metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-cyclo­hexyl­imino­methyl-4,6-disulfanylphenolato)nickel(II) aceto­nitrile solvate

aEngineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, People's Republic of China
*Correspondence e-mail: qfzeng@wuse.edu.cn

(Received 14 August 2009; accepted 15 August 2009; online 22 August 2009)

In the title compound, [Ni(C13H16NOS2)2]·CH3CN, the NiII atom is four-coordinated by two N,O-bidentate Schiff base ligands, resulting in a distorted tetra­hedral coordination for the metal ion.

Related literature

For background, see: Shi et al. (2008[Shi, L., Fang, R.-Q., Xue, J.-Y., Xiao, Z.-P., Tan, S.-H. & Zhu, H.-L. (2008). Aust. J. Chem. 61, 288-296.]); Xu et al. (2009[Xu, S.-P., Shi, L., Lv, P.-C., Fang, R.-Q. & Zhu, H.-L. (2009). J. Coord. Chem. 62, 2048-2057.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C13H16NOS2)2]·C2H3N

  • Mr = 632.54

  • Monoclinic, P 21 /n

  • a = 9.483 (2) Å

  • b = 15.879 (4) Å

  • c = 20.335 (4) Å

  • β = 94.10 (1)°

  • V = 3054.2 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 296 K

  • 0.35 × 0.27 × 0.22 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.735, Tmax = 0.820

  • 15868 measured reflections

  • 5366 independent reflections

  • 3750 reflections with I > 2σ(I)

  • Rint = 0.027

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.166

  • S = 1.02

  • 5366 reflections

  • 348 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—O2 1.891 (3)
Ni1—O1 1.900 (3)
Ni1—N2 1.983 (3)
Ni1—N1 1.987 (3)
O1—Ni1—N2 96.35 (12)
O2—Ni1—N1 95.97 (11)

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There has been much research interest in Schiff base metal complexes due to their molecular architectures and biological activities (Shi et al., 2008; Xu et al., 2009). In this work, we report here the crystal structure of the title compound, (I). In (I), all bond lengths are within normal ranges (Allen et al., 1987) (Fig. 1). The NiII is four-coordinated in a distort tetrahedral configuration by two N atoms and two O atoms of the Schiff base ligands.

Related literature top

For background, see: Shi et al. (2008); Xu et al. (2009). For reference structural data, see: Allen et al. (1987).

Experimental top

A mixture of 2-hydroxy-3,5-dimercaptobenzaldehyde (372 mg, 2 mmol), cyclohexanamine (198 mg, 2 mmol) and NiCl2.6H2O (1 mmol, 236 mg) in acetonitrile (10 ml) was stirred for 1 h. After keeping the filtrate in air for 9 d, green blocks of (I) were formed.

Refinement top

The H atoms were positioned geometrically (C—H = 0.93–0.97Å, S—H = 1.20Å) and refined as riding, with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids.
Bis(2-cyclohexyliminomethyl-4,6-disulfanylphenolato)nickel(II) acetonitrile solvate top
Crystal data top
[Ni(C13H16NOS2)2]·C2H3NF(000) = 1328
Mr = 632.54Dx = 1.376 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 9.483 (2) Åθ = 9–12°
b = 15.879 (4) ŵ = 0.94 mm1
c = 20.335 (4) ÅT = 296 K
β = 94.10 (1)°Block, green
V = 3054.2 (12) Å30.35 × 0.27 × 0.22 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
5366 independent reflections
Radiation source: fine-focus sealed tube3750 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω/2θ scansθmax = 25.0°, θmin = 1.6°
Absorption correction: ψ scan
(North et al., 1968)
h = 1111
Tmin = 0.735, Tmax = 0.820k = 1318
15868 measured reflectionsl = 2422
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.099P)2 + 1.0949P]
where P = (Fo2 + 2Fc2)/3
5366 reflections(Δ/σ)max = 0.001
348 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Ni(C13H16NOS2)2]·C2H3NV = 3054.2 (12) Å3
Mr = 632.54Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.483 (2) ŵ = 0.94 mm1
b = 15.879 (4) ÅT = 296 K
c = 20.335 (4) Å0.35 × 0.27 × 0.22 mm
β = 94.10 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
5366 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
3750 reflections with I > 2σ(I)
Tmin = 0.735, Tmax = 0.820Rint = 0.027
15868 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 1.02Δρmax = 0.47 e Å3
5366 reflectionsΔρmin = 0.60 e Å3
348 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.71327 (5)0.75018 (3)0.18476 (2)0.05582 (19)
S20.26353 (13)0.63623 (8)0.12076 (7)0.0863 (4)
H20.33440.62060.17050.129*
S31.23712 (14)0.60737 (8)0.43291 (7)0.0908 (4)
H31.32750.58510.39840.136*
S40.79783 (18)0.81852 (8)0.40833 (6)0.0977 (5)
H40.67620.79700.40380.147*
S10.13179 (17)0.90908 (12)0.02558 (9)0.1251 (6)
H10.16600.90150.08100.188*
O10.5238 (3)0.72316 (17)0.15565 (13)0.0613 (6)
N10.8485 (3)0.65868 (19)0.16717 (14)0.0536 (7)
N20.7138 (3)0.86444 (18)0.14541 (15)0.0557 (7)
O20.7561 (3)0.75360 (16)0.27700 (13)0.0637 (7)
C60.4421 (4)0.7675 (2)0.11519 (18)0.0536 (9)
C70.8643 (4)0.7192 (2)0.30842 (18)0.0545 (9)
C80.6061 (4)0.8918 (2)0.10958 (19)0.0629 (10)
H80.61320.94630.09350.076*
C90.9529 (4)0.6585 (2)0.28132 (17)0.0525 (8)
C100.4764 (4)0.8483 (2)0.09145 (18)0.0563 (9)
C110.9349 (4)0.6301 (2)0.21331 (18)0.0533 (8)
H110.99280.58600.20190.064*
C121.0666 (4)0.6232 (2)0.32019 (19)0.0605 (9)
H121.12330.58270.30220.073*
C130.8493 (4)0.6203 (2)0.10085 (18)0.0606 (9)
H130.94170.59410.09630.073*
C140.3781 (4)0.8914 (3)0.0477 (2)0.0724 (11)
H140.40040.94440.03200.087*
C150.2163 (4)0.7773 (3)0.0500 (2)0.0734 (12)
H150.12990.75340.03590.088*
C160.2523 (5)0.8559 (3)0.0285 (2)0.0796 (13)
C170.8334 (4)0.9231 (3)0.1596 (2)0.0653 (10)
H170.83400.96420.12370.078*
C180.3084 (4)0.7349 (3)0.0923 (2)0.0626 (10)
C191.0113 (5)0.7079 (3)0.4122 (2)0.0705 (11)
H191.03050.72470.45580.085*
C201.0944 (4)0.6480 (2)0.3841 (2)0.0651 (10)
C210.8255 (5)0.6871 (3)0.04867 (19)0.0704 (11)
H21A0.89940.72920.05440.084*
H21B0.73570.71470.05380.084*
C220.9003 (5)0.7419 (2)0.3745 (2)0.0652 (11)
C230.7365 (6)0.5537 (3)0.0916 (2)0.0792 (13)
H23A0.64510.57840.09830.095*
H23B0.75440.50960.12410.095*
C240.7174 (7)0.5820 (3)0.0312 (2)0.0996 (17)
H24A0.72720.55600.07380.119*
H24B0.62360.60630.03160.119*
C250.8253 (6)0.6502 (3)0.0205 (2)0.0934 (16)
H25A0.80560.69450.05260.112*
H25B0.91820.62760.02720.112*
C270.8141 (5)0.9695 (3)0.2230 (3)0.0917 (16)
H27A0.80950.92940.25880.110*
H27B0.72581.00050.21910.110*
C280.9709 (4)0.8773 (3)0.1640 (3)0.0867 (15)
H28A0.98350.84940.12240.104*
H28B0.96990.83440.19800.104*
C260.7338 (7)0.5155 (3)0.0220 (2)0.1025 (17)
H26A0.82090.48470.01750.123*
H26B0.65600.47590.01630.123*
C291.0753 (5)0.9852 (4)0.2428 (3)0.1024 (17)
H29A1.07890.94630.27960.123*
H29B1.15161.02540.25050.123*
C300.9370 (6)1.0306 (4)0.2386 (3)0.118 (2)
H30A0.93701.07320.20440.141*
H30B0.92461.05870.28010.141*
C311.0947 (5)0.9375 (4)0.1802 (3)0.113 (2)
H31A1.18210.90570.18490.135*
H31B1.10150.97700.14410.135*
C320.4297 (7)0.8572 (5)0.2992 (4)0.118 (2)
C330.4114 (8)0.7686 (4)0.3059 (4)0.136 (3)
H33A0.41860.75380.35180.204*
H33B0.48320.73960.28380.204*
H33C0.31990.75270.28660.204*
N30.4466 (8)0.9245 (5)0.2955 (5)0.202 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0539 (3)0.0583 (3)0.0548 (3)0.0049 (2)0.0010 (2)0.0045 (2)
S20.0703 (7)0.0812 (8)0.1054 (10)0.0226 (6)0.0069 (6)0.0092 (7)
S30.0947 (9)0.0854 (8)0.0856 (8)0.0120 (7)0.0396 (7)0.0045 (6)
S40.1485 (13)0.0862 (8)0.0582 (7)0.0428 (8)0.0060 (7)0.0134 (6)
S10.0975 (10)0.1409 (14)0.1285 (13)0.0185 (9)0.0514 (9)0.0419 (11)
O10.0512 (14)0.0626 (15)0.0692 (17)0.0009 (12)0.0019 (12)0.0147 (13)
N10.0524 (17)0.0566 (17)0.0514 (17)0.0010 (13)0.0013 (14)0.0010 (13)
N20.0549 (18)0.0538 (17)0.0583 (18)0.0018 (14)0.0027 (14)0.0042 (14)
O20.0707 (17)0.0704 (17)0.0496 (15)0.0234 (13)0.0009 (13)0.0020 (11)
C60.0460 (19)0.064 (2)0.051 (2)0.0031 (16)0.0047 (16)0.0011 (16)
C70.065 (2)0.0505 (19)0.048 (2)0.0004 (18)0.0033 (17)0.0033 (16)
C80.071 (3)0.056 (2)0.061 (2)0.0054 (19)0.0038 (19)0.0138 (18)
C90.057 (2)0.0480 (19)0.052 (2)0.0005 (16)0.0026 (16)0.0027 (15)
C100.053 (2)0.059 (2)0.057 (2)0.0036 (17)0.0011 (16)0.0051 (17)
C110.050 (2)0.051 (2)0.058 (2)0.0045 (16)0.0020 (16)0.0027 (16)
C120.059 (2)0.057 (2)0.063 (2)0.0004 (18)0.0066 (18)0.0019 (18)
C130.066 (2)0.063 (2)0.052 (2)0.0069 (19)0.0013 (17)0.0074 (17)
C140.069 (3)0.075 (3)0.071 (3)0.009 (2)0.009 (2)0.016 (2)
C150.050 (2)0.100 (3)0.069 (3)0.005 (2)0.0070 (19)0.001 (2)
C160.069 (3)0.094 (3)0.073 (3)0.022 (2)0.014 (2)0.009 (2)
C170.065 (2)0.061 (2)0.070 (3)0.0159 (19)0.0038 (19)0.0089 (19)
C180.054 (2)0.074 (3)0.059 (2)0.0018 (18)0.0033 (18)0.0036 (18)
C190.098 (3)0.057 (2)0.053 (2)0.004 (2)0.015 (2)0.0020 (19)
C200.069 (2)0.057 (2)0.067 (3)0.0027 (19)0.0175 (19)0.0079 (19)
C210.088 (3)0.067 (3)0.057 (2)0.013 (2)0.011 (2)0.0008 (19)
C220.092 (3)0.053 (2)0.050 (2)0.006 (2)0.002 (2)0.0014 (16)
C230.116 (4)0.060 (2)0.059 (2)0.018 (2)0.005 (2)0.0038 (19)
C240.155 (5)0.075 (3)0.064 (3)0.009 (3)0.027 (3)0.005 (2)
C250.142 (5)0.083 (3)0.057 (3)0.002 (3)0.019 (3)0.004 (2)
C270.068 (3)0.077 (3)0.131 (4)0.008 (2)0.017 (3)0.041 (3)
C280.060 (3)0.097 (3)0.105 (4)0.015 (2)0.021 (2)0.041 (3)
C260.168 (5)0.062 (3)0.074 (3)0.014 (3)0.015 (3)0.010 (2)
C290.078 (3)0.119 (4)0.110 (4)0.035 (3)0.008 (3)0.037 (3)
C300.101 (4)0.096 (4)0.158 (6)0.029 (3)0.028 (4)0.062 (4)
C310.065 (3)0.130 (5)0.148 (5)0.036 (3)0.031 (3)0.061 (4)
C320.093 (4)0.105 (5)0.159 (6)0.015 (4)0.020 (4)0.009 (4)
C330.178 (7)0.111 (5)0.130 (6)0.026 (4)0.081 (5)0.016 (4)
N30.146 (6)0.105 (5)0.350 (13)0.024 (4)0.011 (6)0.050 (6)
Geometric parameters (Å, º) top
Ni1—O21.891 (3)C17—C271.507 (6)
Ni1—O11.900 (3)C17—H170.9800
Ni1—N21.983 (3)C19—C221.368 (6)
Ni1—N11.987 (3)C19—C201.386 (6)
S2—C181.734 (4)C19—H190.9300
S2—H21.2000C21—C251.523 (6)
S3—C201.744 (4)C21—H21A0.9700
S3—H31.2000C21—H21B0.9700
S4—C221.731 (4)C23—C261.537 (6)
S4—H41.2000C23—H23A0.9700
S1—C161.746 (4)C23—H23B0.9700
S1—H11.2000C24—C251.495 (7)
O1—C61.297 (4)C24—C261.513 (7)
N1—C111.283 (4)C24—H24A0.9700
N1—C131.481 (5)C24—H24B0.9700
N2—C81.287 (5)C25—H25A0.9700
N2—C171.480 (5)C25—H25B0.9700
O2—C71.291 (4)C27—C301.532 (6)
C6—C101.417 (5)C27—H27A0.9700
C6—C181.417 (5)C27—H27B0.9700
C7—C221.409 (5)C28—C311.531 (6)
C7—C91.415 (5)C28—H28A0.9700
C8—C101.436 (5)C28—H28B0.9700
C8—H80.9300C26—H26A0.9700
C9—C121.407 (5)C26—H26B0.9700
C9—C111.453 (5)C29—C301.493 (8)
C10—C141.418 (5)C29—C311.504 (7)
C11—H110.9300C29—H29A0.9700
C12—C201.365 (5)C29—H29B0.9700
C12—H120.9300C30—H30A0.9700
C13—C231.505 (6)C30—H30B0.9700
C13—C211.506 (6)C31—H31A0.9700
C13—H130.9800C31—H31B0.9700
C14—C161.351 (6)C32—N31.085 (8)
C14—H140.9300C32—C331.424 (9)
C15—C181.358 (6)C33—H33A0.9600
C15—C161.374 (7)C33—H33B0.9600
C15—H150.9300C33—H33C0.9600
C17—C281.490 (6)
O2—Ni1—O1116.53 (12)C13—C21—H21A109.3
O2—Ni1—N2111.55 (12)C25—C21—H21A109.3
O1—Ni1—N296.35 (12)C13—C21—H21B109.3
O2—Ni1—N195.97 (11)C25—C21—H21B109.3
O1—Ni1—N1112.76 (12)H21A—C21—H21B107.9
N2—Ni1—N1125.16 (12)C19—C22—C7124.0 (4)
C18—S2—H2109.5C19—C22—S4119.0 (3)
C20—S3—H3109.5C7—C22—S4117.0 (3)
C22—S4—H4109.5C13—C23—C26110.9 (4)
C16—S1—H1109.5C13—C23—H23A109.4
C6—O1—Ni1125.7 (2)C26—C23—H23A109.4
C11—N1—C13118.4 (3)C13—C23—H23B109.4
C11—N1—Ni1120.9 (2)C26—C23—H23B109.4
C13—N1—Ni1120.7 (2)H23A—C23—H23B108.0
C8—N2—C17117.7 (3)C25—C24—C26111.5 (4)
C8—N2—Ni1120.8 (3)C25—C24—H24A109.3
C17—N2—Ni1121.4 (2)C26—C24—H24A109.3
C7—O2—Ni1125.8 (2)C25—C24—H24B109.3
O1—C6—C10124.5 (3)C26—C24—H24B109.3
O1—C6—C18119.4 (3)H24A—C24—H24B108.0
C10—C6—C18116.1 (3)C24—C25—C21111.6 (4)
O2—C7—C22119.6 (3)C24—C25—H25A109.3
O2—C7—C9124.7 (3)C21—C25—H25A109.3
C22—C7—C9115.8 (3)C24—C25—H25B109.3
N2—C8—C10127.9 (3)C21—C25—H25B109.3
N2—C8—H8116.1H25A—C25—H25B108.0
C10—C8—H8116.1C17—C27—C30110.4 (4)
C12—C9—C7120.3 (3)C17—C27—H27A109.6
C12—C9—C11116.4 (3)C30—C27—H27A109.6
C7—C9—C11123.3 (3)C17—C27—H27B109.6
C6—C10—C14119.6 (3)C30—C27—H27B109.6
C6—C10—C8124.2 (3)H27A—C27—H27B108.1
C14—C10—C8116.2 (4)C17—C28—C31111.2 (4)
N1—C11—C9127.7 (3)C17—C28—H28A109.4
N1—C11—H11116.1C31—C28—H28A109.4
C9—C11—H11116.1C17—C28—H28B109.4
C20—C12—C9120.6 (4)C31—C28—H28B109.4
C20—C12—H12119.7H28A—C28—H28B108.0
C9—C12—H12119.7C24—C26—C23112.1 (4)
N1—C13—C23110.7 (3)C24—C26—H26A109.2
N1—C13—C21109.9 (3)C23—C26—H26A109.2
C23—C13—C21109.7 (3)C24—C26—H26B109.2
N1—C13—H13108.8C23—C26—H26B109.2
C23—C13—H13108.8H26A—C26—H26B107.9
C21—C13—H13108.8C30—C29—C31110.8 (5)
C16—C14—C10120.5 (4)C30—C29—H29A109.5
C16—C14—H14119.8C31—C29—H29A109.5
C10—C14—H14119.8C30—C29—H29B109.5
C18—C15—C16119.2 (4)C31—C29—H29B109.5
C18—C15—H15120.4H29A—C29—H29B108.1
C16—C15—H15120.4C29—C30—C27111.0 (4)
C14—C16—C15121.4 (4)C29—C30—H30A109.4
C14—C16—S1120.3 (4)C27—C30—H30A109.4
C15—C16—S1118.3 (4)C29—C30—H30B109.4
N2—C17—C28111.1 (3)C27—C30—H30B109.4
N2—C17—C27109.7 (3)H30A—C30—H30B108.0
C28—C17—C27110.3 (4)C29—C31—C28111.0 (4)
N2—C17—H17108.6C29—C31—H31A109.4
C28—C17—H17108.6C28—C31—H31A109.4
C27—C17—H17108.6C29—C31—H31B109.4
C15—C18—C6123.2 (4)C28—C31—H31B109.4
C15—C18—S2119.8 (3)H31A—C31—H31B108.0
C6—C18—S2117.1 (3)N3—C32—C33178.0 (10)
C22—C19—C20118.4 (4)C32—C33—H33A109.5
C22—C19—H19120.8C32—C33—H33B109.5
C20—C19—H19120.8H33A—C33—H33B109.5
C12—C20—C19120.9 (4)C32—C33—H33C109.5
C12—C20—S3121.7 (3)H33A—C33—H33C109.5
C19—C20—S3117.4 (3)H33B—C33—H33C109.5
C13—C21—C25111.7 (4)

Experimental details

Crystal data
Chemical formula[Ni(C13H16NOS2)2]·C2H3N
Mr632.54
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.483 (2), 15.879 (4), 20.335 (4)
β (°) 94.10 (1)
V3)3054.2 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.35 × 0.27 × 0.22
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.735, 0.820
No. of measured, independent and
observed [I > 2σ(I)] reflections
15868, 5366, 3750
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.166, 1.02
No. of reflections5366
No. of parameters348
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.60

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni1—O21.891 (3)Ni1—N21.983 (3)
Ni1—O11.900 (3)Ni1—N11.987 (3)
O1—Ni1—N296.35 (12)O2—Ni1—N195.97 (11)
 

Acknowledgements

The project was supported by the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, Educational Commission of Hubei Province (D20091703) and the Natural Science Foundation of Hubei Province (2008CDB038).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, L., Fang, R.-Q., Xue, J.-Y., Xiao, Z.-P., Tan, S.-H. & Zhu, H.-L. (2008). Aust. J. Chem. 61, 288–296.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, S.-P., Shi, L., Lv, P.-C., Fang, R.-Q. & Zhu, H.-L. (2009). J. Coord. Chem. 62, 2048–2057.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds