organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(3,5-Di­bromo-2-hy­droxy­benzyl­­idene)-2-nitro­benzohydrazide methanol solvate

aKey Laboratory of Surface and Interface Science of Henan, School of Material & Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China, and bDepartment of Chemistry, Dalian Teacher College, Dalian 116000, People's Republic of China
*Correspondence e-mail: hengyu_qian@126.com

(Received 19 August 2009; accepted 19 August 2009; online 26 August 2009)

In the title compound, C14H9Br2N3O4·CH3OH, the Schiff base mol­ecule adopts an E geometry with respect to the C=N bond and the benzene rings are oriented at a dihedral angle of 45.3 (2)°. An intra­molecular O—H⋯N hydrogen bond helps to establish the conformation. In the crystal, the methanol solvent mol­ecule is linked to the Schiff base mol­ecule through an O—H⋯O hydrogen bond and inter­molecular N—H⋯O hydrogen bonds link the components to form layers parallel to the bc direction.

Related literature

For our previous work in this area, see: Yin, Qian et al. (2007[Yin, Z.-G., Qian, H.-Y., Jie, H. & Yu-Li, F. (2007). Acta Cryst. E63, o4406.]); Yin, Guo et al. (2007[Yin, Z., Guo, S., Qian, H. & Feng, Y. (2007). Acta Cryst. E63, o4407.]); Qian et al. (2009[Qian, H., Yin, Z. & Yao, Z. (2009). Acta Cryst. E65, o2155.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9Br2N3O4·CH4O

  • Mr = 475.10

  • Monoclinic, C 2/c

  • a = 18.981 (1) Å

  • b = 10.054 (2) Å

  • c = 19.746 (2) Å

  • β = 110.974 (2)°

  • V = 3518.6 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.64 mm−1

  • T = 298 K

  • 0.18 × 0.17 × 0.16 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.490, Tmax = 0.524

  • 10461 measured reflections

  • 3784 independent reflections

  • 2670 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.094

  • S = 1.02

  • 3784 reflections

  • 232 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.87 2.587 (3) 146
O5—H5⋯O2 0.82 1.94 2.735 (4) 165
N2—H2⋯O5i 0.893 (10) 1.958 (13) 2.840 (3) 169 (4)
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our ongoing studies of Schiff bases (Yin, Qian et al., 2007; Yin, Guo et al., 2007; Qian et al., 2009), we now report the synthesis and structure of the title compound, (I), (Fig. 1).

The Schiff base molecule adopts an E geometry with respect to the C=N bond, and there forms an intramolecular O—H···N hydrogen bond. The two benzene rings forms a dihedral angle of 45.3 (2)°. The dihedral angle between the O3/N3/O4 plane and the C9—C14 benzene ring is 37.1 (2)°. The methanol molecule is linked to the Schiff base molecule through the O—H···O hydrogen bond (Table 1). In the crystal structure, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1) to form layers parallel to the bc direction (Fig. 2).

Related literature top

For our previous work in this area, see: Yin, Qian et al. (2007); Yin, Guo et al. (2007); Qian et al. (2009).

Experimental top

2-Nitrobenzohydrazide (1 mmol, 0.181 g) and 3,5-dibromosalicylaldehyde (1 mmol, 0.280 g) were dissolved in anhydrous methanol (15 ml). The mixture was stirred for several minutes at room temperature. The product was isolated and recrystallized from methanol, colourless blocks of (I) were obtained after five days.

Refinement top

The imino H atom was located in a difference map and its positional parameters were refined with a fixed isotropic thermal parameter of 0.08 Å2. Other H atoms were positioned geometrically and refined as riding with C—H = 0.93 Å (aromatic) and 0.96 Å (methyl), O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C15 and O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonding is shown as dashed lines.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed along the b axis. Hydrogen bonding is shown in dashed lines.
(E)-N'-(3,5-Dibromo-2-hydroxybenzylidene)-2-nitrobenzohydrazide methanol solvate top
Crystal data top
C14H9Br2N3O4·CH4OF(000) = 1872
Mr = 475.10Dx = 1.794 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3081 reflections
a = 18.981 (1) Åθ = 2.7–25.0°
b = 10.054 (2) ŵ = 4.64 mm1
c = 19.746 (2) ÅT = 298 K
β = 110.974 (2)°Block, colourless
V = 3518.6 (8) Å30.18 × 0.17 × 0.16 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
3784 independent reflections
Radiation source: fine-focus sealed tube2670 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 26.9°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2420
Tmin = 0.490, Tmax = 0.524k = 1212
10461 measured reflectionsl = 1925
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0488P)2]
where P = (Fo2 + 2Fc2)/3
3784 reflections(Δ/σ)max < 0.001
232 parametersΔρmax = 0.36 e Å3
1 restraintΔρmin = 0.66 e Å3
Crystal data top
C14H9Br2N3O4·CH4OV = 3518.6 (8) Å3
Mr = 475.10Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.981 (1) ŵ = 4.64 mm1
b = 10.054 (2) ÅT = 298 K
c = 19.746 (2) Å0.18 × 0.17 × 0.16 mm
β = 110.974 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3784 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2670 reflections with I > 2σ(I)
Tmin = 0.490, Tmax = 0.524Rint = 0.041
10461 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.36 e Å3
3784 reflectionsΔρmin = 0.66 e Å3
232 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.07056 (2)0.15611 (4)0.382792 (19)0.05768 (14)
Br20.14655 (2)0.69346 (4)0.365230 (19)0.06064 (15)
O10.16461 (14)0.1962 (2)0.53986 (11)0.0507 (6)
H10.19010.20810.58280.076*
O20.26477 (13)0.1296 (2)0.74915 (11)0.0556 (6)
O30.42343 (15)0.0570 (3)0.78985 (13)0.0758 (8)
O40.43759 (18)0.0577 (3)0.88592 (14)0.0873 (9)
O50.12161 (14)0.0782 (2)0.74447 (13)0.0640 (7)
H50.16050.10030.73840.096*
N10.25316 (14)0.3244 (2)0.65150 (13)0.0403 (6)
N20.30067 (15)0.3314 (2)0.72253 (13)0.0421 (6)
N30.42213 (15)0.0446 (3)0.85052 (15)0.0526 (7)
C10.20261 (16)0.4236 (3)0.53512 (14)0.0357 (6)
C20.16312 (16)0.3082 (3)0.50269 (15)0.0369 (7)
C30.12163 (17)0.3109 (3)0.42817 (15)0.0391 (7)
C40.11755 (16)0.4237 (3)0.38783 (15)0.0429 (7)
H40.08930.42420.33840.052*
C50.15566 (17)0.5361 (3)0.42122 (15)0.0422 (7)
C60.19789 (16)0.5366 (3)0.49391 (15)0.0405 (7)
H60.22350.61330.51560.049*
C70.24867 (16)0.4255 (3)0.61175 (15)0.0390 (7)
H70.27530.50210.63200.047*
C80.30280 (16)0.2312 (3)0.76752 (16)0.0384 (7)
C90.35228 (16)0.2548 (3)0.84468 (15)0.0365 (7)
C100.40432 (17)0.1623 (3)0.88545 (15)0.0391 (7)
C110.4444 (2)0.1791 (3)0.95794 (16)0.0517 (9)
H110.47870.11500.98400.062*
C120.4331 (2)0.2913 (4)0.99107 (18)0.0608 (10)
H120.46010.30391.04020.073*
C130.3827 (2)0.3856 (4)0.95328 (18)0.0622 (10)
H130.37560.46210.97660.075*
C140.34200 (19)0.3670 (3)0.87998 (16)0.0494 (8)
H140.30740.43120.85440.059*
C150.0603 (2)0.1292 (4)0.6894 (2)0.0898 (15)
H15A0.01480.09340.69280.135*
H15B0.06340.10560.64350.135*
H15C0.05990.22430.69370.135*
H20.3299 (18)0.403 (2)0.7369 (19)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0549 (2)0.0620 (2)0.0483 (2)0.01531 (16)0.00887 (17)0.01568 (16)
Br20.0684 (3)0.0597 (2)0.0450 (2)0.00128 (17)0.00967 (18)0.02143 (16)
O10.0630 (16)0.0411 (12)0.0378 (12)0.0092 (10)0.0055 (11)0.0045 (10)
O20.0565 (15)0.0490 (13)0.0457 (13)0.0159 (11)0.0007 (11)0.0061 (10)
O30.095 (2)0.091 (2)0.0403 (15)0.0193 (16)0.0228 (14)0.0040 (13)
O40.131 (3)0.0544 (16)0.0632 (17)0.0358 (16)0.0182 (17)0.0122 (14)
O50.0643 (17)0.0531 (15)0.0629 (15)0.0092 (13)0.0086 (13)0.0013 (12)
N10.0377 (15)0.0457 (15)0.0276 (12)0.0015 (10)0.0005 (11)0.0039 (10)
N20.0436 (16)0.0422 (15)0.0268 (12)0.0059 (11)0.0041 (11)0.0071 (11)
N30.0528 (18)0.0576 (18)0.0380 (16)0.0095 (13)0.0051 (13)0.0014 (13)
C10.0332 (17)0.0404 (16)0.0293 (14)0.0005 (12)0.0062 (12)0.0007 (12)
C20.0336 (17)0.0408 (16)0.0339 (15)0.0000 (12)0.0091 (13)0.0012 (13)
C30.0345 (17)0.0461 (17)0.0333 (16)0.0041 (12)0.0080 (13)0.0061 (13)
C40.0366 (18)0.061 (2)0.0263 (15)0.0010 (14)0.0054 (13)0.0032 (14)
C50.0431 (19)0.0491 (19)0.0317 (15)0.0051 (13)0.0100 (13)0.0102 (13)
C60.0414 (18)0.0387 (17)0.0362 (16)0.0008 (13)0.0075 (13)0.0038 (13)
C70.0398 (18)0.0382 (16)0.0313 (15)0.0013 (12)0.0034 (13)0.0032 (13)
C80.0325 (17)0.0425 (17)0.0343 (15)0.0014 (13)0.0049 (13)0.0040 (13)
C90.0386 (17)0.0378 (15)0.0308 (14)0.0031 (12)0.0097 (13)0.0061 (12)
C100.0412 (19)0.0422 (17)0.0300 (15)0.0001 (12)0.0078 (13)0.0036 (12)
C110.055 (2)0.058 (2)0.0309 (17)0.0027 (15)0.0018 (15)0.0105 (15)
C120.081 (3)0.064 (2)0.0268 (16)0.0072 (19)0.0065 (17)0.0010 (16)
C130.093 (3)0.051 (2)0.041 (2)0.0017 (19)0.022 (2)0.0061 (16)
C140.059 (2)0.0438 (19)0.0419 (19)0.0029 (15)0.0138 (17)0.0044 (14)
C150.080 (3)0.075 (3)0.081 (3)0.018 (2)0.013 (3)0.005 (2)
Geometric parameters (Å, º) top
Br1—C31.882 (3)C4—C51.377 (4)
Br2—C51.902 (3)C4—H40.9300
O1—C21.338 (3)C5—C61.371 (4)
O1—H10.8200C6—H60.9300
O2—C81.228 (4)C7—H70.9300
O3—N31.214 (3)C8—C91.495 (4)
O4—N31.218 (4)C9—C141.376 (5)
O5—C151.376 (4)C9—C101.385 (4)
O5—H50.8200C10—C111.370 (4)
N1—C71.269 (4)C11—C121.359 (5)
N1—N21.371 (3)C11—H110.9300
N2—C81.335 (4)C12—C131.364 (5)
N2—H20.893 (10)C12—H120.9300
N3—C101.469 (4)C13—C141.388 (4)
C1—C61.382 (4)C13—H130.9300
C1—C21.405 (4)C14—H140.9300
C1—C71.452 (4)C15—H15A0.9600
C2—C31.399 (4)C15—H15B0.9600
C3—C41.372 (4)C15—H15C0.9600
C2—O1—H1109.5C1—C7—H7119.5
C15—O5—H5109.5O2—C8—N2123.8 (3)
C7—N1—N2117.7 (2)O2—C8—C9121.4 (3)
C8—N2—N1119.6 (2)N2—C8—C9114.6 (3)
C8—N2—H2122 (2)C14—C9—C10117.2 (3)
N1—N2—H2118 (2)C14—C9—C8119.7 (3)
O3—N3—O4124.6 (3)C10—C9—C8122.9 (3)
O3—N3—C10118.0 (3)C11—C10—C9122.6 (3)
O4—N3—C10117.3 (3)C11—C10—N3117.0 (3)
C6—C1—C2120.0 (3)C9—C10—N3120.3 (3)
C6—C1—C7119.4 (3)C12—C11—C10118.7 (3)
C2—C1—C7120.7 (3)C12—C11—H11120.6
O1—C2—C3119.1 (3)C10—C11—H11120.6
O1—C2—C1122.8 (2)C11—C12—C13121.0 (3)
C3—C2—C1118.1 (3)C11—C12—H12119.5
C4—C3—C2121.4 (3)C13—C12—H12119.5
C4—C3—Br1119.6 (2)C12—C13—C14119.8 (3)
C2—C3—Br1119.0 (2)C12—C13—H13120.1
C3—C4—C5119.3 (3)C14—C13—H13120.1
C3—C4—H4120.3C9—C14—C13120.8 (3)
C5—C4—H4120.3C9—C14—H14119.6
C6—C5—C4121.0 (3)C13—C14—H14119.6
C6—C5—Br2120.2 (2)O5—C15—H15A109.5
C4—C5—Br2118.8 (2)O5—C15—H15B109.5
C5—C6—C1120.3 (3)H15A—C15—H15B109.5
C5—C6—H6119.9O5—C15—H15C109.5
C1—C6—H6119.9H15A—C15—H15C109.5
N1—C7—C1121.1 (3)H15B—C15—H15C109.5
N1—C7—H7119.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.587 (3)146
O5—H5···O20.821.942.735 (4)165
N2—H2···O5i0.89 (1)1.96 (1)2.840 (3)169 (4)
Symmetry code: (i) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H9Br2N3O4·CH4O
Mr475.10
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)18.981 (1), 10.054 (2), 19.746 (2)
β (°) 110.974 (2)
V3)3518.6 (8)
Z8
Radiation typeMo Kα
µ (mm1)4.64
Crystal size (mm)0.18 × 0.17 × 0.16
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.490, 0.524
No. of measured, independent and
observed [I > 2σ(I)] reflections
10461, 3784, 2670
Rint0.041
(sin θ/λ)max1)0.637
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 1.02
No. of reflections3784
No. of parameters232
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.66

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.587 (3)146
O5—H5···O20.821.942.735 (4)165
N2—H2···O5i0.893 (10)1.958 (13)2.840 (3)169 (4)
Symmetry code: (i) x+1/2, y+1/2, z+3/2.
 

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationQian, H., Yin, Z. & Yao, Z. (2009). Acta Cryst. E65, o2155.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYin, Z., Guo, S., Qian, H. & Feng, Y. (2007). Acta Cryst. E63, o4407.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYin, Z.-G., Qian, H.-Y., Jie, H. & Yu-Li, F. (2007). Acta Cryst. E63, o4406.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds