organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(4-Hydr­­oxy-3-meth­oxy­benzyl­­idene)-4-meth­oxy­benzohydrazide monohydrate

aSchool of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong 723000, People's Republic of China
*Correspondence e-mail: jiufulu@163.com

(Received 26 August 2009; accepted 26 August 2009; online 29 August 2009)

In the title compound, C16H16N2O4·H2O, the dihedral angle between the two aromatic rings is 19.6 (2)°. In the crystal structure, mol­ecules are linked into a three-dimensional network by inter­molecular N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds.

Related literature

For our previous work in this area, see: Lu et al. (2008a[Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008a). Acta Cryst. E64, o1693.],b[Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008b). Acta Cryst. E64, o1694.],c[Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008c). Acta Cryst. E64, o1695.]). For related structures, see: Abdul Alhadi et al. (2009[Abdul Alhadi, A. A., Ali, H. M. & Ng, S. W. (2009). Acta Cryst. E65, o908.]); Mohd Lair et al. (2009[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.]); Narayana et al. (2007[Narayana, B., Siddaraju, B. P., Raju, C. R., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o3522.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O4·H2O

  • Mr = 318.32

  • Monoclinic, P 21 /n

  • a = 7.942 (1) Å

  • b = 21.273 (2) Å

  • c = 10.246 (1) Å

  • β = 106.596 (2)°

  • V = 1659.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.32 × 0.30 × 0.30 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.970, Tmax = 0.972

  • 9533 measured reflections

  • 3338 independent reflections

  • 2291 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.127

  • S = 1.04

  • 3338 reflections

  • 220 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯N1i 0.846 (9) 2.487 (15) 3.1257 (18) 133.0 (17)
O5—H5A⋯O3i 0.846 (9) 2.107 (13) 2.8927 (18) 154 (2)
O5—H5B⋯O3ii 0.856 (9) 1.884 (10) 2.7401 (17) 179 (2)
N2—H2B⋯O2i 0.895 (9) 2.185 (12) 3.0398 (18) 159.6 (19)
O2—H2⋯O5iii 0.82 1.77 2.5775 (17) 170
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y, z-1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases and their metal complexes have received much attention in recent years. As part of our investigation on the crystal structures of Schiff bases derived from the condensation of aldehydes with benzohydrazides (Lu et al., 2008a,b,c), we report herein the crystal structure of the title new Schiff base compound, (I).

The title compound (Fig. 1), consists of a Schiff base molecule and a water molecule of crystallization. The bond lengths have normal values (Allen et al., 1987), and are comparable to those observed in similar compounds (Abdul Alhadi et al., 2009; Mohd Lair et al., 2009; Narayana et al., 2007). The dihedral angle between the two aromatic rings is 19.6 (2)°, indicating that they the molecule is twisted.

In the crystal structure, the molecules are linked into a three-dimensional network by intermolecular N—H···O, O—H···N and O—H···O hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For own previous work in this area, see: Lu et al. (2008a,b,c). For related structures, see: Abdul Alhadi et al. (2009); Mohd Lair et al. (2009); Narayana et al. (2007). For reference bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the Schiff base condensation of 4-hydroxy-3-methoxybenzaldehyde (0.1 mol) and 4-methoxybenzohydrazide (0.1 mmol) in 95% ethanol (50 ml). The excess ethanol was removed by distillation. The colourless solid obtained was filtered and washed with ethanol. Colourless blokcs of (I) were obatined by slow evaporation of a 95% ethanol solution at room temperature.

Refinement top

The imino H atom and water H atoms were located in a difference map and refined with N—H, O—H, and H···H distance restraint of 0.90 (1), 0.85 (1), and 1.37 (2) Å, respectively. Other H atoms were positioned geometrically (C—H = 0.93-0.97 Å, O—H = 0.82 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl and O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the a axis. Intermolecular hydrogen bonds are drawn by dashed lines. H atoms unrelated to the hydrogen bonding are omitted for clarity.
N'-(4-Hydroxy-3-methoxybenzylidene)-4-methoxybenzohydrazide monohydrate top
Crystal data top
C16H16N2O4·H2OF(000) = 672
Mr = 318.32Dx = 1.274 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2203 reflections
a = 7.942 (1) Åθ = 2.3–24.6°
b = 21.273 (2) ŵ = 0.10 mm1
c = 10.246 (1) ÅT = 298 K
β = 106.596 (2)°Block, colourless
V = 1659.0 (3) Å30.32 × 0.30 × 0.30 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3338 independent reflections
Radiation source: fine-focus sealed tube2291 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 26.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 99
Tmin = 0.970, Tmax = 0.972k = 2625
9533 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0586P)2 + 0.2417P]
where P = (Fo2 + 2Fc2)/3
3338 reflections(Δ/σ)max = 0.001
220 parametersΔρmax = 0.20 e Å3
4 restraintsΔρmin = 0.18 e Å3
Crystal data top
C16H16N2O4·H2OV = 1659.0 (3) Å3
Mr = 318.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.942 (1) ŵ = 0.10 mm1
b = 21.273 (2) ÅT = 298 K
c = 10.246 (1) Å0.32 × 0.30 × 0.30 mm
β = 106.596 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3338 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2291 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.972Rint = 0.024
9533 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0444 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.20 e Å3
3338 reflectionsΔρmin = 0.18 e Å3
220 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.45414 (18)0.25435 (6)0.34503 (15)0.0726 (4)
O20.25510 (15)0.15740 (6)0.42933 (13)0.0570 (3)
H20.17420.13320.46380.085*
O30.32814 (18)0.47213 (6)0.11553 (15)0.0682 (4)
O40.1311 (2)0.60007 (7)0.46039 (15)0.0791 (4)
O50.01680 (17)0.08043 (6)0.43784 (15)0.0612 (4)
N10.16872 (18)0.37019 (6)0.01397 (14)0.0489 (4)
N20.10078 (19)0.40488 (7)0.07401 (15)0.0508 (4)
C10.1256 (2)0.28010 (8)0.15935 (17)0.0477 (4)
C20.2726 (2)0.29018 (8)0.20479 (17)0.0487 (4)
H2A0.34350.32510.17440.058*
C30.3135 (2)0.24897 (8)0.29416 (17)0.0475 (4)
C40.2067 (2)0.19639 (8)0.34092 (17)0.0456 (4)
C50.0626 (2)0.18616 (9)0.29573 (19)0.0562 (5)
H50.00790.15110.32560.067*
C60.0218 (2)0.22785 (9)0.2059 (2)0.0600 (5)
H60.07680.22070.17620.072*
C70.5593 (3)0.30919 (11)0.3109 (3)0.0894 (8)
H7A0.48720.34580.33890.134*
H7B0.64940.30840.35650.134*
H7C0.61250.31050.21420.134*
C80.0764 (2)0.32266 (8)0.06566 (18)0.0512 (4)
H80.02670.31490.04250.061*
C90.1854 (2)0.45679 (8)0.13293 (18)0.0507 (4)
C100.1005 (2)0.49380 (8)0.21918 (18)0.0510 (4)
C110.1991 (3)0.53788 (10)0.3066 (2)0.0729 (6)
H110.31630.54350.30990.087*
C120.1273 (3)0.57418 (10)0.3899 (2)0.0757 (6)
H120.19660.60330.44910.091*
C130.0457 (3)0.56687 (9)0.38450 (19)0.0602 (5)
C140.1466 (3)0.52298 (9)0.2976 (2)0.0623 (5)
H140.26380.51740.29450.075*
C150.0741 (3)0.48746 (8)0.21579 (19)0.0568 (5)
H150.14400.45840.15660.068*
C160.0366 (4)0.64796 (11)0.5474 (2)0.0959 (8)
H16A0.06420.62990.61190.144*
H16B0.11110.66720.59510.144*
H16C0.00120.67910.49410.144*
H2B0.0004 (18)0.3933 (10)0.090 (2)0.080*
H5B0.064 (2)0.0464 (7)0.421 (2)0.080*
H5A0.064 (2)0.0719 (9)0.473 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0662 (8)0.0727 (9)0.0998 (10)0.0254 (7)0.0572 (8)0.0298 (8)
O20.0520 (7)0.0565 (7)0.0720 (8)0.0056 (6)0.0329 (7)0.0161 (6)
O30.0697 (9)0.0606 (8)0.0880 (10)0.0194 (7)0.0443 (8)0.0096 (7)
O40.1010 (11)0.0712 (9)0.0694 (9)0.0105 (8)0.0311 (8)0.0178 (8)
O50.0558 (8)0.0502 (7)0.0862 (10)0.0013 (6)0.0342 (7)0.0118 (7)
N10.0522 (8)0.0479 (8)0.0549 (8)0.0001 (7)0.0285 (7)0.0016 (7)
N20.0560 (9)0.0487 (8)0.0582 (9)0.0065 (7)0.0329 (7)0.0072 (7)
C10.0480 (9)0.0491 (9)0.0524 (10)0.0014 (7)0.0249 (8)0.0019 (8)
C20.0498 (10)0.0460 (9)0.0557 (10)0.0071 (8)0.0241 (8)0.0036 (8)
C30.0423 (9)0.0515 (9)0.0561 (10)0.0040 (7)0.0259 (8)0.0023 (8)
C40.0455 (9)0.0455 (9)0.0509 (10)0.0010 (7)0.0219 (8)0.0026 (7)
C50.0515 (10)0.0550 (10)0.0704 (12)0.0125 (8)0.0307 (9)0.0129 (9)
C60.0529 (11)0.0630 (11)0.0772 (13)0.0131 (9)0.0397 (10)0.0128 (10)
C70.0736 (14)0.0922 (16)0.125 (2)0.0380 (13)0.0656 (15)0.0365 (15)
C80.0509 (10)0.0531 (10)0.0587 (11)0.0051 (8)0.0304 (8)0.0027 (8)
C90.0588 (11)0.0451 (9)0.0536 (10)0.0068 (8)0.0247 (8)0.0040 (8)
C100.0649 (11)0.0415 (9)0.0511 (10)0.0042 (8)0.0238 (9)0.0016 (8)
C110.0790 (14)0.0676 (13)0.0817 (14)0.0244 (11)0.0383 (12)0.0179 (11)
C120.0937 (17)0.0644 (13)0.0748 (14)0.0245 (12)0.0335 (12)0.0234 (11)
C130.0831 (14)0.0490 (10)0.0522 (11)0.0069 (10)0.0252 (10)0.0008 (8)
C140.0600 (12)0.0637 (12)0.0634 (12)0.0082 (9)0.0179 (10)0.0075 (10)
C150.0593 (11)0.0528 (10)0.0574 (11)0.0019 (8)0.0151 (9)0.0089 (9)
C160.136 (2)0.0756 (14)0.0731 (15)0.0114 (15)0.0258 (15)0.0260 (13)
Geometric parameters (Å, º) top
O1—C31.3654 (19)C5—H50.9300
O1—C71.419 (2)C6—H60.9300
O2—C41.3622 (19)C7—H7A0.9600
O2—H20.8200C7—H7B0.9600
O3—C91.241 (2)C7—H7C0.9600
O4—C131.365 (2)C8—H80.9300
O4—C161.419 (3)C9—C101.482 (2)
O5—H5B0.856 (9)C10—C111.376 (3)
O5—H5A0.846 (9)C10—C151.384 (3)
N1—C81.272 (2)C11—C121.388 (3)
N1—N21.3878 (18)C11—H110.9300
N2—C91.343 (2)C12—C131.369 (3)
N2—H2B0.895 (9)C12—H120.9300
C1—C61.385 (2)C13—C141.378 (3)
C1—C21.391 (2)C14—C151.372 (2)
C1—C81.452 (2)C14—H140.9300
C2—C31.372 (2)C15—H150.9300
C2—H2A0.9300C16—H16A0.9600
C3—C41.403 (2)C16—H16B0.9600
C4—C51.369 (2)C16—H16C0.9600
C5—C61.382 (2)
C3—O1—C7117.57 (14)H7B—C7—H7C109.5
C4—O2—H2109.5N1—C8—C1122.59 (15)
C13—O4—C16117.99 (19)N1—C8—H8118.7
H5B—O5—H5A109.9 (17)C1—C8—H8118.7
C8—N1—N2114.08 (13)O3—C9—N2120.79 (16)
C9—N2—N1119.46 (14)O3—C9—C10122.43 (15)
C9—N2—H2B120.1 (14)N2—C9—C10116.78 (15)
N1—N2—H2B120.5 (14)C11—C10—C15117.57 (17)
C6—C1—C2118.84 (15)C11—C10—C9118.60 (17)
C6—C1—C8118.80 (15)C15—C10—C9123.83 (16)
C2—C1—C8122.36 (15)C10—C11—C12121.5 (2)
C3—C2—C1120.41 (15)C10—C11—H11119.3
C3—C2—H2A119.8C12—C11—H11119.3
C1—C2—H2A119.8C13—C12—C11119.72 (19)
O1—C3—C2125.22 (15)C13—C12—H12120.1
O1—C3—C4114.67 (14)C11—C12—H12120.1
C2—C3—C4120.11 (14)O4—C13—C12125.08 (18)
O2—C4—C5123.37 (15)O4—C13—C14115.25 (19)
O2—C4—C3117.03 (14)C12—C13—C14119.67 (18)
C5—C4—C3119.59 (15)C15—C14—C13120.01 (19)
C4—C5—C6120.06 (16)C15—C14—H14120.0
C4—C5—H5120.0C13—C14—H14120.0
C6—C5—H5120.0C14—C15—C10121.56 (17)
C5—C6—C1120.98 (16)C14—C15—H15119.2
C5—C6—H6119.5C10—C15—H15119.2
C1—C6—H6119.5O4—C16—H16A109.5
O1—C7—H7A109.5O4—C16—H16B109.5
O1—C7—H7B109.5H16A—C16—H16B109.5
H7A—C7—H7B109.5O4—C16—H16C109.5
O1—C7—H7C109.5H16A—C16—H16C109.5
H7A—C7—H7C109.5H16B—C16—H16C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···N1i0.85 (1)2.49 (2)3.1257 (18)133 (2)
O5—H5A···O3i0.85 (1)2.11 (1)2.8927 (18)154 (2)
O5—H5B···O3ii0.86 (1)1.88 (1)2.7401 (17)179 (2)
N2—H2B···O2i0.90 (1)2.19 (1)3.0398 (18)160 (2)
O2—H2···O5iii0.821.772.5775 (17)170
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC16H16N2O4·H2O
Mr318.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.942 (1), 21.273 (2), 10.246 (1)
β (°) 106.596 (2)
V3)1659.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.32 × 0.30 × 0.30
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.970, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
9533, 3338, 2291
Rint0.024
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.127, 1.04
No. of reflections3338
No. of parameters220
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.18

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···N1i0.846 (9)2.487 (15)3.1257 (18)133.0 (17)
O5—H5A···O3i0.846 (9)2.107 (13)2.8927 (18)154 (2)
O5—H5B···O3ii0.856 (9)1.884 (10)2.7401 (17)179 (2)
N2—H2B···O2i0.895 (9)2.185 (12)3.0398 (18)159.6 (19)
O2—H2···O5iii0.821.772.5775 (17)170
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x, y, z1.
 

Acknowledgements

The authors acknowledge the Scientific Research Foundation of Shaanxi University of Technology (Project No. SLGQD0708).

References

First citationAbdul Alhadi, A. A., Ali, H. M. & Ng, S. W. (2009). Acta Cryst. E65, o908.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008a). Acta Cryst. E64, o1693.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008b). Acta Cryst. E64, o1694.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008c). Acta Cryst. E64, o1695.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNarayana, B., Siddaraju, B. P., Raju, C. R., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o3522.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds