metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-(di­methyl­amino)pyridinium] tetra­bromidobis(4-chloro­phen­yl)stannate(IV)–4-bromo­chloro­benzene (1/1)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: kmlo@um.edu.my

(Received 8 June 2009; accepted 30 July 2009; online 8 August 2009)

In the title compound, (C7H11N2)2[SnBr4(C6H4Cl)2]·C6H4BrCl, the SnIV atom in the tetra­bromidobis(4-chloro­phen­yl)stannate(IV) anion lies on a centre of inversion. The distances between the 4-(dimethyl­amino)pyridinium N atom and the Br atoms of the anion are 3.450 (2) and 3.452 (2) Å, suggesting weak hydrogen bonding. The 4-bromo­chloro­benzene solvent mol­ecule, which is a bromination by-product from the reaction, is disordered about a twofold rotation axis with approximately equal occupancy.

Related literature

For related structures, see Lo & Ng (2009[Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m630.]); Koon et al. (2009[Koon, Y. C., Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m663.]); Yap et al. (2008[Yap, Q. L., Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m696.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H11N2)2[SnBr4(C6H4Cl)2]·C6H4BrCl

  • Mr = 1099.22

  • Triclinic, [P \overline 1]

  • a = 8.7692 (18) Å

  • b = 10.128 (2) Å

  • c = 11.407 (2) Å

  • α = 111.16 (3)°

  • β = 93.38 (3)°

  • γ = 92.85 (3)°

  • V = 940.4 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 6.23 mm−1

  • T = 100 K

  • 0.45 × 0.26 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.169, Tmax = 0.384 (expected range = 0.135–0.306)

  • 7255 measured reflections

  • 4265 independent reflections

  • 3919 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.062

  • S = 1.05

  • 4265 reflections

  • 207 parameters

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −1.12 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For related structures, see Lo & Ng (2009); Koon et al. (2009); Yap et al. (2008).

Experimental top

Tetra(4-chlorophenyl)tin (0.57 g, 1 mmol) and 4-dimethylaminopyridine hydrobromide perbromide (0.40 g, 1 mmol) was dissolved in absolute ethanol (25 ml) and refluxed for six hours. The solution was filtered and colourless crystals were isolated upon cooling.

Refinement top

Hydrogen atoms were placed at calculated positions (C–H 0.95 to 0.98 Å) and were treated as riding on their parent carbon atoms, with U(H) set to 1.2–1.5 times U(C,N). N—H was refined and placed in the calculated position of N—H 0.88 ± 0.01 Å.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of bis[4-(dimethylamino)pyridinium] tetrabromidobis(4-chlorophenyl)stannate(IV) 4-bromochlorobenzene, showing 50% probability displacement ellipsoids and the atom numbering. Hydrogen atoms are drawn as spheres of arbitrary radius.
Bis[4-(dimethylamino)pyridinium] tetrabromidobis(4-chlorophenyl)stannate(IV)–4-bromochlorobenzene (1/1) top
Crystal data top
(C7H11N2)2[SnBr4(C6H4Cl)2]·C6H4BrClZ = 1
Mr = 1099.22F(000) = 530
Triclinic, P1Dx = 1.941 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7692 (18) ÅCell parameters from 6036 reflections
b = 10.128 (2) Åθ = 2.2–30.5°
c = 11.407 (2) ŵ = 6.23 mm1
α = 111.16 (3)°T = 100 K
β = 93.38 (3)°Block, colourless
γ = 92.85 (3)°0.45 × 0.26 × 0.19 mm
V = 940.4 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4265 independent reflections
Radiation source: fine-focus sealed tube3919 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 118
Tmin = 0.169, Tmax = 0.384k = 1313
7255 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0323P)2 + 0.8768P]
where P = (Fo2 + 2Fc2)/3
4265 reflections(Δ/σ)max = 0.001
207 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 1.12 e Å3
Crystal data top
(C7H11N2)2[SnBr4(C6H4Cl)2]·C6H4BrClγ = 92.85 (3)°
Mr = 1099.22V = 940.4 (3) Å3
Triclinic, P1Z = 1
a = 8.7692 (18) ÅMo Kα radiation
b = 10.128 (2) ŵ = 6.23 mm1
c = 11.407 (2) ÅT = 100 K
α = 111.16 (3)°0.45 × 0.26 × 0.19 mm
β = 93.38 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4265 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3919 reflections with I > 2σ(I)
Tmin = 0.169, Tmax = 0.384Rint = 0.019
7255 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 1.05Δρmax = 0.77 e Å3
4265 reflectionsΔρmin = 1.12 e Å3
207 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.50000.50000.50000.01198 (6)
Br10.43772 (3)0.21868 (2)0.45713 (2)0.01709 (7)
Br20.75993 (3)0.43138 (3)0.38027 (2)0.01756 (7)
Br30.77314 (5)0.20503 (4)0.97712 (4)0.02952 (10)0.50
Cl20.77314 (5)0.20503 (4)0.97712 (4)0.02952 (10)0.50
Cl10.13889 (10)0.39025 (9)0.06015 (7)0.03579 (19)
N10.1837 (3)0.2294 (2)0.5641 (2)0.0186 (4)
H10.25250.26750.52940.022*
N20.1383 (3)0.0420 (2)0.7154 (2)0.0210 (5)
C10.3775 (3)0.4724 (2)0.3230 (2)0.0151 (5)
C20.4409 (3)0.5295 (3)0.2416 (2)0.0184 (5)
H20.53680.58380.26580.022*
C30.3651 (3)0.5080 (3)0.1248 (3)0.0229 (6)
H30.40780.54820.06940.027*
C40.2268 (3)0.4272 (3)0.0906 (2)0.0240 (6)
C50.1589 (3)0.3723 (3)0.1713 (3)0.0242 (6)
H50.06230.31930.14720.029*
C60.2349 (3)0.3965 (3)0.2886 (2)0.0194 (5)
H60.18910.36090.34570.023*
C70.2277 (3)0.1231 (3)0.6020 (3)0.0202 (5)
H70.33310.09150.59280.024*
C80.1239 (3)0.0602 (3)0.6534 (2)0.0188 (5)
H80.15730.01460.67970.023*
C90.0341 (3)0.1054 (3)0.6681 (2)0.0159 (5)
C100.0741 (3)0.2198 (3)0.6290 (2)0.0173 (5)
H100.17810.25580.63830.021*
C110.0357 (3)0.2780 (3)0.5785 (2)0.0182 (5)
H110.00730.35450.55280.022*
C120.3025 (3)0.0848 (3)0.7299 (3)0.0281 (6)
H12A0.32740.12240.66480.042*
H12B0.36100.00230.72120.042*
H12C0.32890.15830.81340.042*
C130.0909 (4)0.0632 (3)0.7687 (3)0.0308 (7)
H13A0.03930.01690.84530.046*
H13B0.18120.10620.78960.046*
H13C0.02040.13710.70700.046*
C140.5185 (4)0.1403 (3)1.0834 (3)0.0282 (6)
H140.53170.23641.13960.034*
C150.6185 (4)0.0876 (3)0.9901 (3)0.0249 (6)
C160.5999 (4)0.0512 (3)0.9068 (3)0.0276 (6)
H160.66850.08530.84290.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01253 (12)0.01045 (11)0.01205 (11)0.00037 (8)0.00207 (8)0.00356 (8)
Br10.01696 (13)0.01231 (11)0.02127 (13)0.00079 (9)0.00159 (9)0.00599 (9)
Br20.01604 (13)0.01762 (12)0.01965 (13)0.00199 (9)0.00089 (9)0.00756 (10)
Br30.0333 (2)0.0299 (2)0.0258 (2)0.00401 (17)0.00423 (17)0.01252 (17)
Cl20.0333 (2)0.0299 (2)0.0258 (2)0.00401 (17)0.00423 (17)0.01252 (17)
Cl10.0435 (5)0.0421 (4)0.0144 (3)0.0164 (3)0.0097 (3)0.0016 (3)
N10.0168 (11)0.0179 (10)0.0218 (11)0.0034 (8)0.0034 (9)0.0087 (9)
N20.0219 (12)0.0216 (11)0.0209 (11)0.0057 (9)0.0017 (9)0.0094 (9)
C10.0183 (12)0.0117 (10)0.0125 (11)0.0033 (9)0.0015 (9)0.0012 (9)
C20.0183 (12)0.0189 (12)0.0178 (12)0.0046 (10)0.0002 (10)0.0063 (10)
C30.0261 (14)0.0282 (14)0.0164 (12)0.0111 (11)0.0038 (11)0.0092 (11)
C40.0275 (15)0.0252 (13)0.0137 (12)0.0118 (11)0.0050 (10)0.0003 (10)
C50.0222 (14)0.0218 (13)0.0231 (14)0.0012 (11)0.0085 (11)0.0032 (11)
C60.0188 (13)0.0193 (12)0.0179 (12)0.0006 (10)0.0035 (10)0.0052 (10)
C70.0176 (13)0.0194 (12)0.0216 (13)0.0016 (10)0.0003 (10)0.0060 (10)
C80.0229 (14)0.0158 (11)0.0178 (12)0.0011 (10)0.0010 (10)0.0066 (10)
C90.0206 (13)0.0141 (11)0.0114 (11)0.0054 (9)0.0000 (9)0.0025 (9)
C100.0165 (12)0.0172 (11)0.0187 (12)0.0010 (9)0.0004 (10)0.0075 (10)
C110.0209 (13)0.0161 (11)0.0181 (12)0.0012 (10)0.0009 (10)0.0075 (10)
C120.0196 (14)0.0363 (16)0.0294 (15)0.0120 (12)0.0009 (12)0.0124 (13)
C130.0401 (18)0.0283 (15)0.0313 (16)0.0090 (13)0.0012 (13)0.0192 (13)
C140.0389 (17)0.0190 (12)0.0208 (14)0.0096 (12)0.0056 (12)0.0004 (10)
C150.0312 (15)0.0216 (13)0.0192 (13)0.0061 (11)0.0089 (11)0.0055 (11)
C160.0338 (16)0.0253 (14)0.0197 (13)0.0110 (12)0.0019 (12)0.0028 (11)
Geometric parameters (Å, º) top
Sn1—C1i2.148 (3)C5—H50.9500
Sn1—C12.148 (3)C6—H60.9500
Sn1—Br2i2.7172 (9)C7—C81.357 (4)
Sn1—Br22.7172 (8)C7—H70.9500
Sn1—Br12.7319 (7)C8—C91.418 (4)
Sn1—Br1i2.7319 (7)C8—H80.9500
Br3—C151.807 (3)C9—C101.420 (3)
Cl1—C41.744 (3)C10—C111.357 (4)
N1—C111.344 (3)C10—H100.9500
N1—C71.346 (3)C11—H110.9500
N1—H10.8800C12—H12A0.9800
N2—C91.337 (3)C12—H12B0.9800
N2—C131.460 (4)C12—H12C0.9800
N2—C121.465 (4)C13—H13A0.9800
C1—C21.386 (4)C13—H13B0.9800
C1—C61.392 (4)C13—H13C0.9800
C2—C31.392 (4)C14—C16ii1.378 (5)
C2—H20.9500C14—C151.389 (4)
C3—C41.382 (4)C14—H140.9500
C3—H30.9500C15—C161.379 (4)
C4—C51.383 (4)C16—C14ii1.378 (5)
C5—C61.391 (4)C16—H160.9500
C1i—Sn1—C1180.0C1—C6—H6119.7
C1i—Sn1—Br2i89.62 (7)N1—C7—C8121.0 (2)
C1—Sn1—Br2i90.38 (7)N1—C7—H7119.5
C1i—Sn1—Br290.38 (7)C8—C7—H7119.5
C1—Sn1—Br289.62 (7)C7—C8—C9120.5 (2)
Br2i—Sn1—Br2180.0C7—C8—H8119.8
C1i—Sn1—Br189.88 (7)C9—C8—H8119.8
C1—Sn1—Br190.12 (7)N2—C9—C8121.3 (2)
Br2i—Sn1—Br191.55 (3)N2—C9—C10122.5 (2)
Br2—Sn1—Br188.45 (3)C8—C9—C10116.2 (2)
C1i—Sn1—Br1i90.12 (7)C11—C10—C9120.2 (2)
C1—Sn1—Br1i89.88 (7)C11—C10—H10119.9
Br2i—Sn1—Br1i88.45 (3)C9—C10—H10119.9
Br2—Sn1—Br1i91.55 (3)N1—C11—C10121.3 (2)
Br1—Sn1—Br1i180.0N1—C11—H11119.4
C11—N1—C7120.7 (2)C10—C11—H11119.4
C11—N1—H1119.6N2—C12—H12A109.5
C7—N1—H1119.6N2—C12—H12B109.5
C9—N2—C13120.7 (2)H12A—C12—H12B109.5
C9—N2—C12122.5 (2)N2—C12—H12C109.5
C13—N2—C12116.4 (2)H12A—C12—H12C109.5
C2—C1—C6119.5 (2)H12B—C12—H12C109.5
C2—C1—Sn1120.03 (18)N2—C13—H13A109.5
C6—C1—Sn1120.51 (19)N2—C13—H13B109.5
C1—C2—C3120.5 (3)H13A—C13—H13B109.5
C1—C2—H2119.7N2—C13—H13C109.5
C3—C2—H2119.7H13A—C13—H13C109.5
C4—C3—C2118.9 (3)H13B—C13—H13C109.5
C4—C3—H3120.6C16ii—C14—C15119.1 (3)
C2—C3—H3120.6C16ii—C14—H14120.4
C3—C4—C5121.8 (3)C15—C14—H14120.4
C3—C4—Cl1118.7 (2)C16—C15—C14121.1 (3)
C5—C4—Cl1119.5 (2)C16—C15—Br3119.9 (2)
C4—C5—C6118.6 (3)C14—C15—Br3119.0 (2)
C4—C5—H5120.7C14ii—C16—C15119.7 (3)
C6—C5—H5120.7C14ii—C16—H16120.1
C5—C6—C1120.6 (3)C15—C16—H16120.1
C5—C6—H6119.7
C1i—Sn1—C1—C219 (100)C2—C1—C6—C52.8 (4)
Br2i—Sn1—C1—C2134.73 (19)Sn1—C1—C6—C5176.7 (2)
Br2—Sn1—C1—C245.27 (19)C11—N1—C7—C81.4 (4)
Br1—Sn1—C1—C2133.72 (19)N1—C7—C8—C90.0 (4)
Br1i—Sn1—C1—C246.28 (19)C13—N2—C9—C88.1 (4)
C1i—Sn1—C1—C6161 (100)C12—N2—C9—C8179.0 (2)
Br2i—Sn1—C1—C645.7 (2)C13—N2—C9—C10172.4 (2)
Br2—Sn1—C1—C6134.3 (2)C12—N2—C9—C100.5 (4)
Br1—Sn1—C1—C645.8 (2)C7—C8—C9—N2178.2 (2)
Br1i—Sn1—C1—C6134.2 (2)C7—C8—C9—C101.3 (4)
C6—C1—C2—C31.9 (4)N2—C9—C10—C11178.2 (2)
Sn1—C1—C2—C3177.68 (19)C8—C9—C10—C111.3 (4)
C1—C2—C3—C40.9 (4)C7—N1—C11—C101.4 (4)
C2—C3—C4—C52.8 (4)C9—C10—C11—N10.0 (4)
C2—C3—C4—Cl1175.6 (2)C16ii—C14—C15—C160.7 (5)
C3—C4—C5—C61.8 (4)C16ii—C14—C15—Br3179.7 (2)
Cl1—C4—C5—C6176.5 (2)C14—C15—C16—C14ii0.7 (5)
C4—C5—C6—C11.0 (4)Br3—C15—C16—C14ii179.7 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula(C7H11N2)2[SnBr4(C6H4Cl)2]·C6H4BrCl
Mr1099.22
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.7692 (18), 10.128 (2), 11.407 (2)
α, β, γ (°)111.16 (3), 93.38 (3), 92.85 (3)
V3)940.4 (3)
Z1
Radiation typeMo Kα
µ (mm1)6.23
Crystal size (mm)0.45 × 0.26 × 0.19
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.169, 0.384
No. of measured, independent and
observed [I > 2σ(I)] reflections
7255, 4265, 3919
Rint0.019
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.062, 1.05
No. of reflections4265
No. of parameters207
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 1.12

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2009).

 

Acknowledgements

We thank the University of Malaya (grant Nos. PS072/2007C and PS320/2008C) for supporting this study.

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKoon, Y. C., Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m663.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m630.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationYap, Q. L., Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m696.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds