organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(5-Chloro-2-hy­droxy­benzyl­­idene)-2-nitro­benzohydrazide

aKey Laboratory of Surface and Interface Science of Henan, School of Material & Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China, and bDepartment of Chemistry, Dalian Teacher College, Dalian 116000, People's Republic of China
*Correspondence e-mail: hengyu_qian@126.com

(Received 19 August 2009; accepted 19 August 2009; online 26 August 2009)

In the title Schiff base compound, C14H10ClN3O4, the mol­ecule adopts an E geometry with respect to the C=N bond and an intra­molecular O—H⋯N hydrogen bond is present. The benzene rings form a dihedral angle of 73.4 (2)°. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds occur.

Related literature

For a related structure and background, see: Qian & Qu (2009[Qian, H.-Y. & Qu, D.-P. (2009). Acta Cryst. E65, o2237.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10ClN3O4

  • Mr = 319.70

  • Triclinic, [P \overline 1]

  • a = 7.353 (1) Å

  • b = 10.005 (2) Å

  • c = 10.273 (2) Å

  • α = 93.393 (3)°

  • β = 108.144 (3)°

  • γ = 98.886 (4)°

  • V = 704.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.936, Tmax = 0.944

  • 4324 measured reflections

  • 3004 independent reflections

  • 2237 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.122

  • S = 1.02

  • 3004 reflections

  • 203 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.94 2.657 (2) 145
N2—H2⋯O2i 0.902 (10) 1.966 (11) 2.863 (2) 173 (3)
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our ongoing studies of Schiff bases (Qian & Qu, 2009), we now report the synthsis and structure of the title compound, (I), (Fig. 1).

In the title compound, the Schiff base molecule adopts an E geometry with respect to the CN bond, as shown in Fig. 1. There forms an intramolecular O—H···N hydrogen bond. The two benzene rings forms a dihedral angle of 73.4 (2)°. The dihedral angle between the O3/N3/O4 plane and the C9—C14 benzene ring is 23.2 (2)°. In the crystal structure, the adjacent two Schiff base molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1) to form a dimer (Fig. 2).

Related literature top

For a related structure and background, see: Qian & Qu (2009).

Experimental top

2-Nitrobenzohydrazide (1 mmol, 0.181 g) and 5-chlorosalicylaldehyde (1 mmol, 0.156 g) were dissolved in anhydrous methanol (15 ml). The mixture was stirred for several minutes at room temperature. The product was isolated and recrystallized from methanol, colorless blocks of (I) were obtained after a week.

Refinement top

The imino H atom was located in a difference map and its positional parameters were refined with a fixed isotropic thermal parameter of 0.08 Å2. Other H atoms were positioned geometrically and refined as riding with C—H = 0.93 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonding is shown by dashed lines.
[Figure 2] Fig. 2. The molecular packing of (I), viewed along the b axis. Hydrogen bonding is shown in dashed lines.
(E)-N'-(5-Chloro-2-hydroxybenzylidene)-2-nitrobenzohydrazide top
Crystal data top
C14H10ClN3O4Z = 2
Mr = 319.70F(000) = 328
Triclinic, P1Dx = 1.506 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.353 (1) ÅCell parameters from 1356 reflections
b = 10.005 (2) Åθ = 2.4–25.6°
c = 10.273 (2) ŵ = 0.29 mm1
α = 93.393 (3)°T = 298 K
β = 108.144 (3)°Block, colorless
γ = 98.886 (4)°0.23 × 0.20 × 0.20 mm
V = 704.9 (2) Å3
Data collection top
Bruker SMART CCD
diffractometer
3004 independent reflections
Radiation source: fine-focus sealed tube2237 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.936, Tmax = 0.944k = 912
4324 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.3008P]
where P = (Fo2 + 2Fc2)/3
3004 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.30 e Å3
1 restraintΔρmin = 0.44 e Å3
Crystal data top
C14H10ClN3O4γ = 98.886 (4)°
Mr = 319.70V = 704.9 (2) Å3
Triclinic, P1Z = 2
a = 7.353 (1) ÅMo Kα radiation
b = 10.005 (2) ŵ = 0.29 mm1
c = 10.273 (2) ÅT = 298 K
α = 93.393 (3)°0.23 × 0.20 × 0.20 mm
β = 108.144 (3)°
Data collection top
Bruker SMART CCD
diffractometer
3004 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2237 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.944Rint = 0.013
4324 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.30 e Å3
3004 reflectionsΔρmin = 0.44 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.54671 (11)0.14057 (9)0.86494 (8)0.0837 (3)
N10.1470 (2)0.23302 (15)0.43169 (16)0.0372 (4)
N20.0876 (3)0.35676 (17)0.43461 (17)0.0422 (4)
N30.3643 (3)0.53956 (19)0.2180 (2)0.0510 (5)
O10.1405 (2)0.01201 (16)0.31361 (15)0.0534 (4)
H10.12020.06630.31500.080*
O20.0068 (3)0.53476 (15)0.32927 (15)0.0574 (5)
O30.4103 (3)0.54714 (19)0.34314 (18)0.0735 (5)
O40.4446 (3)0.6178 (2)0.1575 (2)0.0898 (7)
C10.2638 (3)0.05581 (19)0.5597 (2)0.0383 (4)
C20.2290 (3)0.0378 (2)0.4431 (2)0.0428 (5)
C30.2854 (3)0.1637 (2)0.4603 (3)0.0543 (6)
H30.25850.22700.38370.065*
C40.3798 (4)0.1956 (2)0.5886 (3)0.0615 (7)
H40.41850.27960.59900.074*
C50.4176 (3)0.1023 (3)0.7029 (3)0.0551 (6)
C60.3583 (3)0.0212 (2)0.6893 (2)0.0463 (5)
H60.38160.08200.76730.056*
C70.2062 (3)0.18811 (19)0.5484 (2)0.0377 (4)
H70.21250.24120.62770.045*
C80.0525 (3)0.4269 (2)0.3254 (2)0.0404 (5)
C90.0740 (3)0.36796 (19)0.19420 (19)0.0369 (4)
C100.2071 (3)0.43017 (19)0.13654 (19)0.0374 (4)
C110.2035 (3)0.3885 (2)0.0051 (2)0.0461 (5)
H110.29190.43440.03230.055*
C120.0674 (4)0.2784 (2)0.0695 (2)0.0529 (6)
H120.06380.24880.15800.063*
C130.0624 (4)0.2123 (2)0.0142 (2)0.0573 (6)
H130.15260.13660.06430.069*
C140.0606 (4)0.2574 (2)0.1164 (2)0.0516 (6)
H140.15160.21260.15220.062*
H20.072 (4)0.392 (3)0.5126 (18)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0709 (5)0.0970 (6)0.0952 (6)0.0360 (4)0.0260 (4)0.0547 (5)
N10.0494 (10)0.0296 (8)0.0381 (9)0.0096 (7)0.0212 (8)0.0020 (7)
N20.0654 (11)0.0356 (9)0.0368 (9)0.0178 (8)0.0281 (8)0.0055 (7)
N30.0529 (11)0.0467 (11)0.0539 (12)0.0027 (9)0.0224 (9)0.0015 (9)
O10.0639 (10)0.0449 (9)0.0481 (9)0.0110 (8)0.0156 (8)0.0083 (7)
O20.1017 (13)0.0428 (9)0.0476 (9)0.0330 (9)0.0414 (9)0.0136 (7)
O30.0818 (13)0.0720 (12)0.0495 (10)0.0114 (10)0.0125 (9)0.0109 (9)
O40.0946 (15)0.0820 (14)0.0882 (14)0.0283 (12)0.0452 (12)0.0039 (11)
C10.0381 (10)0.0339 (10)0.0461 (11)0.0053 (8)0.0189 (9)0.0053 (8)
C20.0377 (11)0.0351 (10)0.0571 (13)0.0023 (8)0.0205 (10)0.0005 (9)
C30.0524 (13)0.0341 (11)0.0804 (17)0.0077 (10)0.0291 (13)0.0022 (11)
C40.0554 (14)0.0390 (12)0.103 (2)0.0170 (11)0.0389 (15)0.0186 (13)
C50.0443 (12)0.0553 (14)0.0752 (16)0.0167 (10)0.0253 (12)0.0291 (12)
C60.0459 (12)0.0451 (12)0.0527 (12)0.0102 (9)0.0207 (10)0.0112 (10)
C70.0441 (11)0.0336 (10)0.0386 (10)0.0053 (8)0.0194 (9)0.0001 (8)
C80.0553 (12)0.0350 (10)0.0369 (10)0.0098 (9)0.0227 (9)0.0046 (8)
C90.0488 (11)0.0337 (10)0.0322 (9)0.0115 (8)0.0168 (8)0.0035 (8)
C100.0444 (11)0.0355 (10)0.0349 (10)0.0108 (8)0.0150 (9)0.0034 (8)
C110.0558 (13)0.0521 (13)0.0388 (11)0.0154 (10)0.0242 (10)0.0080 (9)
C120.0706 (16)0.0597 (14)0.0300 (10)0.0190 (12)0.0163 (10)0.0004 (10)
C130.0663 (15)0.0525 (14)0.0424 (12)0.0003 (11)0.0103 (11)0.0083 (10)
C140.0580 (14)0.0488 (13)0.0476 (12)0.0015 (10)0.0229 (11)0.0004 (10)
Geometric parameters (Å, º) top
Cl1—C51.738 (3)C4—C51.383 (4)
N1—C71.276 (2)C4—H40.9300
N1—N21.377 (2)C5—C61.373 (3)
N2—C81.336 (2)C6—H60.9300
N2—H20.902 (10)C7—H70.9300
N3—O31.217 (2)C8—C91.503 (2)
N3—O41.221 (2)C9—C141.380 (3)
N3—C101.460 (3)C9—C101.383 (3)
O1—C21.347 (3)C10—C111.380 (3)
O1—H10.8200C11—C121.373 (3)
O2—C81.228 (2)C11—H110.9300
C1—C61.389 (3)C12—C131.364 (3)
C1—C21.407 (3)C12—H120.9300
C1—C71.451 (3)C13—C141.385 (3)
C2—C31.390 (3)C13—H130.9300
C3—C41.367 (4)C14—H140.9300
C3—H30.9300
C7—N1—N2115.34 (15)C1—C6—H6119.8
C8—N2—N1122.02 (15)N1—C7—C1121.21 (17)
C8—N2—H2118.8 (18)N1—C7—H7119.4
N1—N2—H2119.2 (18)C1—C7—H7119.4
O3—N3—O4123.3 (2)O2—C8—N2120.66 (17)
O3—N3—C10118.26 (18)O2—C8—C9120.00 (17)
O4—N3—C10118.47 (19)N2—C8—C9119.22 (17)
C2—O1—H1109.5C14—C9—C10117.09 (18)
C6—C1—C2118.97 (19)C14—C9—C8119.38 (18)
C6—C1—C7119.03 (18)C10—C9—C8122.92 (18)
C2—C1—C7121.99 (18)C11—C10—C9122.36 (19)
O1—C2—C3117.59 (19)C11—C10—N3117.72 (18)
O1—C2—C1122.93 (18)C9—C10—N3119.85 (17)
C3—C2—C1119.5 (2)C12—C11—C10119.0 (2)
C4—C3—C2120.7 (2)C12—C11—H11120.5
C4—C3—H3119.6C10—C11—H11120.5
C2—C3—H3119.6C13—C12—C11120.11 (19)
C3—C4—C5119.7 (2)C13—C12—H12119.9
C3—C4—H4120.1C11—C12—H12119.9
C5—C4—H4120.1C12—C13—C14120.3 (2)
C6—C5—C4120.7 (2)C12—C13—H13119.9
C6—C5—Cl1119.7 (2)C14—C13—H13119.9
C4—C5—Cl1119.51 (19)C9—C14—C13121.1 (2)
C5—C6—C1120.3 (2)C9—C14—H14119.4
C5—C6—H6119.8C13—C14—H14119.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.942.657 (2)145
N2—H2···O2i0.90 (1)1.97 (1)2.863 (2)173 (3)
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H10ClN3O4
Mr319.70
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.353 (1), 10.005 (2), 10.273 (2)
α, β, γ (°)93.393 (3), 108.144 (3), 98.886 (4)
V3)704.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.23 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.936, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
4324, 3004, 2237
Rint0.013
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.122, 1.02
No. of reflections3004
No. of parameters203
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.44

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.942.657 (2)145
N2—H2···O2i0.902 (10)1.966 (11)2.863 (2)173 (3)
Symmetry code: (i) x, y+1, z+1.
 

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationQian, H.-Y. & Qu, D.-P. (2009). Acta Cryst. E65, o2237.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds