organic compounds
4-Hydroxy-3-methoxy-5-nitroacetophenone (5-nitroapocynin)
aDepartment of Environmental Toxicology and the Health Research Center, Southern University and A&M College, Baton Rouge, LA 70813, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: rao_uppu@subr.edu
The title molecule, C9H9NO5, is close to planar (r.m.s. deviation from the mean plane of the non-H atoms = 0.058 Å). The OH group forms a bifurcated O—H⋯(O,O) hydrogen bond, with the intramolecular component to a nitro O atom and the intermolecular component to a keto O atom, the latter resulting in chains along [20]. A C—H⋯O interaction reinforces the packing.
Related literature
For medicinal background, see: Gernapudi et al. (2009); Geronikaki & Gavalas (2006); Hayashi et al. (2005); Heumuller et al. (2008); Matés et al. (2009); Muijsers et al. (2001); Sawa et al. (2000); Schopfer et al. (2003); Stefanska & Pawliczak (2008); Stolk et al. (1994); Tajik et al. (2009); Thomas et al. (2002); Touyz (2008); Ximenes et al. (2007).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: COLLECT (Nonius, 2000); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S160053680903390X/hb5058sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680903390X/hb5058Isup2.hkl
Chemicals and solvents used in the synthesis and recrystallization were obtained as follows: apocynin, [bmim] [HSO4], and sodium nitrate from Sigma (St. Louis, MO) and acetonitrile and hexane from Mallinckrodt (Phillipsburg, NJ). Water used was ultrapure with resistance ≥18.2 MΩ/cm.
Nitration of apocynin (Fig. 3) was performed according to the method of Tajik and colleagues (Tajik et al., 2009) with some modifications. Briefly, to 3.32 g (20 mmol) of apocynin in 80 ml of CH3CN was added 5.72 g (20 mmol) of [bmim] [HSO4] and 1.7 g (20 mmol) of NaNO3, and the mixture was stirred at room temperature. Aliquots (0. 1 ml each) of the reaction mixture, drawn at various time points, were diluted 100–500-fold with 0.1 N NaOH and measured photometrically at 410 nm. When the absorbance at 410 nm reached a maximum (i.e., typically after 24 h), the reaction mixture was filtered and the filtrate evaporated under low pressure (200 mm H g) with mild heating (50°C or slightly higher). The thick brown liquid-like residue was extracted with hot hexane and recrystallized twice. The compound resolved as a single peak (retention time = 11.507 min) on Varian VF-5MS
(30-m length, 0.25-mm internal diameter, 0.25-µm film thickness) with helium as the at a flow of 1 ml. min-1 (injection port, 250°C; oven, 60°C for 5 min (isothermal); 20°C min-1 up to 230°C (ramp), and held at 230 °C for 18.5 min (isothermal); split, 25:1). The ion of the peak eluting at 11.507 min showed a molecular ion [M]+ at m/z 211 (31%; relative to the base peak) and other fragments at m/z values of 196 (100%; base peak; [M—CH3]+), 150 (23%; [M—CH3NO2]+.), 122 (11%; [M—C2H3NO3]+.) and 79 (6%; [M—C4H6NO4]+.) (Fig. 4). Single crystals of (I) in the form of golden-yellow needles were grown from methanol.H atoms on C were located from difference maps, and their coordinates were refined, except for those on methyl groups, which were idealized with C—H distance 0.98 Å. A torsional parameter was refined for each methyl group. Uiso for H were assigned as 1.2 times Ueq of the attached atoms (1.5 for methyl). The top ten difference map peaks lie on bonds, the largest at the midpoint of C3—C4, 0.71 Å from C4.
Data collection: COLLECT (Nonius, 2000); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C9H9NO5 | F(000) = 440 |
Mr = 211.17 | Dx = 1.566 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 4183 reflections |
a = 6.6598 (10) Å | θ = 2.5–36.3° |
b = 16.815 (2) Å | µ = 0.13 mm−1 |
c = 8.0491 (11) Å | T = 90 K |
β = 96.485 (7)° | Needle fragment, golden yellow |
V = 895.6 (2) Å3 | 0.40 × 0.30 × 0.15 mm |
Z = 4 |
Nonius KappaCCD diffractometer with Oxford Cryostream | 3226 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.025 |
Graphite monochromator | θmax = 36.3°, θmin = 2.8° |
ω and ϕ scans | h = −10→10 |
22479 measured reflections | k = −28→26 |
4255 independent reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.120 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0585P)2 + 0.2019P] where P = (Fo2 + 2Fc2)/3 |
4255 reflections | (Δ/σ)max < 0.001 |
147 parameters | Δρmax = 0.62 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
C9H9NO5 | V = 895.6 (2) Å3 |
Mr = 211.17 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 6.6598 (10) Å | µ = 0.13 mm−1 |
b = 16.815 (2) Å | T = 90 K |
c = 8.0491 (11) Å | 0.40 × 0.30 × 0.15 mm |
β = 96.485 (7)° |
Nonius KappaCCD diffractometer with Oxford Cryostream | 3226 reflections with I > 2σ(I) |
22479 measured reflections | Rint = 0.025 |
4255 independent reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.120 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.62 e Å−3 |
4255 reflections | Δρmin = −0.32 e Å−3 |
147 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.70859 (9) | 0.17341 (4) | 0.57565 (8) | 0.01682 (13) | |
H1O | 0.805 (2) | 0.1965 (9) | 0.5277 (18) | 0.025* | |
O2 | 0.40131 (9) | 0.12263 (4) | 0.70993 (9) | 0.01727 (13) | |
O3 | 0.03482 (9) | 0.36827 (4) | 0.88871 (9) | 0.01850 (14) | |
O4 | 0.90549 (10) | 0.29612 (4) | 0.48481 (9) | 0.02148 (15) | |
O5 | 0.81333 (10) | 0.41618 (4) | 0.53665 (9) | 0.02082 (14) | |
N1 | 0.79036 (11) | 0.34401 (4) | 0.54412 (9) | 0.01483 (13) | |
C1 | 0.32973 (11) | 0.33924 (5) | 0.76315 (10) | 0.01274 (14) | |
C2 | 0.29375 (12) | 0.25663 (5) | 0.77082 (10) | 0.01340 (14) | |
H2 | 0.1831 (18) | 0.2368 (8) | 0.8237 (15) | 0.016* | |
C3 | 0.42194 (12) | 0.20294 (5) | 0.70775 (10) | 0.01312 (14) | |
C4 | 0.59325 (12) | 0.22979 (5) | 0.63245 (10) | 0.01309 (14) | |
C5 | 0.62316 (11) | 0.31230 (5) | 0.62424 (10) | 0.01315 (14) | |
C6 | 0.49407 (12) | 0.36689 (5) | 0.68977 (10) | 0.01365 (14) | |
H6 | 0.5227 (18) | 0.4219 (8) | 0.6815 (15) | 0.016* | |
C7 | 0.22582 (13) | 0.09248 (5) | 0.77728 (12) | 0.01791 (16) | |
H7A | 0.2325 | 0.1066 | 0.8959 | 0.027* | |
H7B | 0.2211 | 0.0345 | 0.7654 | 0.027* | |
H7C | 0.1041 | 0.1158 | 0.7165 | 0.027* | |
C8 | 0.18762 (12) | 0.39440 (5) | 0.83692 (10) | 0.01404 (14) | |
C9 | 0.23465 (14) | 0.48181 (5) | 0.84358 (12) | 0.01944 (17) | |
H9A | 0.2105 | 0.5043 | 0.7308 | 0.029* | |
H9B | 0.3766 | 0.4897 | 0.8876 | 0.029* | |
H9C | 0.1476 | 0.5084 | 0.9167 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0147 (3) | 0.0152 (3) | 0.0220 (3) | 0.0018 (2) | 0.0084 (2) | −0.0013 (2) |
O2 | 0.0163 (3) | 0.0115 (3) | 0.0255 (3) | −0.0003 (2) | 0.0087 (2) | 0.0008 (2) |
O3 | 0.0156 (3) | 0.0183 (3) | 0.0233 (3) | −0.0003 (2) | 0.0094 (2) | −0.0002 (2) |
O4 | 0.0179 (3) | 0.0203 (3) | 0.0287 (3) | −0.0003 (2) | 0.0136 (3) | −0.0035 (3) |
O5 | 0.0232 (3) | 0.0155 (3) | 0.0257 (3) | −0.0043 (2) | 0.0110 (3) | 0.0008 (2) |
N1 | 0.0137 (3) | 0.0163 (3) | 0.0152 (3) | −0.0018 (2) | 0.0047 (2) | −0.0004 (2) |
C1 | 0.0120 (3) | 0.0131 (3) | 0.0137 (3) | 0.0005 (2) | 0.0036 (2) | 0.0006 (2) |
C2 | 0.0123 (3) | 0.0135 (3) | 0.0150 (3) | −0.0002 (2) | 0.0042 (2) | 0.0007 (3) |
C3 | 0.0124 (3) | 0.0126 (3) | 0.0148 (3) | −0.0004 (2) | 0.0033 (2) | 0.0009 (3) |
C4 | 0.0118 (3) | 0.0144 (3) | 0.0135 (3) | 0.0008 (2) | 0.0033 (2) | −0.0004 (3) |
C5 | 0.0111 (3) | 0.0152 (3) | 0.0139 (3) | −0.0015 (2) | 0.0044 (2) | 0.0002 (3) |
C6 | 0.0133 (3) | 0.0135 (3) | 0.0147 (3) | −0.0003 (2) | 0.0038 (2) | 0.0005 (3) |
C7 | 0.0172 (3) | 0.0152 (3) | 0.0223 (4) | −0.0020 (3) | 0.0065 (3) | 0.0023 (3) |
C8 | 0.0136 (3) | 0.0146 (3) | 0.0145 (3) | 0.0013 (2) | 0.0039 (3) | 0.0012 (3) |
C9 | 0.0201 (4) | 0.0134 (3) | 0.0264 (4) | 0.0013 (3) | 0.0095 (3) | 0.0010 (3) |
O1—C4 | 1.3330 (10) | C2—H2 | 0.952 (12) |
O1—H1O | 0.878 (14) | C3—C4 | 1.4245 (11) |
O2—C3 | 1.3576 (10) | C4—C5 | 1.4043 (12) |
O2—C7 | 1.4352 (11) | C5—C6 | 1.4008 (11) |
O3—C8 | 1.2240 (10) | C6—H6 | 0.948 (13) |
O4—N1 | 1.2438 (10) | C7—H7A | 0.9800 |
O5—N1 | 1.2255 (10) | C7—H7B | 0.9800 |
N1—C5 | 1.4499 (10) | C7—H7C | 0.9800 |
C1—C6 | 1.3817 (11) | C8—C9 | 1.5026 (12) |
C1—C2 | 1.4120 (12) | C9—H9A | 0.9800 |
C1—C8 | 1.4952 (11) | C9—H9B | 0.9800 |
C2—C3 | 1.3783 (11) | C9—H9C | 0.9800 |
C4—O1—H1O | 108.5 (10) | C4—C5—N1 | 120.29 (7) |
C3—O2—C7 | 116.37 (7) | C1—C6—C5 | 119.34 (8) |
O5—N1—O4 | 122.44 (7) | C1—C6—H6 | 122.2 (7) |
O5—N1—C5 | 119.50 (7) | C5—C6—H6 | 118.4 (7) |
O4—N1—C5 | 118.06 (7) | O2—C7—H7A | 109.5 |
C6—C1—C2 | 119.75 (7) | O2—C7—H7B | 109.5 |
C6—C1—C8 | 121.91 (7) | H7A—C7—H7B | 109.5 |
C2—C1—C8 | 118.34 (7) | O2—C7—H7C | 109.5 |
C3—C2—C1 | 120.87 (7) | H7A—C7—H7C | 109.5 |
C3—C2—H2 | 118.5 (8) | H7B—C7—H7C | 109.5 |
C1—C2—H2 | 120.6 (8) | O3—C8—C1 | 120.03 (8) |
O2—C3—C2 | 125.38 (7) | O3—C8—C9 | 121.13 (8) |
O2—C3—C4 | 114.07 (7) | C1—C8—C9 | 118.83 (7) |
C2—C3—C4 | 120.55 (7) | C8—C9—H9A | 109.5 |
O1—C4—C5 | 126.60 (7) | C8—C9—H9B | 109.5 |
O1—C4—C3 | 116.15 (7) | H9A—C9—H9B | 109.5 |
C5—C4—C3 | 117.24 (7) | C8—C9—H9C | 109.5 |
C6—C5—C4 | 122.23 (7) | H9A—C9—H9C | 109.5 |
C6—C5—N1 | 117.47 (7) | H9B—C9—H9C | 109.5 |
C6—C1—C2—C3 | 0.78 (12) | C3—C4—C5—N1 | −177.86 (7) |
C8—C1—C2—C3 | −178.74 (7) | O5—N1—C5—C6 | 0.14 (12) |
C7—O2—C3—C2 | 2.89 (12) | O4—N1—C5—C6 | −179.69 (7) |
C7—O2—C3—C4 | −177.15 (7) | O5—N1—C5—C4 | 179.34 (8) |
C1—C2—C3—O2 | 179.60 (8) | O4—N1—C5—C4 | −0.48 (12) |
C1—C2—C3—C4 | −0.36 (12) | C2—C1—C6—C5 | −0.15 (12) |
O2—C3—C4—O1 | −0.18 (10) | C8—C1—C6—C5 | 179.35 (7) |
C2—C3—C4—O1 | 179.78 (7) | C4—C5—C6—C1 | −0.92 (12) |
O2—C3—C4—C5 | 179.38 (7) | N1—C5—C6—C1 | 178.27 (7) |
C2—C3—C4—C5 | −0.66 (12) | C6—C1—C8—O3 | 174.11 (8) |
O1—C4—C5—C6 | −179.19 (8) | C2—C1—C8—O3 | −6.38 (12) |
C3—C4—C5—C6 | 1.31 (12) | C6—C1—C8—C9 | −5.00 (12) |
O1—C4—C5—N1 | 1.65 (13) | C2—C1—C8—C9 | 174.51 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O4 | 0.878 (14) | 1.850 (15) | 2.5939 (10) | 141.3 (13) |
O1—H1O···O3i | 0.878 (14) | 2.271 (14) | 2.8660 (9) | 124.9 (12) |
C2—H2···O4ii | 0.952 (12) | 2.439 (12) | 3.3831 (12) | 171.4 (11) |
Symmetry codes: (i) x+1, −y+1/2, z−1/2; (ii) x−1, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C9H9NO5 |
Mr | 211.17 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 90 |
a, b, c (Å) | 6.6598 (10), 16.815 (2), 8.0491 (11) |
β (°) | 96.485 (7) |
V (Å3) | 895.6 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.40 × 0.30 × 0.15 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer with Oxford Cryostream |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 22479, 4255, 3226 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.833 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.120, 1.04 |
No. of reflections | 4255 |
No. of parameters | 147 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.62, −0.32 |
Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O4 | 0.878 (14) | 1.850 (15) | 2.5939 (10) | 141.3 (13) |
O1—H1O···O3i | 0.878 (14) | 2.271 (14) | 2.8660 (9) | 124.9 (12) |
C2—H2···O4ii | 0.952 (12) | 2.439 (12) | 3.3831 (12) | 171.4 (11) |
Symmetry codes: (i) x+1, −y+1/2, z−1/2; (ii) x−1, −y+1/2, z+1/2. |
Acknowledgements
We thank Dr Michelle Claville for helpful discussions, Ms Bianca King for help with the melting-point determination and Mr Joseph Allison for help with the GC–MS–EI analysis. This publication was made possible by National Science Foundation (NSF) grant HRD 0450375 (from the HBCU-RISE program) and US Department of Education grant PO31B040030 (Title III, Part B - Strengthening Historically Black Graduate Institutions). The LBRN summer fellowship [provided as part of National Institutes of Health (NIH) grant P20 RR16456] to Sainath Babu is gratefully acknowledged. The contents of this publication are solely the responsibility of authors and do not necessarily represent the official views of the NSF, NIH or the US Department of Education. The purchase of the diffractometer was made possible by grant No. LEQSF (1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gernapudi, R., Babu, S., Raghavamenon, A. C. & Uppu, R. M. (2009). FASEB J. 23, LB397. Google Scholar
Geronikaki, A. A. & Gavalas, A. M. (2006). Comb. Chem. High Throughput Screen. 9, 425–442. Web of Science CrossRef PubMed CAS Google Scholar
Hayashi, T., Juliet, P. A., Kano-Hayashi, H., Tsunekawa, T., Dingqunfang, D., Sumi, D., Matsui-Hirai, H., Fukatsu, A. & Iguchi, A. (2005). Diabetes Obes. Metab. 7, 334–343. Web of Science CrossRef PubMed CAS Google Scholar
Heumuller, S., Wind, S., Barbosa-Sicard, E., Schmidt, H. H., Busse, R., Schroder, K. & Brandes, R. P. (2008). Hypertension, 51, 211–217. Web of Science CrossRef PubMed Google Scholar
Matés, J. M., Segura, J. A., Alonso, F. J. & Mαrquez, J. (2009). Mini Rev. Med. Chem. Aug 1. [Epub ahead of print]. Google Scholar
Muijsers, R. B. R., va Ark, I. I., Folkerts, G., Koster, A. S., van Oosterhout, A. J., Postma, D. S. & Nijkamp, F. P. (2001). Br. J. Pharmacol. 134, 434–440. Web of Science CrossRef PubMed CAS Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sawa, T., Akaike, T. & Maeda, H. (2000). J. Biol. Chem. 275, 32467–32474. Web of Science CrossRef PubMed CAS Google Scholar
Schopfer, F. J., Baker, P. R. S. & Freeman, B. A. (2003). Trends Biochem. Sci. 28, 646–654. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stefanska, J. & Pawliczak, R. (2008). Mediators Inflamm. doi: 10.1155/2008/106507. Google Scholar
Stolk, J., Hiltermann, T. J., Dijkman, J. H. & Verhoeven, A. J. (1994). Am. J. Respir. Cell Mol. Biol. 11, 95–102. CrossRef CAS PubMed Web of Science Google Scholar
Tajik, H., Niknam, & Parsa, F. (2009). J. Iran. Chem. Soc, 6, 159–164. Google Scholar
Thomas, D. D., Espey, M. G., Vitek, M. P., Miranda, K. M. & Wink, D. A. (2002). Proc. Natl Acad. Sci. USA, 99, 12691–12696. Web of Science CrossRef PubMed CAS Google Scholar
Touyz, R. M. (2008). Hypertension, 51, 172–174. Web of Science CrossRef PubMed CAS Google Scholar
Ximenes, V. F., Kanegae, M. P. P., Rissato, S. R. & Galhiane, M. S. (2007). Arch. Biochem. Biophys. 457, 134–141. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The growing concern of multiple side effects associated with the use of steroidal anti-inflammatory drugs has led investigators to explore alternative and more natural remedies to counter oxidative stress in cancer and other degenerative diseases (Geronikaki & Gavalas, 2006; Matés et al., 2009). Apocynin (4-hydroxy-3-methoxy-acetophenone), also called acetovanillone, isolated from plants belonging to the apocyanaceae family (e.g., Apocynum cannabinum) seems to be a promising drug (or prodrug) that can be effective in various inflammatory conditions (Hayashi et al., 2005; Muijsers et al., 2001; Stefanska & Pawliczak, 2008). For a long time, apocynin has been thought to inhibit plasma membrane NADPH oxidase activity by interfering with the assembly of its cytosolic components, p40, p47, and p67 (Stolk et al., 1994). This view of a direct action of apocynin on the NADPH oxidase system has been challenged in recent years (Heumuller et al., 2008). Suggestions have been made that apocynin requires metabolic activation to diapocynin (DiApo), presumably involving intracellular peroxidase(s) (Touyz, 2008; Ximenes et al., 2007). In a recent study, we showed that apocynin readily reacts with free radicals of carbonate (CO3.-) and nitrogen dioxide (.NO2) formed in reactions of peroxynitrite (PN) with CO2, resulting in the formation of 5-nitroapocynin and DiApo as major products (Gernapudi et al., 2009). Based on these observations, it has been suggested that a detailed study of the oxidative transformation of apocynin and its derivates by PN/CO2 and possibly other oxidative, nitrative and/or nitrosative systems (Sawa et al., 2000; Schopfer et al., 2003; Thomas et al., 2002) would be necessary to provide a template for screening of antioxidant activity and a module that could help in the design of effective inhibitors of the NADPH oxidase system. Towards this end, we have synthesized 5-nitroapocynin using sodium nitrate in combination with an acidic ionic liquid, 1-butyl-3-methylimidazolium hydrogen sulfate ([bmim] [HSO4]), in CH3CN solvent at room temperature (Fig. 3).
The molecule is shown in Fig. 1. The phenyl ring is essentially planar, with RMS deviation 0.0046 Å and maximum deviation 0.0069 (6) Å for C5. The substituents are twisted only slightly out of the phenyl plane, as described in the Abstract. Figure 2 shows the hydrogen bonding pattern, in which the OH group forms both an intramolecular interaction and a much less linear intermolecular interaction. These are described in Table 2, and form a chain in the [201] direction. The intermolecular component is accompanied by a near-linear C2–H2···O4 (at x - 1, 1/2 - y, 1/2 + z) interaction, having C···O distance 3.3831 (12) Å, H···O distance 2.439 (12) Å, and angle 171.4 (11)° about H. The N1–O4 bond, 1.2438 (10) Å, to the O atom involved in the intramolecular hydrogen bond, is slightly longer than the other, N1–O5, 1.2255 (10) Å.