organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2,6-Di­meth­oxy­phen­yl)-5-hydr­­oxy-7-meth­­oxy-4H-1-benzo­pyran-4-one

aDepartment of Physics, S. V. University, Tirupati 517 502, India, bDepartment of Chemistry, S. V. University, Tirupati 517 502, India, and cCentre of Material Characterisation, National Chemical Laboratory, Pune 411 008, India
*Correspondence e-mail: mkphysvu@yahoo.co.in

(Received 6 July 2009; accepted 15 August 2009; online 29 August 2009)

In the title compound, C18H16O6, the dimethoxy­phenyl ring is rotated by 61.8 (1)° from the plane of the benzopyran system. The mol­ecule is stabilized by an intra­molecular O—H⋯O hydrogen bond.

Related literature

The title compound, along with a terpinoid and six other flavonoids, was isolated from the roots and the aerial parts of Andrographis peniculata Nees (Reddy et al., 2003[Reddy, M. K., Reddy, M. V. B., Gunasekhar, D., Murthy, M. M., Caux, M. & Bodo, B. (2003). Phytochemistry, 62, 1271-1275.]), a herb widely distributed in the plains of India and Sri Lanka (Gamble, 1956[Gamble, J. S. (1956). Flora of Presidency of Madras, Vol 2, p. 1048. Calcutta: Botanical Survey of India.]). In traditional Indian medicine, the whole plant of A. peniculata is extensively used in the treatment of dyspepsia, dysentery, malaria, respiratory infections and as an anti­dote for snake bites, see: Kirtikar & Basu (1975[Kirtikar, K. R. & Basu, B. D. (1975). Indian Medicinal Plants, Vol. 3, pp. 1884-1886. New Delhi: Periodical Express.]); Chopra et al. (1980[Chopra, R. N., Nayer, S. L. & Chopra, I. C. (1980). Glossary of Indian Medicinal Plants, p. 18. New Delhi: Council of Scientific and Industrial Research.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16O6

  • Mr = 328.31

  • Monoclinic, P 21 /n

  • a = 11.003 (7) Å

  • b = 11.015 (7) Å

  • c = 13.734 (9) Å

  • β = 113.159 (10)°

  • V = 1530.4 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 295 K

  • 0.69 × 0.37 × 0.36 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.929, Tmax = 0.969

  • 7431 measured reflections

  • 2675 independent reflections

  • 2300 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.096

  • S = 1.04

  • 2675 reflections

  • 221 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯O4 0.82 1.82 2.560 (2) 149

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

The title compound along with a terpinoid and six other flavonoids were isolated from the roots and the aerial parts of Andrographis peniculata Nees (Reddy et al., 2003), an erect herb widely distributed in the plains throughout India and Srilanka (Gamble, 1956). In traditional Indian medicine the whole plant of A. peniculata is extensively used in the treatment of dyspepsia, dysentery, malaria, respiratory infections and as an antidote for snake bites (Kirtikar & Basu, 1975; Chopra et al., 1980). As a part of our ongoing investigation on medicinal plants, we report the structure of the title compound (I) (Fig.1).

The benzopyran ring is slightly planar with a maximum deviation from the plane of 0.034 (1) Å. The dihedral angle between the least-squares planes of the phenyl ring and the benzopyran moiety is 61.8 (1)°. The non planarity of the phenolic ring is due to the presence of the steric hindrance caused by 2',6' dioxygenation resulting the decrease in the conjugation of the phenyl ring with the carbonyl group. The absence of conjugation means that there will be more delocalization of π-electrons in C2, C3, C4, and O4 unit. The C2–C1' bond length (1.475 (2)Å) is within the 3σ of the average 4sp2-4sp3 bond distance of 1.48 Å.

Related literature top

The title compound, along with a terpinoid and six other flavonoids, was isolated from the roots and the aerial parts of Andrographis peniculata Nees (Reddy et al., 2003), a herb widely distributed in the plains of India and Sri Lanka (Gamble, 1956). In traditional Indian medicine, the whole plant of A. peniculata is extensively used in the treatment of dyspepsia, dysentery, malaria, respiratory infections and as an antidote for snake bites, see: Kirtikar & Basu (1975); Chopra et al. (1980).

Experimental top

The shade dried and powdered roots of whole plant of A. paniculata Nees (3 kg) was successively extracted with n-hexane, Me2CO and MeOH. The acetone extract on purification over a silica gel column using n-hexane EtoAc step gradients yielded 18 mg of the title compound with a m.p. of 196–198°C and recrystalized by slow evaporation from a hexane solution.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.93Å (aromatic H) or 0.96Å (methyl H) or 0.82Å (oxygen H) and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq (C-aromatic) or Uiso(H) = 1.5Ueq for methyl and oxygen atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999); software used to prepare material for publication: enCIFer (Allen et al., 2004) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. View of the molecule showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary radius.
2-(2,6-Dimethoxyphenyl)-5-hydroxy-7-methoxy-4H-1-benzopyran-4-one top
Crystal data top
C18H16O6F(000) = 688
Mr = 328.31Dx = 1.425 Mg m3
Dm = 1.42 Mg m3
Dm measured by none
Monoclinic, P21/nMelting point: 469 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.003 (7) ÅCell parameters from 25 reflections
b = 11.015 (7) Åθ = 2–25°
c = 13.734 (9) ŵ = 0.11 mm1
β = 113.159 (10)°T = 295 K
V = 1530.4 (17) Å3Needle, colourless
Z = 40.69 × 0.37 × 0.36 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2675 independent reflections
Radiation source: fine-focus sealed tube2300 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 2.5°
ω scansh = 713
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1313
Tmin = 0.929, Tmax = 0.969l = 1616
7431 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0462P)2 + 0.3516P]
where P = (Fo2 + 2Fc2)/3
2675 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C18H16O6V = 1530.4 (17) Å3
Mr = 328.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.003 (7) ŵ = 0.11 mm1
b = 11.015 (7) ÅT = 295 K
c = 13.734 (9) Å0.69 × 0.37 × 0.36 mm
β = 113.159 (10)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2675 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2300 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.969Rint = 0.023
7431 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.04Δρmax = 0.17 e Å3
2675 reflectionsΔρmin = 0.18 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is ?t relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.95634 (9)0.63933 (8)0.16154 (8)0.0376 (3)
C20.97394 (14)0.75775 (13)0.14376 (12)0.0361 (3)
C31.06401 (15)0.79404 (13)0.10773 (12)0.0412 (4)
H31.07200.87640.09670.049*
C41.14884 (15)0.71009 (13)0.08555 (12)0.0391 (3)
O41.23188 (12)0.74190 (10)0.04933 (10)0.0526 (3)
C51.13251 (14)0.58600 (13)0.10870 (11)0.0350 (3)
C61.21312 (15)0.49245 (14)0.09621 (12)0.0393 (3)
O61.30566 (12)0.52024 (11)0.05872 (11)0.0560 (3)
H61.30260.59310.04580.084*
C71.19766 (16)0.37579 (14)0.12164 (12)0.0436 (4)
H71.25240.31510.11460.052*
C81.09978 (15)0.34760 (13)0.15815 (12)0.0403 (3)
O81.09338 (12)0.22951 (9)0.18118 (10)0.0537 (3)
C91.01709 (14)0.43571 (13)0.16945 (11)0.0375 (3)
H90.95060.41620.19260.045*
C5A1.03645 (13)0.55351 (13)0.14532 (11)0.0333 (3)
C100.9930 (2)0.19296 (17)0.21541 (17)0.0638 (5)
H10A1.00440.23460.27980.096*
H10B0.99870.10700.22780.096*
H10C0.90800.21250.16180.096*
C1'0.88314 (14)0.83990 (13)0.16728 (12)0.0376 (3)
C2'0.88837 (14)0.85308 (13)0.26936 (12)0.0396 (4)
O2'0.97735 (11)0.78129 (10)0.34356 (8)0.0467 (3)
C3'0.80767 (16)0.93686 (15)0.28990 (14)0.0479 (4)
H3'0.81190.94670.35840.057*
C4'0.72169 (17)1.00504 (15)0.20869 (15)0.0521 (4)
H4'0.66801.06130.22310.063*
C5'0.71262 (16)0.99273 (14)0.10730 (14)0.0493 (4)
H5'0.65231.03880.05300.059*
C6'0.79435 (15)0.91074 (14)0.08648 (13)0.0426 (4)
O6'0.79624 (13)0.89242 (11)0.00985 (9)0.0594 (3)
C120.70572 (18)0.95611 (16)0.09779 (14)0.0551 (4)
H12A0.61720.93170.10970.083*
H12B0.72320.93810.15950.083*
H12C0.71521.04180.08400.083*
C110.99169 (19)0.79582 (17)0.44992 (13)0.0557 (5)
H11A1.01450.87850.47130.084*
H11B1.06030.74300.49470.084*
H11C0.91000.77570.45580.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0400 (6)0.0327 (5)0.0456 (6)0.0029 (4)0.0227 (5)0.0012 (4)
C20.0384 (8)0.0313 (7)0.0373 (8)0.0008 (6)0.0135 (6)0.0020 (6)
C30.0455 (9)0.0317 (8)0.0498 (9)0.0011 (6)0.0223 (7)0.0006 (7)
C40.0404 (8)0.0408 (8)0.0390 (8)0.0015 (7)0.0187 (7)0.0003 (7)
O40.0583 (7)0.0444 (6)0.0717 (8)0.0006 (5)0.0435 (7)0.0037 (6)
C50.0362 (7)0.0364 (8)0.0322 (7)0.0005 (6)0.0132 (6)0.0025 (6)
C60.0388 (8)0.0418 (8)0.0404 (8)0.0018 (6)0.0188 (7)0.0038 (7)
O60.0579 (7)0.0495 (7)0.0795 (8)0.0053 (6)0.0474 (7)0.0004 (6)
C70.0447 (9)0.0378 (8)0.0496 (9)0.0081 (7)0.0200 (7)0.0040 (7)
C80.0442 (8)0.0336 (8)0.0394 (8)0.0001 (7)0.0127 (7)0.0025 (7)
O80.0639 (8)0.0317 (6)0.0708 (8)0.0032 (5)0.0323 (7)0.0043 (5)
C90.0387 (8)0.0360 (8)0.0395 (8)0.0017 (6)0.0172 (7)0.0011 (6)
C5A0.0340 (7)0.0334 (7)0.0317 (7)0.0024 (6)0.0120 (6)0.0037 (6)
C100.0678 (12)0.0427 (10)0.0818 (13)0.0062 (9)0.0305 (11)0.0124 (10)
C1'0.0361 (8)0.0315 (7)0.0463 (8)0.0001 (6)0.0176 (7)0.0041 (7)
C2'0.0389 (8)0.0347 (8)0.0493 (9)0.0009 (6)0.0217 (7)0.0001 (7)
O2'0.0522 (6)0.0483 (7)0.0443 (6)0.0107 (5)0.0242 (5)0.0017 (5)
C3'0.0542 (10)0.0445 (9)0.0574 (10)0.0042 (8)0.0353 (9)0.0015 (8)
C4'0.0529 (10)0.0408 (9)0.0753 (12)0.0102 (8)0.0388 (10)0.0004 (9)
C5'0.0445 (9)0.0408 (9)0.0623 (11)0.0094 (7)0.0207 (8)0.0033 (8)
C6'0.0418 (8)0.0356 (8)0.0487 (9)0.0010 (7)0.0162 (7)0.0045 (7)
O6'0.0695 (8)0.0590 (8)0.0417 (6)0.0255 (6)0.0131 (6)0.0009 (6)
C120.0575 (10)0.0465 (10)0.0509 (10)0.0044 (8)0.0101 (8)0.0066 (8)
C110.0676 (11)0.0585 (11)0.0481 (10)0.0069 (9)0.0301 (9)0.0014 (8)
Geometric parameters (Å, º) top
O1—C21.3549 (19)C10—H10B0.9600
O1—C5A1.3692 (17)C10—H10C0.9600
C2—C31.331 (2)C1'—C2'1.388 (2)
C2—C1'1.475 (2)C1'—C6'1.394 (2)
C3—C41.429 (2)C2'—O2'1.3555 (19)
C3—H30.9300C2'—C3'1.384 (2)
C4—O41.2500 (18)O2'—C111.415 (2)
C4—C51.431 (2)C3'—C4'1.369 (2)
C5—C5A1.384 (2)C3'—H3'0.9300
C5—C61.413 (2)C4'—C5'1.363 (3)
C6—O61.3445 (18)C4'—H4'0.9300
C6—C71.360 (2)C5'—C6'1.381 (2)
O6—H60.8200C5'—H5'0.9300
C7—C81.390 (2)C6'—O6'1.346 (2)
C7—H70.9300O6'—C121.413 (2)
C8—O81.347 (2)C12—H12A0.9600
C8—C91.380 (2)C12—H12B0.9600
O8—C101.418 (2)C12—H12C0.9600
C9—C5A1.376 (2)C11—H11A0.9600
C9—H90.9300C11—H11B0.9600
C10—H10A0.9600C11—H11C0.9600
C2—O1—C5A119.25 (11)H10A—C10—H10C109.5
C3—C2—O1122.42 (13)H10B—C10—H10C109.5
C3—C2—C1'124.37 (14)C2'—C1'—C6'118.90 (13)
O1—C2—C1'113.21 (12)C2'—C1'—C2121.52 (13)
C2—C3—C4121.93 (14)C6'—C1'—C2119.49 (13)
C2—C3—H3119.0O2'—C2'—C3'124.56 (14)
C4—C3—H3119.0O2'—C2'—C1'115.41 (13)
O4—C4—C3122.98 (14)C3'—C2'—C1'120.03 (14)
O4—C4—C5122.11 (13)C2'—O2'—C11117.66 (12)
C3—C4—C5114.91 (13)C4'—C3'—C2'119.54 (15)
C5A—C5—C6117.44 (13)C4'—C3'—H3'120.2
C5A—C5—C4120.55 (13)C2'—C3'—H3'120.2
C6—C5—C4122.00 (13)C5'—C4'—C3'121.82 (15)
O6—C6—C7120.24 (13)C5'—C4'—H4'119.1
O6—C6—C5119.10 (14)C3'—C4'—H4'119.1
C7—C6—C5120.66 (14)C4'—C5'—C6'118.98 (16)
C6—O6—H6109.5C4'—C5'—H5'120.5
C6—C7—C8119.78 (14)C6'—C5'—H5'120.5
C6—C7—H7120.1O6'—C6'—C5'124.35 (15)
C8—C7—H7120.1O6'—C6'—C1'114.93 (13)
O8—C8—C9123.71 (14)C5'—C6'—C1'120.72 (15)
O8—C8—C7114.82 (13)C6'—O6'—C12119.16 (13)
C9—C8—C7121.46 (14)O6'—C12—H12A109.5
C8—O8—C10118.13 (13)O6'—C12—H12B109.5
C5A—C9—C8117.69 (14)H12A—C12—H12B109.5
C5A—C9—H9121.2O6'—C12—H12C109.5
C8—C9—H9121.2H12A—C12—H12C109.5
O1—C5A—C9116.19 (13)H12B—C12—H12C109.5
O1—C5A—C5120.86 (13)O2'—C11—H11A109.5
C9—C5A—C5122.94 (13)O2'—C11—H11B109.5
O8—C10—H10A109.5H11A—C11—H11B109.5
O8—C10—H10B109.5O2'—C11—H11C109.5
H10A—C10—H10B109.5H11A—C11—H11C109.5
O8—C10—H10C109.5H11B—C11—H11C109.5
C5A—O1—C2—C32.1 (2)C6—C5—C5A—O1178.64 (12)
C5A—O1—C2—C1'178.43 (12)C4—C5—C5A—O10.9 (2)
O1—C2—C3—C40.2 (2)C6—C5—C5A—C90.0 (2)
C1'—C2—C3—C4179.53 (14)C4—C5—C5A—C9179.56 (14)
C2—C3—C4—O4178.26 (15)C3—C2—C1'—C2'115.93 (18)
C2—C3—C4—C52.2 (2)O1—C2—C1'—C2'64.66 (18)
O4—C4—C5—C5A177.77 (14)C3—C2—C1'—C6'60.8 (2)
C3—C4—C5—C5A2.7 (2)O1—C2—C1'—C6'118.64 (15)
O4—C4—C5—C62.7 (2)C6'—C1'—C2'—O2'179.85 (13)
C3—C4—C5—C6176.84 (14)C2—C1'—C2'—O2'3.1 (2)
C5A—C5—C6—O6178.63 (13)C6'—C1'—C2'—C3'1.0 (2)
C4—C5—C6—O61.8 (2)C2—C1'—C2'—C3'175.73 (14)
C5A—C5—C6—C71.4 (2)C3'—C2'—O2'—C112.1 (2)
C4—C5—C6—C7178.17 (15)C1'—C2'—O2'—C11176.67 (14)
O6—C6—C7—C8178.61 (14)O2'—C2'—C3'—C4'179.69 (15)
C5—C6—C7—C81.4 (2)C1'—C2'—C3'—C4'0.9 (2)
C6—C7—C8—O8179.87 (14)C2'—C3'—C4'—C5'0.2 (3)
C6—C7—C8—C90.0 (2)C3'—C4'—C5'—C6'1.2 (3)
C9—C8—O8—C102.3 (2)C4'—C5'—C6'—O6'178.63 (15)
C7—C8—O8—C10177.86 (15)C4'—C5'—C6'—C1'1.2 (2)
O8—C8—C9—C5A178.53 (14)C2'—C1'—C6'—O6'179.76 (13)
C7—C8—C9—C5A1.3 (2)C2—C1'—C6'—O6'3.0 (2)
C2—O1—C5A—C9177.17 (13)C2'—C1'—C6'—C5'0.1 (2)
C2—O1—C5A—C51.57 (19)C2—C1'—C6'—C5'176.86 (14)
C8—C9—C5A—O1177.40 (12)C5'—C6'—O6'—C122.9 (2)
C8—C9—C5A—C51.3 (2)C1'—C6'—O6'—C12177.24 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O40.821.822.560 (2)149

Experimental details

Crystal data
Chemical formulaC18H16O6
Mr328.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)11.003 (7), 11.015 (7), 13.734 (9)
β (°) 113.159 (10)
V3)1530.4 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.69 × 0.37 × 0.36
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.929, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
7431, 2675, 2300
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.096, 1.04
No. of reflections2675
No. of parameters221
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.18

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1999), enCIFer (Allen et al., 2004) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O40.821.822.560 (2)148.8
 

Acknowledgements

MK thanks the University Grants Commission, New Delhi, for financial support as a major project.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChopra, R. N., Nayer, S. L. & Chopra, I. C. (1980). Glossary of Indian Medicinal Plants, p. 18. New Delhi: Council of Scientific and Industrial Research.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGamble, J. S. (1956). Flora of Presidency of Madras, Vol 2, p. 1048. Calcutta: Botanical Survey of India.  Google Scholar
First citationKirtikar, K. R. & Basu, B. D. (1975). Indian Medicinal Plants, Vol. 3, pp. 1884–1886. New Delhi: Periodical Express.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationReddy, M. K., Reddy, M. V. B., Gunasekhar, D., Murthy, M. M., Caux, M. & Bodo, B. (2003). Phytochemistry, 62, 1271–1275.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds