C8—C9—S1118.9 (3)
C3—C4—O1108.9 (3)C9—C10—C11118.9 (4)
C3—C4—C5133.9 (4)C9—C10—H10120.6
O1—C4—C5117.2 (3)C11—C10—H10120.6
N1—C5—C4112.1 (3)C10—C11—C12120.6 (4)
N1—C5—H5A109.2C10—C11—H11119.7
C4—C5—H5A109.2C12—C11—H11119.7
N1—C5—H5B109.2O2—C12—C11118.3 (3)
C4—C5—H5B109.2O2—C12—C7121.3 (4)
H5A—C5—H5B107.9C11—C12—C7120.4 (4)
N1—C6—C7111.1 (3)C5—N1—C6111.9 (3)
N1—C6—H6A109.4C5—N1—H1C109 (3)
C7—C6—H6A109.4C6—N1—H1C108 (2)
N1—C6—H6B109.4C1—O1—C4106.5 (3)
C7—C6—H6B109.4C12—O2—H2A109.5
H6A—C6—H6B108.0C9—S1—H1A109.5
O1—C1—C2—C30.5 (5)S1—C9—C10—C11179.4 (3)
C1—C2—C3—C40.2 (5)C9—C10—C11—C120.8 (6)
C2—C3—C4—O10.1 (4)C10—C11—C12—O2179.7 (4)
C2—C3—C4—C5178.8 (4)C10—C11—C12—C71.3 (6)
C3—C4—C5—N1114.6 (5)C8—C7—C12—O2179.2 (3)
O1—C4—C5—N166.5 (4)C6—C7—C12—O22.2 (5)
N1—C6—C7—C8137.6 (3)C8—C7—C12—C110.8 (5)
N1—C6—C7—C1243.8 (5)C6—C7—C12—C11179.4 (3)
C12—C7—C8—C90.1 (5)C4—C5—N1—C673.9 (4)
C6—C7—C8—C9178.6 (3)C7—C6—N1—C5176.6 (3)
C7—C8—C9—C100.5 (5)C2—C1—O1—C40.6 (4)
C7—C8—C9—S1179.8 (3)C3—C4—O1—C10.4 (4)
C8—C9—C10—C110.0 (6)C5—C4—O1—C1178.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N10.822.042.692 (5)136
N1—H1C···S1i0.93 (5)2.90 (4)3.605 (3)134 (3)
Symmetry code: (i) x+1/2, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H13NO2S
Mr235.29
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)5.5778 (12), 13.589 (3), 14.943 (3)
V3)1132.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.30 × 0.30 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.924, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
2528, 2216, 1811
Rint0.034
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.166, 1.06
No. of reflections2216
No. of parameters150
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.46
Absolute structureFlack (1983), 900 Friedel pairs
Absolute structure parameter0.00 (17)

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N10.822.042.692 (5)136
N1—H1C···S1i0.93 (5)2.90 (4)3.605 (3)134 (3)
Symmetry code: (i) x+1/2, y+2, z+1/2.
 

Acknowledgements

The project was supported by the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, Educational Commission of Hubei Province (D20091703) and the Natural Science Foundation of Hubei Province (2008CDB038).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, L., Ge, H.-M., Tan, S.-H., Li, H.-Q., Song, Y.-C., Zhu, H.-L. & Tan, R.-X. (2007). Eur. J. Med. Chem. 42, 558–564.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds