organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N2-(2-Pyrid­yl)-N6-(4-pyrid­yl)pyridine-2,6-di­amine

aCollege of Biology and Environmental Engineering, Zhejiang Shuren University, 310015 Hangzhou, People's Republic of China
*Correspondence e-mail: srwzm2009@126.com

(Received 21 August 2009; accepted 22 August 2009; online 29 August 2009)

In the title compound, C15H13N5, the dihedral angles between the central aromatic ring and and the two peripheral rings are 1.5 (6) and 33.1 (4)°. In the crystal, inter­molecular N—H⋯N hydrogen bonds connect the mol­ecules into a zigzag chain propagating in [100].

Related literature

For a related structure, see: Huang et al. (2004[Huang, L., Tang, S.-H., Fang, X.-N. & Zeng, X.-R. (2004). Acta Cryst. E60, m1963-m1965.]). For background to metal-organic framework complexes with polypyridylamine ligands, see: Peng et al. (2000[Peng, S.-M., Wang, C.-C., Jang, Y.-L., Chen, Y.-H., Li, F.-Y., Mou, C.-Y. & Leung, M.-K. (2000). J. Magn. Mater. 209, 80-83.]); Fang et al. (2005[Fang, X.-N., Li, X.-F. & Zeng, X.-R. (2005). Acta Cryst. E61, m1123-m1125.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N5

  • Mr = 263.30

  • Orthorhombic, P b c a

  • a = 11.4884 (15) Å

  • b = 7.3445 (10) Å

  • c = 30.718 (4) Å

  • V = 2591.9 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.19 × 0.15 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]) Tmin = 0.984, Tmax = 0.991

  • 11972 measured reflections

  • 2304 independent reflections

  • 1529 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.187

  • S = 0.82

  • 2304 reflections

  • 182 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯N1i 0.86 2.22 3.038 (3) 160
N2—H2A⋯N3ii 0.86 2.35 3.198 (3) 170
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Metal-organic frameworks complexes with polypyridylamine ligands, bearing diverse networks and special optical and electromagnetic properties (Peng et al., 2000), have aroused great interest among researchers. Tri-pyridyldiamine ligand usually exhibits donor as well as acceptor properties and can be used as a popular chelating ligand (Fang et al., 2005). The crystals of the title compound were obatined unintentionally as the harvested product of the mild reaction of N2-(pydidin-2-yl)-N6-(pydidin-4-yl)pyridine-2,6-diamine, zinc salt.

The molecular structure of the title compound is shown in Fig. 1. In the crystal structure, intermoelcular N-H···N hydorgen bonds connect molecules into one-dimensional chain along a axis (Table 1), as shown in Figure 2. The three pyridine rings of the title compound are not coplanar. The dihedral angles between the planes of the central pyridine ring and two peripheral rings are 1.5 (6) and 146.9 (4)° respectively, which is very different from the Cd complex with [2,6-bis(2-pyridylamino)pyridine] [15.6 (5) and 34.1 (3)°] (Huang et al., 2004).

Related literature top

For a related structure, see: Huang et al. (2004). For background, see: Peng et al. (2000); Fang et al. (2005).

Experimental top

N2-(pydidin-2-yl)-N6-(pydidin-4-yl)pyridine-2,6-diamine (0.27 mg,0.1 mmol), Zn(CH3COO)2 (0.43 mg, 0.1 mmol), were added to dry ethanol. The mixture was heated and stirred for six hours under reflux. The resultant was then filtered off to give a pure solution which was treated by diethyl ether in a closed vessel. Two weeks later, colourless blocks of (I) were obtained.

Refinement top

The H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H distances of 0.93Å (pyridine ring), N—H = 0.86 Å (amine group), and with Uiso(H) 1.2Ueq(carrier).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) Ellipsoids are drawn at the the 30% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Partial packing of (I) view showing the formation of a chain through N-H···N hydrogen bonds. Hydrogen bonds are shown as dashed lines.
N2-(2-Pyridyl)-N6-(4-pyridyl)pyridine-2,6-diamine top
Crystal data top
C15H13N5F(000) = 1104
Mr = 263.30Dx = 1.350 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2304 reflections
a = 11.4884 (15) Åθ = 2.2–25.2°
b = 7.3445 (10) ŵ = 0.09 mm1
c = 30.718 (4) ÅT = 298 K
V = 2591.9 (6) Å3Block, colourless
Z = 80.19 × 0.15 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
2304 independent reflections
Radiation source: fine-focus sealed tube1529 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 25.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1311
Tmin = 0.984, Tmax = 0.991k = 88
11972 measured reflectionsl = 3436
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.187 w = 1/[σ2(Fo2) + (0.158P)2 + 0.03P]
where P = (Fo2 + 2Fc2)/3
S = 0.82(Δ/σ)max < 0.001
2304 reflectionsΔρmax = 0.23 e Å3
182 parametersΔρmin = 0.15 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (2)
Crystal data top
C15H13N5V = 2591.9 (6) Å3
Mr = 263.30Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.4884 (15) ŵ = 0.09 mm1
b = 7.3445 (10) ÅT = 298 K
c = 30.718 (4) Å0.19 × 0.15 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
2304 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1529 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.991Rint = 0.053
11972 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0501 restraint
wR(F2) = 0.187H-atom parameters constrained
S = 0.82Δρmax = 0.23 e Å3
2304 reflectionsΔρmin = 0.15 e Å3
182 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N30.09096 (15)1.0142 (2)0.36725 (5)0.0482 (5)
C110.05825 (17)0.6096 (3)0.40354 (7)0.0485 (6)
N50.06267 (16)0.6024 (3)0.44682 (6)0.0573 (6)
N20.18582 (17)1.2747 (2)0.34296 (6)0.0586 (6)
H2A0.24001.35090.34930.070*
C10.0235 (2)1.1978 (3)0.24144 (7)0.0544 (6)
H10.04571.14410.23240.065*
C90.06292 (18)0.9532 (3)0.44324 (7)0.0520 (6)
H90.03490.87790.46520.062*
C60.14379 (19)1.1700 (3)0.37742 (7)0.0482 (6)
C50.15115 (19)1.2712 (3)0.29979 (7)0.0476 (6)
C40.22262 (19)1.3511 (3)0.26852 (8)0.0557 (6)
H40.29201.40680.27660.067*
N40.00874 (17)0.7580 (2)0.38310 (6)0.0553 (6)
H4A0.01400.75580.35520.066*
C20.04739 (18)1.1955 (3)0.28529 (7)0.0499 (6)
H20.00491.14430.30490.060*
N10.09143 (19)1.2706 (3)0.21080 (6)0.0623 (6)
C70.1620 (2)1.2251 (3)0.42019 (7)0.0570 (7)
H70.20011.33350.42660.068*
C100.04771 (17)0.9094 (3)0.39941 (7)0.0450 (5)
C80.1212 (2)1.1128 (3)0.45271 (7)0.0595 (7)
H80.13321.14510.48160.071*
C120.1031 (2)0.4715 (3)0.37727 (8)0.0612 (6)
H120.09780.47920.34710.073*
C30.1897 (2)1.3467 (3)0.22582 (8)0.0638 (7)
H30.23911.40070.20560.077*
C150.1133 (2)0.4549 (4)0.46451 (9)0.0694 (8)
H150.11650.44790.49470.083*
C140.1602 (2)0.3157 (4)0.44141 (10)0.0759 (8)
H140.19470.21720.45540.091*
C130.1552 (2)0.3242 (4)0.39659 (10)0.0737 (8)
H130.18670.23130.37970.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N30.0552 (11)0.0459 (11)0.0436 (10)0.0016 (8)0.0036 (8)0.0010 (8)
C110.0482 (12)0.0477 (13)0.0495 (13)0.0023 (10)0.0020 (9)0.0048 (10)
N50.0608 (12)0.0589 (13)0.0521 (12)0.0004 (10)0.0003 (9)0.0112 (9)
N20.0616 (12)0.0579 (12)0.0561 (12)0.0192 (9)0.0075 (9)0.0004 (9)
C10.0567 (13)0.0496 (13)0.0571 (15)0.0028 (11)0.0072 (11)0.0020 (10)
C90.0560 (13)0.0574 (14)0.0426 (12)0.0005 (11)0.0012 (10)0.0015 (10)
C60.0480 (12)0.0466 (12)0.0500 (13)0.0002 (10)0.0023 (9)0.0022 (10)
C50.0552 (13)0.0387 (11)0.0488 (13)0.0003 (9)0.0001 (10)0.0028 (9)
C40.0539 (13)0.0468 (13)0.0664 (16)0.0066 (10)0.0032 (11)0.0029 (10)
N40.0754 (14)0.0498 (12)0.0408 (10)0.0103 (10)0.0013 (8)0.0004 (7)
C20.0501 (13)0.0484 (12)0.0513 (13)0.0029 (10)0.0002 (10)0.0033 (10)
N10.0756 (13)0.0584 (13)0.0530 (12)0.0035 (10)0.0027 (10)0.0051 (9)
C70.0561 (14)0.0582 (15)0.0568 (15)0.0068 (11)0.0035 (11)0.0111 (11)
C100.0455 (12)0.0447 (12)0.0449 (12)0.0029 (9)0.0004 (9)0.0003 (9)
C80.0621 (15)0.0700 (17)0.0465 (13)0.0007 (13)0.0007 (10)0.0125 (11)
C120.0626 (15)0.0582 (15)0.0628 (14)0.0089 (12)0.0073 (11)0.0010 (12)
C30.0725 (15)0.0593 (16)0.0596 (15)0.0017 (12)0.0130 (12)0.0081 (11)
C150.0624 (16)0.0743 (18)0.0715 (17)0.0059 (14)0.0016 (12)0.0216 (14)
C140.0604 (16)0.0711 (18)0.096 (2)0.0107 (14)0.0013 (14)0.0256 (16)
C130.0691 (17)0.0592 (16)0.093 (2)0.0180 (13)0.0082 (15)0.0030 (14)
Geometric parameters (Å, º) top
N3—C61.332 (3)C4—C31.366 (3)
N3—C101.347 (3)C4—H40.9300
C11—N51.331 (3)N4—C101.381 (2)
C11—N41.380 (3)N4—H4A0.8600
C11—C121.395 (3)C2—H20.9300
N5—C151.344 (3)N1—C31.341 (3)
N2—C51.385 (3)C7—C81.378 (3)
N2—C61.394 (3)C7—H70.9300
N2—H2A0.8600C8—H80.9300
C1—N11.335 (3)C12—C131.371 (3)
C1—C21.375 (3)C12—H120.9300
C1—H10.9300C3—H30.9300
C9—C81.381 (3)C15—C141.356 (4)
C9—C101.395 (3)C15—H150.9300
C9—H90.9300C14—C131.379 (4)
C6—C71.390 (3)C14—H140.9300
C5—C21.388 (3)C13—H130.9300
C5—C41.393 (3)
C6—N3—C10119.13 (18)C1—C2—H2120.6
N5—C11—N4120.07 (19)C5—C2—H2120.6
N5—C11—C12122.3 (2)C1—N1—C3114.6 (2)
N4—C11—C12117.6 (2)C8—C7—C6117.4 (2)
C11—N5—C15116.9 (2)C8—C7—H7121.3
C5—N2—C6128.11 (18)C6—C7—H7121.3
C5—N2—H2A115.9N3—C10—N4111.54 (17)
C6—N2—H2A115.9N3—C10—C9121.97 (19)
N1—C1—C2125.4 (2)N4—C10—C9126.5 (2)
N1—C1—H1117.3C7—C8—C9121.3 (2)
C2—C1—H1117.3C7—C8—H8119.3
C8—C9—C10117.4 (2)C9—C8—H8119.3
C8—C9—H9121.3C13—C12—C11119.0 (2)
C10—C9—H9121.3C13—C12—H12120.5
N3—C6—C7122.7 (2)C11—C12—H12120.5
N3—C6—N2116.95 (19)N1—C3—C4125.0 (2)
C7—C6—N2120.3 (2)N1—C3—H3117.5
N2—C5—C2124.1 (2)C4—C3—H3117.5
N2—C5—C4118.9 (2)N5—C15—C14124.6 (3)
C2—C5—C4117.0 (2)N5—C15—H15117.7
C3—C4—C5119.3 (2)C14—C15—H15117.7
C3—C4—H4120.4C15—C14—C13118.2 (2)
C5—C4—H4120.4C15—C14—H14120.9
C11—N4—C10131.6 (2)C13—C14—H14120.9
C11—N4—H4A114.2C12—C13—C14119.1 (3)
C10—N4—H4A114.2C12—C13—H13120.5
C1—C2—C5118.7 (2)C14—C13—H13120.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N1i0.862.223.038 (3)160
N2—H2A···N3ii0.862.353.198 (3)170
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC15H13N5
Mr263.30
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)11.4884 (15), 7.3445 (10), 30.718 (4)
V3)2591.9 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.19 × 0.15 × 0.11
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.984, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
11972, 2304, 1529
Rint0.053
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.187, 0.82
No. of reflections2304
No. of parameters182
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.15

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N1i0.862.223.038 (3)160
N2—H2A···N3ii0.862.353.198 (3)170
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1/2, y+1/2, z.
 

Acknowledgements

The authors are grateful to Zhejiang Shuren University for financial support.

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFang, X.-N., Li, X.-F. & Zeng, X.-R. (2005). Acta Cryst. E61, m1123–m1125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHuang, L., Tang, S.-H., Fang, X.-N. & Zeng, X.-R. (2004). Acta Cryst. E60, m1963–m1965.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPeng, S.-M., Wang, C.-C., Jang, Y.-L., Chen, Y.-H., Li, F.-Y., Mou, C.-Y. & Leung, M.-K. (2000). J. Magn. Mater. 209, 80–83.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds