metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­[2-(2,4-di­chloro­phen­­oxy)acetato]nickel(II)

aEngineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, People's Republic of China
*Correspondence e-mail: qfzeng@wuse.edu.cn

(Received 23 August 2009; accepted 24 August 2009; online 29 August 2009)

In the title complex, [Ni(C8H5Cl2O3)2(H2O)4], the NiII atom (site symmetry [\overline{1}]) adopts a slightly distorted NiO6 octa­hedral coordination. An intra­molecular O—H⋯O hydrogen bond helps to establish the conformation. In the crystal, further O—H⋯O hydrogen bonds link the mol­ecules.

Related literature

For background, see: Cheng et al. (2006[Cheng, K., Zhu, H.-L. & Li, Y.-G. (2006). Z. Anorg. Allg. Chem. 632, 2326-2330.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H5Cl2O3)2(H2O)4]

  • Mr = 570.81

  • Monoclinic, P 21 /c

  • a = 16.860 (3) Å

  • b = 8.1370 (16) Å

  • c = 8.3010 (17) Å

  • β = 95.87 (3)°

  • V = 1132.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.38 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.683, Tmax = 0.875

  • 2134 measured reflections

  • 1976 independent reflections

  • 1596 reflections with I > 2σ(I)

  • Rint = 0.017

  • 200 standard reflections every 3 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.214

  • S = 1.14

  • 1976 reflections

  • 154 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.86 e Å−3

  • Δρmin = −1.97 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O3 2.085 (5)
Ni1—O4 2.126 (4)
Ni1—O1 2.130 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2i 0.84 (5) 2.05 (7) 2.723 (7) 136 (8)
O1—H1B⋯O2 0.84 (3) 1.82 (5) 2.619 (7) 157 (7)
O3—H3A⋯O1i 0.85 (6) 2.44 (7) 3.217 (7) 153 (7)
O3—H3B⋯O6ii 0.846 (16) 2.34 (6) 2.980 (7) 133 (8)
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There has been much research interest in acid metal complexes due to their molecular architectures and biological activities (e.g. Cheng et al., 2006). In this work, we report here the crystal structure of the title compound, (I). In (I), all bond lengths are within normal ranges (Allen et al., 1987) (Fig. 1). The NiII atom is six-coordinated by two O atoms from the 2-(2,4-dichlorophenoxy)acetate and four O atoms from the water molecules, forming a slightly distorted octahedral coordination.

Related literature top

For background, see: Cheng et al. (2006). For reference structural data, see: Allen et al. (1987).

Experimental top

A mixture of 2-(2,4-dichlorophenoxy)acetic acid (440 mg, 2 mmol) and NiCl2.6H2O (1 mmol, 236 mg) in methanol (10 ml) was stirred for 3 h. After keeping the filtrate in air for 7 d, green blocks of (I) were formed.

Refinement top

The water H atoms were located in a difference map and their positions were refined with the restraint O—H = 0.83 (1)Å. The other H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids. Atoms with the suffix A are generated by the symmetry operation (1–x, –y, 1–z).
Tetraaquabis[2-(2,4-dichlorophenoxy)acetato]nickel(II) top
Crystal data top
[Ni(C8H5Cl2O3)2(H2O)4]F(000) = 580
Mr = 570.81Dx = 1.673 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 16.860 (3) Åθ = 9–12°
b = 8.1370 (16) ŵ = 1.38 mm1
c = 8.3010 (17) ÅT = 293 K
β = 95.87 (3)°Block, green
V = 1132.8 (4) Å30.30 × 0.20 × 0.10 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
1596 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 25.2°, θmin = 1.2°
ω/2θ scansh = 2020
Absorption correction: ψ scan
(North et al., 1968)
k = 90
Tmin = 0.683, Tmax = 0.875l = 09
2134 measured reflections200 standard reflections every 3 reflections
1976 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.214H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.1181P)2 + 3.965P]
where P = (Fo2 + 2Fc2)/3
1976 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.86 e Å3
6 restraintsΔρmin = 1.97 e Å3
Crystal data top
[Ni(C8H5Cl2O3)2(H2O)4]V = 1132.8 (4) Å3
Mr = 570.81Z = 2
Monoclinic, P21/cMo Kα radiation
a = 16.860 (3) ŵ = 1.38 mm1
b = 8.1370 (16) ÅT = 293 K
c = 8.3010 (17) Å0.30 × 0.20 × 0.10 mm
β = 95.87 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1596 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.017
Tmin = 0.683, Tmax = 0.875200 standard reflections every 3 reflections
2134 measured reflections intensity decay: 1%
1976 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0716 restraints
wR(F2) = 0.214H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.86 e Å3
1976 reflectionsΔρmin = 1.97 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1103 (4)0.1141 (9)0.3299 (9)0.0487 (17)
H10.08720.01600.35850.058*
C20.1780 (4)0.4056 (8)0.2486 (8)0.0363 (14)
C30.1822 (4)0.1110 (8)0.2642 (9)0.0454 (16)
H30.20760.01130.25040.054*
C40.0724 (4)0.2598 (9)0.3534 (9)0.0458 (16)
C50.1072 (4)0.4079 (8)0.3131 (8)0.0431 (15)
H50.08210.50720.33030.052*
C60.3693 (4)0.0240 (7)0.2247 (7)0.0296 (12)
C70.2173 (4)0.2580 (7)0.2183 (8)0.0345 (13)
C80.3201 (4)0.1188 (8)0.0942 (7)0.0388 (15)
H8A0.35330.14470.00880.047*
H8B0.27700.04890.04790.047*
Cl10.01949 (12)0.2621 (3)0.4316 (3)0.0626 (6)
Cl20.22352 (11)0.5880 (2)0.1988 (3)0.0557 (6)
H1A0.418 (3)0.233 (12)0.523 (6)0.067*
H3A0.452 (4)0.018 (10)0.785 (6)0.067*
H1B0.436 (4)0.226 (11)0.366 (3)0.067*
H3B0.3858 (7)0.030 (11)0.687 (9)0.067*
Ni10.50000.00000.50000.0266 (4)
O10.4550 (3)0.2430 (5)0.4624 (6)0.0406 (11)
O20.3738 (3)0.1289 (5)0.2003 (5)0.0433 (11)
O30.4362 (3)0.0347 (7)0.6996 (6)0.0503 (12)
O40.4045 (2)0.0994 (5)0.3429 (5)0.0319 (9)
O60.2866 (3)0.2687 (6)0.1489 (6)0.0420 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.053 (4)0.039 (4)0.052 (4)0.005 (3)0.005 (3)0.005 (3)
C20.038 (3)0.029 (3)0.041 (3)0.008 (3)0.002 (3)0.005 (3)
C30.048 (4)0.027 (3)0.059 (4)0.002 (3)0.009 (3)0.004 (3)
C40.049 (4)0.046 (4)0.040 (4)0.006 (3)0.006 (3)0.002 (3)
C50.049 (4)0.032 (3)0.047 (4)0.000 (3)0.000 (3)0.000 (3)
C60.039 (3)0.018 (3)0.032 (3)0.001 (2)0.006 (2)0.002 (2)
C70.037 (3)0.029 (3)0.036 (3)0.004 (2)0.004 (2)0.000 (2)
C80.046 (4)0.035 (3)0.034 (3)0.006 (3)0.001 (3)0.009 (3)
Cl10.0543 (11)0.0675 (13)0.0680 (13)0.0061 (9)0.0147 (9)0.0037 (10)
Cl20.0552 (11)0.0276 (8)0.0841 (14)0.0013 (7)0.0062 (9)0.0059 (8)
Ni10.0369 (6)0.0154 (5)0.0270 (6)0.0015 (4)0.0017 (4)0.0023 (4)
O10.058 (3)0.028 (2)0.035 (2)0.000 (2)0.001 (2)0.0015 (19)
O20.066 (3)0.031 (2)0.032 (2)0.001 (2)0.003 (2)0.0056 (18)
O30.048 (3)0.054 (3)0.050 (3)0.009 (2)0.013 (2)0.007 (2)
O40.043 (2)0.0205 (19)0.030 (2)0.0092 (17)0.0054 (17)0.0048 (17)
O60.037 (2)0.032 (2)0.056 (3)0.0010 (18)0.002 (2)0.004 (2)
Geometric parameters (Å, º) top
C1—C41.369 (10)C7—O61.358 (8)
C1—C31.381 (11)C8—O61.437 (7)
C1—H10.9300C8—H8A0.9700
C2—C51.358 (10)C8—H8B0.9700
C2—C71.407 (9)Ni1—O32.085 (5)
C2—Cl21.740 (6)Ni1—O3i2.085 (5)
C3—C71.403 (9)Ni1—O42.126 (4)
C3—H30.9300Ni1—O4i2.126 (4)
C4—C51.396 (10)Ni1—O1i2.130 (4)
C4—Cl11.741 (8)Ni1—O12.130 (4)
C5—H50.9300O1—H1A0.841 (10)
C6—O41.253 (7)O1—H1B0.840 (10)
C6—O21.265 (7)O3—H3A0.844 (10)
C6—C81.508 (8)O3—H3B0.847 (10)
C4—C1—C3120.9 (7)C6—C8—H8B108.7
C4—C1—H1119.6H8A—C8—H8B107.6
C3—C1—H1119.6O3—Ni1—O3i180.0
C5—C2—C7122.1 (6)O3—Ni1—O490.93 (19)
C5—C2—Cl2120.6 (5)O3i—Ni1—O489.07 (18)
C7—C2—Cl2117.3 (5)O3—Ni1—O4i89.07 (18)
C1—C3—C7120.2 (6)O3i—Ni1—O4i90.93 (18)
C1—C3—H3119.9O4—Ni1—O4i180.0
C7—C3—H3119.9O3—Ni1—O1i87.9 (2)
C1—C4—C5120.0 (7)O3i—Ni1—O1i92.1 (2)
C1—C4—Cl1120.5 (6)O4—Ni1—O1i88.46 (16)
C5—C4—Cl1119.5 (6)O4i—Ni1—O1i91.54 (16)
C2—C5—C4119.4 (6)O3—Ni1—O192.1 (2)
C2—C5—H5120.3O3i—Ni1—O187.9 (2)
C4—C5—H5120.3O4—Ni1—O191.54 (16)
O4—C6—O2125.2 (5)O4i—Ni1—O188.46 (16)
O4—C6—C8119.6 (5)O1i—Ni1—O1180.0
O2—C6—C8115.2 (5)Ni1—O1—H1A96 (7)
O6—C7—C3125.1 (6)Ni1—O1—H1B94 (6)
O6—C7—C2117.5 (5)H1A—O1—H1B108.9 (18)
C3—C7—C2117.4 (6)Ni1—O3—H3A117 (6)
O6—C8—C6114.4 (5)Ni1—O3—H3B119 (6)
O6—C8—H8A108.7H3A—O3—H3B108.4 (18)
C6—C8—H8A108.7C6—O4—Ni1124.2 (4)
O6—C8—H8B108.7C7—O6—C8117.5 (5)
C4—C1—C3—C70.9 (11)O4—C6—C8—O628.4 (8)
C3—C1—C4—C51.0 (11)O2—C6—C8—O6154.2 (6)
C3—C1—C4—Cl1178.4 (5)O2—C6—O4—Ni114.9 (9)
C7—C2—C5—C41.0 (10)C8—C6—O4—Ni1162.2 (4)
Cl2—C2—C5—C4179.3 (5)O3—Ni1—O4—C6122.0 (5)
C1—C4—C5—C20.9 (10)O3i—Ni1—O4—C658.0 (5)
Cl1—C4—C5—C2178.5 (5)O4i—Ni1—O4—C676 (100)
C1—C3—C7—O6178.2 (6)O1i—Ni1—O4—C6150.1 (5)
C1—C3—C7—C22.7 (10)O1—Ni1—O4—C629.9 (5)
C5—C2—C7—O6178.0 (6)C3—C7—O6—C810.6 (9)
Cl2—C2—C7—O61.6 (8)C2—C7—O6—C8170.3 (5)
C5—C2—C7—C32.8 (10)C6—C8—O6—C783.3 (7)
Cl2—C2—C7—C3177.5 (5)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2ii0.84 (5)2.05 (7)2.723 (7)136 (8)
O1—H1B···O20.84 (3)1.82 (5)2.619 (7)157 (7)
O3—H3A···O1ii0.85 (6)2.44 (7)3.217 (7)153 (7)
O3—H3B···O6iii0.85 (2)2.34 (6)2.980 (7)133 (8)
Symmetry codes: (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C8H5Cl2O3)2(H2O)4]
Mr570.81
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)16.860 (3), 8.1370 (16), 8.3010 (17)
β (°) 95.87 (3)
V3)1132.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.38
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.683, 0.875
No. of measured, independent and
observed [I > 2σ(I)] reflections
2134, 1976, 1596
Rint0.017
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.214, 1.14
No. of reflections1976
No. of parameters154
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.86, 1.97

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—O32.085 (5)Ni1—O12.130 (4)
Ni1—O42.126 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.84 (5)2.05 (7)2.723 (7)136 (8)
O1—H1B···O20.84 (3)1.82 (5)2.619 (7)157 (7)
O3—H3A···O1i0.85 (6)2.44 (7)3.217 (7)153 (7)
O3—H3B···O6ii0.846 (16)2.34 (6)2.980 (7)133 (8)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The project was supported by the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, Educational Commission of Hubei Province (D20091703) and the Natural Science Foundation of Hubei Province (2008CDB038).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCheng, K., Zhu, H.-L. & Li, Y.-G. (2006). Z. Anorg. Allg. Chem. 632, 2326–2330.  Web of Science CSD CrossRef Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds