metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1144-m1145

(Cyclo­hexa­ne­carboxyl­ato)bis­­(di-2-pyridylamine)zinc(II) nitrate monohydrate

aEngineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, People's Republic of China
*Correspondence e-mail: qfzeng@wuse.edu.cn

(Received 15 August 2009; accepted 21 August 2009; online 29 August 2009)

In the title compound, [Zn(C7H11O2)(C10H9N3)2]NO3·H2O, the ZnII atom is five-coordinated by two bidentate di-2-pyridylamine ligands and one O atom from a cyclo­hexa­necarboxy­ate anion, resulting in a ZnON4 square-based pyramidal coordination for the metal ion with the O atom in one of the basal positions. In the crystal, the components inter­act by way of O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds.

Related literature

For background to acid and amine metal complexes and their mol­ecular architectures, see: Yang et al. (2004[Yang, H.-L., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, m1213-m1214.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H11O2)(C10H9N3)2]NO3·H2O

  • Mr = 614.96

  • Triclinic, [P \overline 1]

  • a = 10.4856 (3) Å

  • b = 11.6116 (13) Å

  • c = 13.4876 (13) Å

  • α = 107.526 (3)°

  • β = 106.016 (3)°

  • γ = 99.706 (3)°

  • V = 1447.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 296 K

  • 0.32 × 0.26 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.761, Tmax = 0.840

  • 8944 measured reflections

  • 6182 independent reflections

  • 5178 reflections with I > 2σ(I)

  • Rint = 0.014

  • 200 standard reflections every 3 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.109

  • S = 1.03

  • 6182 reflections

  • 386 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N1 1.9984 (18)
Zn1—N3 2.0192 (19)
Zn1—N4 2.166 (2)
Zn1—N6 2.0405 (19)
Zn1—O2 1.9803 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N12—H12⋯O6i 0.71 (3) 2.10 (3) 2.806 (3) 174 (3)
N11—H11A⋯O1ii 0.70 (2) 2.11 (3) 2.810 (3) 177 (3)
O6—H6B⋯N7ii 0.836 (10) 2.586 (14) 3.406 (4) 167 (3)
O6—H6B⋯O5ii 0.836 (10) 2.48 (3) 3.164 (4) 139 (3)
O6—H6B⋯O4ii 0.836 (10) 2.088 (12) 2.904 (4) 165 (3)
O6—H6A⋯O5iii 0.838 (10) 1.971 (15) 2.787 (4) 164 (4)
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z+1; (iii) x, y, z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There has been much research interest in the acid and amine metal complexes due to their molecular architectures (e.g. Yang et al., 2004). In this work, we report here the crystal structure of the title compound, (I). In (I), all bond lengths are within normal ranges (Allen et al., 1987) (Fig. 1). The ZnII atom is five-coordinated by four N atoms from di-2-pyridylamine and one O atom from cyclohexanecarboxylic acid.

Related literature top

For background to acid and amine metal complexes and their molecular architectures, see: Yang et al. (2004). For reference structural data, see: Allen et al. (1987).

Experimental top

A mixture of di-2-pyridylamine (342 mg, 2 mmol), cyclohexanecarboxylic acid (256 mg, 2 mmol) and ZnNO3.6H2O (1 mmol, 297 mg) in methanol (10 ml) was stirred for 3 h. After keeping the filtrate in air for 8 d, colourless blocks of (I) were formed.

Refinement top

The N- and O-bound H atoms were located in a difference map and their positions were freely refined. The C-bound H atoms were positioned geometrically (C—H = 0.93 Å for the aromatic H atoms and C—H = 0.96 Å for the aliphatic H atoms) and were refined as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids.
(Cyclohexanecarboxylato)bis(di-2-pyridylamine)zinc(II) nitrate monohydrate top
Crystal data top
[Zn(C7H11O2)(C10H9N3)2]NO3·H2OZ = 2
Mr = 614.96F(000) = 640
Triclinic, P1Dx = 1.411 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.4856 (3) ÅCell parameters from 25 reflections
b = 11.6116 (13) Åθ = 9–12°
c = 13.4876 (13) ŵ = 0.90 mm1
α = 107.526 (3)°T = 296 K
β = 106.016 (3)°Block, colorless
γ = 99.706 (3)°0.32 × 0.26 × 0.20 mm
V = 1447.3 (2) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
5178 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
Graphite monochromatorθmax = 27.0°, θmin = 1.7°
ω/2θ scansh = 1213
Absorption correction: ψ scan
(North et al., 1968)
k = 1413
Tmin = 0.761, Tmax = 0.840l = 1717
8944 measured reflections200 standard reflections every 3 reflections
6182 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.6885P]
where P = (Fo2 + 2Fc2)/3
6182 reflections(Δ/σ)max = 0.001
386 parametersΔρmax = 0.46 e Å3
3 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Zn(C7H11O2)(C10H9N3)2]NO3·H2Oγ = 99.706 (3)°
Mr = 614.96V = 1447.3 (2) Å3
Triclinic, P1Z = 2
a = 10.4856 (3) ÅMo Kα radiation
b = 11.6116 (13) ŵ = 0.90 mm1
c = 13.4876 (13) ÅT = 296 K
α = 107.526 (3)°0.32 × 0.26 × 0.20 mm
β = 106.016 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
5178 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.014
Tmin = 0.761, Tmax = 0.840200 standard reflections every 3 reflections
8944 measured reflections intensity decay: 1%
6182 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0393 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.46 e Å3
6182 reflectionsΔρmin = 0.34 e Å3
386 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1292 (3)0.8840 (3)0.4961 (3)0.0615 (8)
H1A0.05110.88860.44020.074*
H1B0.20950.94860.50750.074*
C20.1004 (4)0.9075 (3)0.6045 (3)0.0724 (10)
H2A0.18220.91140.66230.087*
H2B0.07980.98780.62670.087*
C30.0192 (4)0.8051 (4)0.5925 (3)0.0811 (11)
H3A0.02980.81880.66400.097*
H3B0.10350.80860.54220.097*
C40.0032 (3)0.6775 (4)0.5488 (3)0.0757 (10)
H4A0.08020.67030.60390.091*
H4B0.07830.61350.53630.091*
C50.0320 (3)0.6546 (3)0.4428 (3)0.0630 (8)
H5A0.04890.65270.38530.076*
H5B0.05050.57350.41980.076*
C60.1545 (3)0.7559 (3)0.4557 (2)0.0450 (6)
H60.16070.74120.38190.054*
C70.2903 (2)0.7493 (2)0.52994 (18)0.0344 (5)
C80.5875 (3)0.8287 (3)0.4789 (2)0.0449 (6)
H80.57340.90750.50500.054*
C90.5912 (3)0.7849 (3)0.3745 (2)0.0601 (8)
H90.58060.83320.33040.072*
C100.6110 (3)0.6673 (3)0.3351 (2)0.0602 (8)
H100.61140.63460.26320.072*
C110.6299 (3)0.5993 (3)0.4021 (2)0.0468 (6)
H110.64290.51980.37670.056*
C120.6293 (2)0.6519 (2)0.51007 (17)0.0320 (4)
C130.7019 (2)0.6277 (2)0.69238 (19)0.0367 (5)
C140.7804 (3)0.5631 (3)0.7447 (3)0.0608 (8)
H140.79790.49170.70310.073*
C150.8314 (4)0.6060 (4)0.8583 (3)0.0803 (11)
H150.88510.56490.89460.096*
C160.8021 (4)0.7106 (4)0.9178 (3)0.0787 (11)
H160.83520.74110.99490.094*
C170.7240 (3)0.7685 (3)0.8619 (2)0.0610 (8)
H170.70600.84000.90290.073*
C180.8081 (3)1.0300 (3)0.7532 (2)0.0543 (7)
H180.83500.96320.71460.065*
C190.8960 (3)1.1469 (3)0.7940 (2)0.0580 (7)
H190.98051.15980.78350.070*
C200.8562 (3)1.2454 (3)0.8512 (2)0.0598 (8)
H200.91381.32670.88010.072*
C210.7314 (3)1.2231 (2)0.8654 (2)0.0532 (7)
H210.70301.28910.90360.064*
C220.6474 (2)1.1005 (2)0.82200 (19)0.0389 (5)
C230.4434 (2)0.9739 (2)0.84199 (18)0.0366 (5)
C240.3436 (3)0.9918 (3)0.8921 (2)0.0487 (6)
H240.33251.07160.92020.058*
C250.2633 (3)0.8919 (3)0.8994 (2)0.0569 (7)
H250.19640.90270.93170.068*
C260.2822 (3)0.7736 (3)0.8580 (2)0.0558 (7)
H260.22980.70410.86340.067*
C270.3796 (3)0.7623 (3)0.8094 (2)0.0488 (6)
H270.39220.68300.78170.059*
H6A0.524 (2)0.360 (2)0.983 (3)0.081 (13)*
H6B0.386 (2)0.322 (3)0.921 (3)0.087 (13)*
N10.60361 (18)0.76244 (17)0.54675 (15)0.0325 (4)
N30.6709 (2)0.72807 (19)0.74978 (16)0.0398 (4)
N40.6839 (2)1.00475 (19)0.76529 (17)0.0429 (5)
N60.4594 (2)0.85966 (18)0.79898 (16)0.0375 (4)
N70.7893 (3)0.5522 (2)0.1219 (2)0.0611 (6)
O10.30686 (18)0.64659 (15)0.53325 (15)0.0455 (4)
O20.38469 (16)0.85182 (15)0.58651 (13)0.0378 (4)
O30.8755 (3)0.5011 (3)0.1033 (3)0.1179 (12)
O40.8103 (3)0.6659 (2)0.1560 (2)0.0860 (8)
O50.6740 (3)0.4912 (3)0.1109 (3)0.1178 (12)
O60.4564 (4)0.2978 (2)0.9418 (3)0.0855 (8)
N110.6563 (2)0.58533 (19)0.57844 (16)0.0363 (4)
N120.5229 (2)1.0789 (2)0.83921 (19)0.0437 (5)
Zn10.54528 (3)0.81698 (2)0.67867 (2)0.03606 (10)
H11A0.667 (3)0.528 (2)0.553 (2)0.027 (7)*
H120.505 (3)1.135 (3)0.861 (2)0.037 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0498 (16)0.0601 (17)0.083 (2)0.0269 (14)0.0102 (15)0.0427 (16)
C20.066 (2)0.067 (2)0.073 (2)0.0456 (17)0.0105 (16)0.0076 (16)
C30.056 (2)0.121 (3)0.085 (2)0.048 (2)0.0373 (18)0.040 (2)
C40.0456 (17)0.090 (2)0.116 (3)0.0254 (16)0.0374 (19)0.060 (2)
C50.0374 (14)0.0568 (17)0.075 (2)0.0109 (13)0.0036 (14)0.0128 (15)
C60.0397 (13)0.0597 (16)0.0391 (13)0.0209 (12)0.0104 (10)0.0218 (12)
C70.0345 (11)0.0421 (12)0.0335 (11)0.0168 (10)0.0169 (9)0.0154 (10)
C80.0436 (13)0.0501 (14)0.0537 (15)0.0196 (11)0.0218 (12)0.0279 (12)
C90.0623 (18)0.086 (2)0.0517 (16)0.0263 (16)0.0260 (14)0.0439 (16)
C100.0665 (19)0.084 (2)0.0364 (14)0.0240 (16)0.0255 (13)0.0226 (14)
C110.0501 (15)0.0530 (15)0.0358 (12)0.0157 (12)0.0206 (11)0.0086 (11)
C120.0262 (10)0.0358 (11)0.0314 (11)0.0059 (8)0.0114 (9)0.0088 (9)
C130.0381 (12)0.0401 (12)0.0372 (12)0.0152 (10)0.0171 (10)0.0152 (10)
C140.076 (2)0.0703 (19)0.0535 (16)0.0487 (17)0.0255 (15)0.0284 (15)
C150.097 (3)0.107 (3)0.0597 (19)0.068 (2)0.0225 (19)0.045 (2)
C160.090 (3)0.118 (3)0.0367 (15)0.062 (2)0.0150 (16)0.0287 (17)
C170.0690 (19)0.083 (2)0.0332 (13)0.0451 (17)0.0160 (13)0.0129 (13)
C180.0391 (14)0.0557 (16)0.0552 (16)0.0088 (12)0.0171 (12)0.0042 (13)
C190.0411 (14)0.0645 (18)0.0552 (16)0.0017 (13)0.0155 (13)0.0138 (14)
C200.0596 (18)0.0477 (16)0.0573 (17)0.0043 (13)0.0121 (14)0.0167 (14)
C210.0624 (17)0.0370 (13)0.0538 (16)0.0108 (12)0.0182 (14)0.0115 (12)
C220.0408 (12)0.0394 (12)0.0345 (12)0.0118 (10)0.0108 (10)0.0124 (10)
C230.0392 (12)0.0414 (12)0.0290 (11)0.0167 (10)0.0111 (9)0.0101 (9)
C240.0515 (15)0.0582 (16)0.0423 (13)0.0253 (13)0.0236 (12)0.0141 (12)
C250.0533 (16)0.078 (2)0.0512 (16)0.0224 (15)0.0314 (14)0.0246 (15)
C260.0579 (17)0.0620 (17)0.0546 (16)0.0104 (14)0.0288 (14)0.0260 (14)
C270.0596 (16)0.0433 (14)0.0465 (14)0.0137 (12)0.0241 (13)0.0157 (11)
N10.0304 (9)0.0378 (10)0.0343 (9)0.0121 (8)0.0149 (8)0.0155 (8)
N30.0423 (11)0.0490 (11)0.0309 (9)0.0230 (9)0.0135 (8)0.0121 (9)
N40.0361 (10)0.0399 (11)0.0455 (11)0.0080 (8)0.0160 (9)0.0054 (9)
N60.0414 (11)0.0384 (10)0.0350 (10)0.0139 (8)0.0172 (8)0.0113 (8)
N70.0612 (16)0.0498 (15)0.0746 (17)0.0120 (12)0.0294 (14)0.0227 (13)
O10.0478 (10)0.0371 (9)0.0546 (10)0.0202 (8)0.0181 (8)0.0160 (8)
O20.0335 (8)0.0392 (9)0.0431 (9)0.0148 (7)0.0138 (7)0.0152 (7)
O30.101 (2)0.087 (2)0.199 (4)0.0436 (18)0.093 (3)0.051 (2)
O40.0831 (18)0.0619 (15)0.116 (2)0.0114 (13)0.0389 (16)0.0373 (14)
O50.0797 (19)0.0729 (18)0.176 (3)0.0024 (15)0.059 (2)0.0110 (19)
O60.094 (2)0.0605 (15)0.097 (2)0.0444 (16)0.0289 (17)0.0132 (14)
N110.0434 (11)0.0309 (10)0.0356 (10)0.0146 (9)0.0171 (9)0.0081 (9)
N120.0512 (13)0.0375 (11)0.0473 (12)0.0212 (10)0.0235 (10)0.0116 (10)
Zn10.03508 (15)0.03867 (16)0.03545 (15)0.01457 (11)0.01437 (11)0.01066 (11)
Geometric parameters (Å, º) top
C1—C61.518 (4)C16—C171.356 (4)
C1—C21.529 (5)C16—H160.9300
C1—H1A0.9700C17—N31.356 (3)
C1—H1B0.9700C17—H170.9300
C2—C31.511 (5)C18—N41.351 (3)
C2—H2A0.9700C18—C191.357 (4)
C2—H2B0.9700C18—H180.9300
C3—C41.506 (5)C19—C201.372 (4)
C3—H3A0.9700C19—H190.9300
C3—H3B0.9700C20—C211.367 (4)
C4—C51.497 (5)C20—H200.9300
C4—H4A0.9700C21—C221.392 (4)
C4—H4B0.9700C21—H210.9300
C5—C61.519 (4)C22—N41.326 (3)
C5—H5A0.9700C22—N121.383 (3)
C5—H5B0.9700C23—N61.337 (3)
C6—C71.527 (3)C23—N121.373 (3)
C6—H60.9800C23—C241.406 (3)
C7—O11.246 (3)C24—C251.360 (4)
C7—O21.272 (3)C24—H240.9300
C8—N11.356 (3)C25—C261.389 (4)
C8—C91.360 (4)C25—H250.9300
C8—H80.9300C26—C271.361 (4)
C9—C101.382 (4)C26—H260.9300
C9—H90.9300C27—N61.357 (3)
C10—C111.365 (4)C27—H270.9300
C10—H100.9300N7—O31.204 (4)
C11—C121.402 (3)N7—O41.218 (3)
C11—H110.9300N7—O51.239 (4)
C12—N11.332 (3)Zn1—N11.9984 (18)
C12—N111.373 (3)Zn1—N32.0192 (19)
C13—N31.337 (3)Zn1—N42.166 (2)
C13—N111.376 (3)Zn1—N62.0405 (19)
C13—C141.395 (3)Zn1—O21.9803 (16)
C14—C151.370 (4)O6—H6A0.838 (10)
C14—H140.9300O6—H6B0.836 (10)
C15—C161.374 (5)N11—H11A0.70 (2)
C15—H150.9300N12—H120.71 (3)
C6—C1—C2110.8 (2)N3—C17—C16123.7 (3)
C6—C1—H1A109.5N3—C17—H17118.2
C2—C1—H1A109.5C16—C17—H17118.2
C6—C1—H1B109.5N4—C18—C19124.1 (3)
C2—C1—H1B109.5N4—C18—H18118.0
H1A—C1—H1B108.1C19—C18—H18118.0
C3—C2—C1111.4 (3)C18—C19—C20117.9 (3)
C3—C2—H2A109.3C18—C19—H19121.1
C1—C2—H2A109.3C20—C19—H19121.1
C3—C2—H2B109.3C21—C20—C19119.6 (3)
C1—C2—H2B109.3C21—C20—H20120.2
H2A—C2—H2B108.0C19—C20—H20120.2
C4—C3—C2111.1 (2)C20—C21—C22119.2 (3)
C4—C3—H3A109.4C20—C21—H21120.4
C2—C3—H3A109.4C22—C21—H21120.4
C4—C3—H3B109.4N4—C22—N12119.7 (2)
C2—C3—H3B109.4N4—C22—C21121.8 (2)
H3A—C3—H3B108.0N12—C22—C21118.6 (2)
C5—C4—C3112.1 (3)N6—C23—N12121.9 (2)
C5—C4—H4A109.2N6—C23—C24121.3 (2)
C3—C4—H4A109.2N12—C23—C24116.8 (2)
C5—C4—H4B109.2C25—C24—C23119.6 (2)
C3—C4—H4B109.2C25—C24—H24120.2
H4A—C4—H4B107.9C23—C24—H24120.2
C4—C5—C6111.6 (3)C24—C25—C26119.4 (2)
C4—C5—H5A109.3C24—C25—H25120.3
C6—C5—H5A109.3C26—C25—H25120.3
C4—C5—H5B109.3C27—C26—C25118.0 (3)
C6—C5—H5B109.3C27—C26—H26121.0
H5A—C5—H5B108.0C25—C26—H26121.0
C1—C6—C5109.8 (2)N6—C27—C26123.9 (3)
C1—C6—C7112.4 (2)N6—C27—H27118.0
C5—C6—C7112.2 (2)C26—C27—H27118.0
C1—C6—H6107.4C12—N1—C8117.9 (2)
C5—C6—H6107.4C12—N1—Zn1123.08 (14)
C7—C6—H6107.4C8—N1—Zn1117.45 (16)
O1—C7—O2122.0 (2)C13—N3—C17117.2 (2)
O1—C7—C6120.5 (2)C13—N3—Zn1123.65 (15)
O2—C7—C6117.4 (2)C17—N3—Zn1119.08 (17)
N1—C8—C9122.9 (3)C22—N4—C18117.5 (2)
N1—C8—H8118.5C22—N4—Zn1122.70 (16)
C9—C8—H8118.5C18—N4—Zn1119.52 (17)
C8—C9—C10118.7 (3)C23—N6—C27117.6 (2)
C8—C9—H9120.6C23—N6—Zn1122.08 (15)
C10—C9—H9120.6C27—N6—Zn1117.11 (16)
C11—C10—C9119.7 (2)O3—N7—O4122.9 (3)
C11—C10—H10120.1O3—N7—O5121.4 (3)
C9—C10—H10120.1O4—N7—O5115.7 (3)
C10—C11—C12118.5 (3)C7—O2—Zn1108.91 (14)
C10—C11—H11120.7H6A—O6—H6B109.5 (17)
C12—C11—H11120.7C12—N11—C13129.1 (2)
N1—C12—N11120.21 (19)C12—N11—H11A113 (2)
N1—C12—C11122.0 (2)C13—N11—H11A115 (2)
N11—C12—C11117.8 (2)C23—N12—C22131.3 (2)
N3—C13—N11120.1 (2)C23—N12—H12114 (2)
N3—C13—C14121.9 (2)C22—N12—H12113 (2)
N11—C13—C14118.0 (2)O2—Zn1—N189.03 (7)
C15—C14—C13119.2 (3)O2—Zn1—N3162.61 (8)
C15—C14—H14120.4N1—Zn1—N388.38 (7)
C13—C14—H14120.4O2—Zn1—N685.24 (7)
C14—C15—C16119.1 (3)N1—Zn1—N6172.28 (8)
C14—C15—H15120.4N3—Zn1—N695.55 (8)
C16—C15—H15120.4O2—Zn1—N4100.52 (8)
C17—C16—C15118.8 (3)N1—Zn1—N499.74 (8)
C17—C16—H16120.6N3—Zn1—N496.86 (9)
C15—C16—H16120.6N6—Zn1—N486.42 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12···O6i0.71 (3)2.10 (3)2.806 (3)174 (3)
N11—H11A···O1ii0.70 (2)2.11 (3)2.810 (3)177 (3)
O6—H6B···N7ii0.84 (1)2.59 (1)3.406 (4)167 (3)
O6—H6B···O5ii0.84 (1)2.48 (3)3.164 (4)139 (3)
O6—H6B···O4ii0.84 (1)2.09 (1)2.904 (4)165 (3)
O6—H6A···O5iii0.84 (1)1.97 (2)2.787 (4)164 (4)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C7H11O2)(C10H9N3)2]NO3·H2O
Mr614.96
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.4856 (3), 11.6116 (13), 13.4876 (13)
α, β, γ (°)107.526 (3), 106.016 (3), 99.706 (3)
V3)1447.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.32 × 0.26 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.761, 0.840
No. of measured, independent and
observed [I > 2σ(I)] reflections
8944, 6182, 5178
Rint0.014
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 1.03
No. of reflections6182
No. of parameters386
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.34

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—N11.9984 (18)Zn1—N62.0405 (19)
Zn1—N32.0192 (19)Zn1—O21.9803 (16)
Zn1—N42.166 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12···O6i0.71 (3)2.10 (3)2.806 (3)174 (3)
N11—H11A···O1ii0.70 (2)2.11 (3)2.810 (3)177 (3)
O6—H6B···N7ii0.836 (10)2.586 (14)3.406 (4)167 (3)
O6—H6B···O5ii0.836 (10)2.48 (3)3.164 (4)139 (3)
O6—H6B···O4ii0.836 (10)2.088 (12)2.904 (4)165 (3)
O6—H6A···O5iii0.838 (10)1.971 (15)2.787 (4)164 (4)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y, z+1.
 

Acknowledgements

The project was supported by the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, Educational Commission of Hubei Province (D20091703) and the Natural Science Foundation of Hubei Province (2008CDB038).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, H.-L., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, m1213–m1214.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1144-m1145
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds