metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1063-m1064

Octa­kis[2,2′,5,5′-tetra­thia­fulvalenium(0.5+)] bis­­[hexa­molybdate(2−)] aceto­nitrile solvate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences, Université Mentouri, 25000 Constantine, Algeria, and bUniversité 20 Aout 1955, Skikda, Algeria
*Correspondence e-mail: boufas_sihem@yahoo.fr

(Received 30 July 2009; accepted 5 August 2009; online 12 August 2009)

The asymmetric unit of the title compound, (C6H4S4)8[Mo6O19]2·CH3CN, contains two halves of two centrosymmetric [Mo6O19]2− hexa­molybdate anions, which are each built up from six distorted MoO6 octa­hedra sharing common edges and one common vertex at the central O atom, six tetra­thia­fulvalene cations (three of which are located on mirror planes) to balance the charge and a half of an acetonitrile solvent mol­ecule, likewise located on a mirror plane. The two central hexa­molybdate O atoms occupy special positions 2a and 2d, respectively. The cations and anions are inter­linked through C—H⋯O contacts.

Related literature

For the chemical and physical properties of polyoxo­molybdates, see: Shi et al. (2006[Shi, Y., Yang, W., Xue, G., Hu, H. & Wang, J. (2006). J. Mol. Struct. 784, 244-248.]); Wang et al. (2004[Wang, X., Guo, Y., Wang, E., Duan, L., Xu, X. & Hu, C. (2004). J. Mol. Struct. 691, 171-180.]); Hagrman et al. (1999[Hagrman, P. J., Hagrman, D. & Zubieta, Z. (1999). Angew. Chem. Int. Ed. Engl. 38, 2638-2684.]). For the structure of ammonium tris­(tetra­ethyl­ammonium) hexa­cosa­oxidoocta­molybdate, see: Zebiri et al. (2008[Zebiri, I., Bencharif, L., Direm, A., Bencharif, M. & Benali-Cherif, N. (2008). Acta Cryst. E64, m474-m475.]). The title compound is isostructural with its tungsten analogue, see: Triki et al. (1993[Triki, S., Ouahab, L. & Grandjean, D. (1993). Acta Cryst. C49, 132-135.]). The structure of the anions is the same as that in bis­[2-(pyrimidin-2-yl­amino)pyrimidinium] hexa­molybdate, see: Yeh et al. (2008[Yeh, C.-W., Lin, C.-H. & Chen, J.-D. (2008). Acta Cryst. E64, m41.]). For Mo—O distances, see: Boyle et al. (1998[Boyle, P. D., Stauffer, T. C., Wirgau, J. I. & Cornman, C. R. (1998). Acta Cryst. C54, IUC9800011.]); Deng et al. (2006[Deng, X.-T., Wang, X.-Y. & Wang, C.-G. (2006). Acta Cryst. E62, m2000-m2001.]); Maeda et al. (2006[Maeda, D., Aritome, I., Shimakoshi, H. & Hisaeda, Y. (2006). Acta Cryst. E62, m1272-m1274.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H4S4)8[Mo6O19]2·C2H3N

  • Mr = 3434.99

  • Monoclinic, P 21 /m

  • a = 14.3179 (8) Å

  • b = 20.2299 (10) Å

  • c = 16.7625 (10) Å

  • β = 101.266 (3)°

  • V = 4761.7 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.31 mm−1

  • T = 100 K

  • 0.25 × 0.15 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.597, Tmax = 0.802

  • 45527 measured reflections

  • 11170 independent reflections

  • 8144 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.073

  • S = 1

  • 11170 reflections

  • 629 parameters

  • H-atom parameters constrained

  • Δρmax = 0.88 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O11i 0.93 2.28 3.192 (6) 167
C7—H7⋯O19ii 0.93 2.47 3.251 (7) 141
C7—H7⋯O19iii 0.93 2.47 3.251 (7) 141
C9—H9⋯O12 0.93 2.54 3.388 (5) 151
C13—H13⋯O17iv 0.93 2.41 3.239 (6) 149
C14—H14⋯O19v 0.93 2.59 3.175 (5) 121
C18—H18⋯O18vi 0.93 2.41 3.145 (5) 136
C19—H19⋯O10vii 0.93 2.41 3.298 (5) 160
C20—H20⋯O12 0.93 2.54 3.437 (5) 162
C24—H24⋯O8viii 0.93 2.25 3.075 (6) 148
C28—H28⋯O4viii 0.93 2.53 3.384 (6) 152
C29—H29⋯O5viii 0.93 2.52 3.256 (6) 137
C29—H29⋯O6viii 0.93 2.55 3.284 (6) 136
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z]; (ii) [-x, y+{\script{1\over 2}}, -z+1]; (iii) -x, -y+1, -z+1; (iv) [x, -y+{\script{1\over 2}}, z-1]; (v) x+1, y, z-1; (vi) x, y, z-1; (vii) [x+1, -y+{\script{1\over 2}}, z-1]; (viii) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

As part of an ongoing study of materials containing polyoxomolybdates, we have just recently determined the structure of ammonium tris(tetraethylammonium) hexacosaoxidooctamolybdate (Zebiri et al., 2008). These materials show interesting chemical and physical properties (Shi et al., 2006; Wang, et al., 2004; Hagrman, et al., 1999).

The asymmetric unit of the title compound consists of a half neutral acetonitrile; two hexamolybdate anions and six tetrathiafulvalene in witch two ones are (+1) charged and the rest ones with +0.5 charge (Fig. 1). The title compound is isostructural to (TTF)4W6O19.0.5(CH3CN) reported by Triki et al. (1993). The structure of the anions, as reported recently in Bis[2-(pyrimidin-2-ylamino)pyrimidinium] hexamolybdate (Yeh et al., 2008), is constructed from an array of six edge-shared MoO6 octahedra with six O(t), ten O(µ2) and one O(µ6) atoms.

The Mo—O distances, ranging from 1.681 (3) to 2.3363 (4) Å, agree with those reported for other [Mo6O19]2- anions in the literature (Deng et al., 2006; Maeda et al., 2006; Boyle et al., 1998) and can be grouped into three sets bridging groups [Mo—O(terminal) 1.681 (3) -1.696 (3) Å, Mo—O(µ2): 1.850 (3) -2.027 (3) (1) Å and Mo—O(µ6): 2.3151 (4) (1)- 2.3363 (4) (1) Å.

Hexamolybdate anions spread along the b axis (Fig. 2) between which organic moieties intercalate. The cations and anions are interlinked through C—H···O contacts.

Related literature top

For the chemical and physical properties of polyoxomolybdates, see: Shi et al. (2006); Wang et al. (2004); Hagrman et al. (1999). For the structure of ammonium tris(tetraethylammonium) hexacosaoxidooctamolybdate, see: Zebiri et al. (2008). The title compound is isostructural to (TTF)4W6O19.0.5CH3CN, see: Triki et al. (1993). The structure of the anions is the same as that in bis[2-(pyrimidin-2-ylamino)pyrimidinium] hexamolybdate, see: Yeh et al. (2008);. For Mo—O distances, see: Boyle et al. (1998); Deng et al. (2006); Maeda et al. (2006).

Experimental top

Single crystals of the title compound were prepared from a mixture of (NH4)6Mo7O24. 1.5 H2O (137 mg, 1 mmol), C6S4H4 (TTF) (612 mg, 3 mmol) and 3 ml H2O, heated in a Teflon-lined steel autoclave inside a programmable electric furnace at 160 ° C for 3 days. After cooling the autoclave to room temperature for 72 h, colorless crystals were obtained, filtered, washed with H2O, EtOH, Et2O and dried in air.

Refinement top

H atoms were positioned geometrically and treated as riding, with C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C). The methyl H atoms were constrained to an ideal geometry (C—H = 0.96 Å) with Uiso(H) = 1.2Ueq(C), but were allowed to rotate freely about the C—C bonds.

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The independent components of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. hexamolybdate anions positions on the unit cell.
Octakis[2,2',5,5'-tetrathiafulvalenium(0.5+)] bis[hexamolybdate(2-)] acetonitrile solvate top
Crystal data top
(C6H4S4)8[Mo6O19]2·C2H3NF(000) = 3324
Mr = 3434.99Dx = 2.396 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 2190 reflections
a = 14.3179 (8) Åθ = 2.8–27.3°
b = 20.2299 (10) ŵ = 2.31 mm1
c = 16.7625 (10) ÅT = 100 K
β = 101.266 (3)°Plates, colourless
V = 4761.7 (5) Å30.25 × 0.15 × 0.1 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
11170 independent reflections
Radiation source: fine-focus sealed X-ray tube8144 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1818
Tmin = 0.597, Tmax = 0.802k = 2626
45527 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.021P)2]
where P = (Fo2 + 2Fc2)/3
S = 1(Δ/σ)max = 0.003
11170 reflectionsΔρmax = 0.88 e Å3
629 parametersΔρmin = 0.70 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.08 (2)
Crystal data top
(C6H4S4)8[Mo6O19]2·C2H3NV = 4761.7 (5) Å3
Mr = 3434.99Z = 2
Monoclinic, P21/mMo Kα radiation
a = 14.3179 (8) ŵ = 2.31 mm1
b = 20.2299 (10) ÅT = 100 K
c = 16.7625 (10) Å0.25 × 0.15 × 0.1 mm
β = 101.266 (3)°
Data collection top
Nonius KappaCCD
diffractometer
11170 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
8144 reflections with I > 2σ(I)
Tmin = 0.597, Tmax = 0.802Rint = 0.072
45527 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1Δρmax = 0.88 e Å3
11170 reflectionsΔρmin = 0.70 e Å3
629 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.56723 (3)0.411518 (19)0.58067 (2)0.01535 (9)
Mo20.37343 (3)0.500847 (18)0.56738 (2)0.01262 (8)
Mo50.41862 (3)0.425991 (19)0.40423 (2)0.01562 (9)
Mo30.09471 (3)0.007942 (18)0.90255 (2)0.01440 (9)
Mo40.12057 (3)0.050345 (18)1.09450 (2)0.01550 (9)
Mo60.06607 (3)0.102673 (18)0.96110 (2)0.01461 (9)
S40.69926 (8)0.32365 (5)0.32774 (7)0.0171 (2)
S10.83864 (9)0.32314 (6)0.19478 (7)0.0194 (3)
S20.31973 (9)0.32349 (5)0.68472 (7)0.0193 (3)
S31.13888 (8)0.41650 (5)0.47871 (7)0.0141 (2)
S50.85700 (8)0.41673 (5)0.53863 (7)0.0134 (2)
S60.94719 (8)0.41562 (5)0.37833 (7)0.0148 (2)
S71.04691 (8)0.41757 (5)0.64209 (7)0.0158 (2)
S80.19893 (11)0.750.39380 (10)0.0162 (3)
S90.38303 (8)0.16665 (6)0.03769 (7)0.0186 (3)
S100.09582 (11)0.750.43604 (10)0.0167 (3)
S110.01173 (12)0.750.27956 (10)0.0187 (4)
S120.09410 (11)0.750.54638 (9)0.0157 (3)
S130.57537 (8)0.16549 (5)0.13620 (7)0.0169 (2)
S140.47171 (8)0.16799 (6)0.12637 (7)0.0174 (2)
S150.66417 (8)0.16465 (6)0.02771 (7)0.0204 (3)
S180.21028 (8)0.32348 (5)0.83822 (7)0.0177 (2)
O10010.0106 (9)
O20.50.50.50.0119 (9)
O50.4513 (2)0.43340 (14)0.62260 (17)0.0153 (7)
O40.2801 (2)0.50318 (14)0.61450 (18)0.0159 (7)
O30.6587 (2)0.43007 (14)0.51664 (18)0.0169 (7)
O60.4587 (2)0.56620 (14)0.62598 (17)0.0150 (7)
O120.4888 (2)0.36829 (14)0.49387 (18)0.0161 (7)
O70.6179 (2)0.49293 (14)0.64424 (17)0.0166 (7)
O80.0228 (2)0.03840 (14)0.84668 (18)0.0195 (7)
O90.3326 (2)0.44003 (14)0.47865 (18)0.0159 (7)
O100.0391 (2)0.12578 (13)1.03983 (18)0.0166 (7)
O110.0124 (2)0.08657 (13)0.88356 (18)0.0178 (7)
O130.1560 (2)0.03770 (14)1.10491 (19)0.0204 (7)
O140.1549 (2)0.01313 (14)0.82549 (19)0.0215 (7)
O150.1685 (2)0.05279 (13)0.99087 (18)0.0158 (7)
O160.3610 (2)0.36980 (15)0.33835 (19)0.0234 (8)
O190.1227 (2)0.17476 (14)0.93106 (19)0.0221 (7)
O180.2048 (2)0.09129 (14)1.1612 (2)0.0245 (8)
O170.6166 (2)0.35055 (15)0.64365 (19)0.0245 (8)
O200.1308 (2)0.07465 (14)0.95163 (19)0.0200 (7)
C10.7991 (4)0.250.2352 (4)0.0127 (13)
C40.9789 (3)0.4167 (2)0.5449 (3)0.0145 (9)
C30.1983 (5)0.750.2897 (4)0.0204 (15)
H30.25480.750.27030.025*
C20.7423 (4)0.250.2902 (4)0.0143 (13)
C70.1143 (5)0.750.2388 (4)0.0224 (15)
H70.11070.750.18280.027*
C80.0738 (5)0.750.3820 (4)0.0170 (14)
C60.8635 (3)0.4170 (2)0.6423 (3)0.0166 (10)
H60.80880.41690.66430.02*
C50.9505 (3)0.4174 (2)0.6901 (3)0.0178 (10)
H50.95850.41760.74650.021*
C110.2420 (4)0.250.7930 (4)0.0149 (13)
C100.2854 (4)0.250.7292 (4)0.0160 (14)
C150.5424 (3)0.1666 (2)0.0301 (3)0.0174 (10)
C160.5044 (3)0.1662 (2)0.0406 (3)0.0172 (10)
C130.5655 (3)0.1660 (2)0.1775 (3)0.0216 (11)
H130.55530.1660.2340.026*
C120.1572 (3)0.2831 (2)0.9098 (3)0.0223 (11)
H120.12970.30680.94680.027*
C140.6539 (3)0.1643 (2)0.1321 (3)0.0210 (11)
H140.70740.1630.15590.025*
C90.3514 (3)0.2832 (2)0.6016 (3)0.0231 (11)
H90.36760.3070.55880.028*
C221.0177 (3)0.41639 (19)0.4749 (3)0.0132 (9)
C170.4818 (3)0.1637 (2)0.1873 (3)0.0180 (10)
H170.49230.16230.24380.022*
C180.3931 (3)0.1643 (2)0.1421 (3)0.0185 (10)
H180.33960.16350.16590.022*
C210.0295 (4)0.750.4457 (4)0.0165 (14)
C200.6422 (3)0.2833 (2)0.3968 (3)0.0211 (11)
H200.61270.3070.43250.025*
C190.9255 (3)0.2830 (2)0.1533 (3)0.0235 (11)
H190.97040.30670.13190.028*
C241.0417 (3)0.4110 (2)0.3287 (3)0.0197 (10)
H241.03220.40840.27230.024*
C231.1297 (3)0.4114 (2)0.3748 (3)0.0174 (10)
H231.18360.40890.35160.021*
C260.0077 (4)0.750.5908 (4)0.0184 (14)
H260.00270.750.64690.022*
C250.0915 (5)0.750.5408 (4)0.0186 (14)
H250.14740.750.56130.022*
S160.43075 (9)0.99818 (6)0.10594 (7)0.0200 (3)
S270.63331 (9)0.99422 (6)0.09037 (7)0.0203 (3)
C270.5135 (3)0.9988 (2)0.0403 (3)0.0166 (10)
C290.5178 (4)0.9954 (2)0.1949 (3)0.0245 (11)
H290.50080.99540.24570.029*
C280.6083 (4)0.9931 (2)0.1884 (3)0.0247 (11)
H280.65680.9910.23420.03*
N10.1799 (6)0.250.1110 (5)0.061 (2)
C300.1822 (6)0.250.1791 (7)0.049 (3)
C310.1876 (6)0.250.2689 (6)0.050 (2)
H31A0.13530.27490.28150.076*0.5
H31B0.24660.26970.29530.076*0.5
H31C0.18450.20540.28760.076*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0150 (2)0.0195 (2)0.0125 (2)0.00474 (16)0.00522 (16)0.00528 (16)
Mo20.01036 (18)0.0189 (2)0.00921 (18)0.00057 (16)0.00335 (15)0.00047 (15)
Mo50.0138 (2)0.0217 (2)0.01209 (19)0.00355 (16)0.00420 (16)0.00492 (16)
Mo30.0168 (2)0.0162 (2)0.01122 (19)0.00087 (16)0.00517 (16)0.00087 (15)
Mo40.0164 (2)0.0170 (2)0.01202 (19)0.00345 (16)0.00029 (16)0.00233 (15)
Mo60.0185 (2)0.0131 (2)0.01240 (19)0.00125 (16)0.00348 (16)0.00127 (15)
S40.0199 (6)0.0162 (6)0.0154 (6)0.0025 (5)0.0038 (5)0.0010 (5)
S10.0213 (6)0.0191 (6)0.0189 (6)0.0011 (5)0.0062 (5)0.0029 (5)
S20.0241 (7)0.0177 (6)0.0166 (6)0.0050 (5)0.0055 (5)0.0010 (5)
S30.0110 (5)0.0164 (6)0.0148 (6)0.0019 (4)0.0023 (5)0.0003 (4)
S50.0114 (5)0.0163 (6)0.0122 (5)0.0001 (4)0.0018 (4)0.0009 (4)
S60.0148 (6)0.0171 (6)0.0117 (5)0.0021 (4)0.0006 (5)0.0014 (4)
S70.0152 (6)0.0186 (6)0.0121 (5)0.0005 (5)0.0008 (5)0.0000 (4)
S80.0155 (8)0.0175 (8)0.0151 (8)00.0017 (7)0
S90.0149 (6)0.0223 (6)0.0184 (6)0.0005 (5)0.0028 (5)0.0022 (5)
S100.0151 (8)0.0176 (8)0.0161 (8)00.0006 (7)0
S110.0227 (9)0.0184 (8)0.0124 (8)00.0027 (7)0
S120.0155 (8)0.0173 (8)0.0126 (8)00.0016 (7)0
S130.0163 (6)0.0215 (6)0.0127 (6)0.0001 (5)0.0021 (5)0.0004 (5)
S140.0188 (6)0.0213 (6)0.0118 (6)0.0011 (5)0.0019 (5)0.0001 (5)
S150.0158 (6)0.0278 (7)0.0182 (6)0.0030 (5)0.0046 (5)0.0017 (5)
S180.0210 (6)0.0147 (6)0.0177 (6)0.0002 (5)0.0046 (5)0.0021 (5)
O10.013 (2)0.012 (2)0.007 (2)0.0012 (17)0.0024 (17)0.0010 (16)
O20.010 (2)0.016 (2)0.011 (2)0.0002 (17)0.0043 (18)0.0001 (17)
O50.0175 (17)0.0193 (16)0.0103 (15)0.0010 (13)0.0054 (13)0.0021 (12)
O40.0135 (16)0.0218 (17)0.0133 (16)0.0001 (13)0.0047 (13)0.0004 (13)
O30.0134 (16)0.0221 (16)0.0164 (17)0.0041 (13)0.0052 (14)0.0028 (13)
O60.0153 (16)0.0199 (16)0.0109 (15)0.0017 (13)0.0053 (13)0.0024 (13)
O120.0207 (17)0.0149 (16)0.0149 (16)0.0004 (13)0.0091 (14)0.0004 (12)
O70.0131 (16)0.0259 (17)0.0102 (16)0.0016 (13)0.0012 (13)0.0014 (13)
O80.0240 (18)0.0230 (17)0.0114 (16)0.0007 (14)0.0032 (14)0.0036 (13)
O90.0137 (16)0.0207 (17)0.0149 (16)0.0036 (13)0.0068 (13)0.0031 (13)
O100.0193 (17)0.0122 (15)0.0188 (17)0.0036 (13)0.0049 (14)0.0019 (13)
O110.0200 (17)0.0164 (16)0.0168 (17)0.0021 (13)0.0026 (14)0.0020 (13)
O130.0192 (17)0.0219 (17)0.0173 (17)0.0010 (14)0.0034 (14)0.0015 (14)
O140.0254 (19)0.0192 (17)0.0229 (19)0.0013 (14)0.0120 (16)0.0011 (14)
O150.0126 (16)0.0171 (16)0.0183 (17)0.0035 (13)0.0040 (13)0.0032 (13)
O160.0220 (18)0.0321 (19)0.0167 (18)0.0051 (15)0.0054 (15)0.0125 (14)
O190.0264 (19)0.0181 (17)0.0227 (18)0.0025 (14)0.0066 (16)0.0043 (14)
O180.0244 (18)0.0251 (18)0.0215 (18)0.0084 (14)0.0017 (15)0.0043 (14)
O170.028 (2)0.0275 (18)0.0197 (19)0.0115 (15)0.0097 (16)0.0075 (14)
O200.0219 (18)0.0160 (16)0.0245 (19)0.0015 (13)0.0102 (15)0.0005 (14)
C10.015 (3)0.013 (3)0.011 (3)00.006 (3)0
C40.011 (2)0.012 (2)0.019 (2)0.0005 (17)0.0005 (19)0.0019 (18)
C30.022 (4)0.028 (4)0.012 (3)00.006 (3)0
C20.018 (3)0.014 (3)0.009 (3)00.002 (3)0
C70.036 (4)0.021 (4)0.012 (3)00.010 (3)0
C80.026 (4)0.019 (3)0.005 (3)00.001 (3)0
C60.016 (2)0.017 (2)0.018 (2)0.0003 (18)0.006 (2)0.0009 (19)
C50.026 (3)0.017 (2)0.011 (2)0.002 (2)0.005 (2)0.0006 (18)
C110.014 (3)0.015 (3)0.014 (3)00.003 (3)0
C100.016 (3)0.015 (3)0.015 (3)00.000 (3)0
C150.016 (2)0.021 (2)0.014 (2)0.0026 (19)0.001 (2)0.0020 (19)
C160.019 (2)0.018 (2)0.015 (2)0.0004 (19)0.004 (2)0.0005 (19)
C130.032 (3)0.021 (3)0.014 (2)0.005 (2)0.010 (2)0.0023 (19)
C120.019 (3)0.028 (3)0.021 (3)0.005 (2)0.009 (2)0.001 (2)
C140.020 (3)0.028 (3)0.017 (3)0.006 (2)0.010 (2)0.001 (2)
C90.024 (3)0.031 (3)0.016 (3)0.003 (2)0.008 (2)0.002 (2)
C220.014 (2)0.007 (2)0.016 (2)0.0029 (17)0.0017 (19)0.0001 (17)
C170.023 (3)0.019 (2)0.013 (2)0.001 (2)0.007 (2)0.0021 (19)
C180.021 (3)0.016 (2)0.022 (3)0.0033 (19)0.011 (2)0.0040 (19)
C210.014 (3)0.018 (3)0.013 (3)00.006 (3)0
C200.024 (3)0.030 (3)0.010 (2)0.006 (2)0.007 (2)0.0007 (19)
C190.023 (3)0.034 (3)0.017 (3)0.003 (2)0.011 (2)0.001 (2)
C240.025 (3)0.022 (3)0.011 (2)0.005 (2)0.002 (2)0.0009 (19)
C230.021 (2)0.020 (2)0.012 (2)0.0021 (19)0.005 (2)0.0018 (18)
C260.021 (4)0.015 (3)0.020 (4)00.005 (3)0
C250.027 (4)0.013 (3)0.017 (3)00.006 (3)0
S160.0263 (7)0.0219 (6)0.0124 (6)0.0039 (5)0.0053 (5)0.0005 (5)
S270.0219 (6)0.0245 (6)0.0127 (6)0.0035 (5)0.0012 (5)0.0004 (5)
C270.021 (2)0.015 (2)0.013 (2)0.0028 (19)0.003 (2)0.0002 (18)
C290.039 (3)0.022 (3)0.010 (2)0.002 (2)0.001 (2)0.0004 (19)
C280.035 (3)0.022 (3)0.012 (2)0.005 (2)0.007 (2)0.0015 (19)
N10.071 (6)0.060 (5)0.050 (5)00.002 (5)0
C300.038 (5)0.026 (5)0.084 (8)00.014 (6)0
C310.051 (6)0.033 (5)0.071 (7)00.021 (5)0
Geometric parameters (Å, º) top
Mo1—O171.686 (3)S15—C141.727 (5)
Mo1—O121.872 (3)S15—C151.736 (5)
Mo1—O31.886 (3)S18—C121.743 (5)
Mo1—O51.974 (3)S18—C111.768 (4)
Mo1—O72.018 (3)O1—Mo6ii2.3222 (4)
Mo1—O22.3345 (4)O1—Mo3ii2.3234 (4)
Mo2—O41.680 (3)O1—Mo4ii2.3363 (4)
Mo2—O51.887 (3)O2—Mo2i2.3151 (4)
Mo2—O91.931 (3)O2—Mo5i2.3335 (4)
Mo2—O61.932 (3)O2—Mo1i2.3345 (4)
Mo2—O3i1.974 (3)O3—Mo2i1.974 (3)
Mo2—O22.3151 (4)O6—Mo5i1.928 (3)
Mo5—O161.684 (3)O7—Mo5i1.860 (3)
Mo5—O7i1.860 (3)O8—Mo4ii1.879 (3)
Mo5—O6i1.928 (3)O13—Mo6ii2.013 (3)
Mo5—O91.937 (3)O20—Mo6ii1.962 (3)
Mo5—O122.010 (3)C1—C21.343 (8)
Mo5—O22.3335 (4)C1—S1iii1.766 (3)
Mo3—O141.690 (3)C4—C221.393 (6)
Mo3—O151.876 (3)C3—C71.331 (9)
Mo3—O201.889 (3)C3—H30.93
Mo3—O111.968 (3)C2—S4iii1.774 (4)
Mo3—O81.993 (3)C7—H70.93
Mo3—O12.3234 (4)C8—C211.345 (9)
Mo4—O181.692 (3)C6—C51.343 (6)
Mo4—O131.851 (3)C6—H60.93
Mo4—O8ii1.879 (3)C5—H50.93
Mo4—O151.989 (3)C11—C101.339 (9)
Mo4—O102.028 (3)C11—S18iii1.768 (4)
Mo4—O12.3363 (4)C10—S2iii1.774 (4)
Mo6—O191.696 (3)C15—C161.398 (6)
Mo6—O101.858 (3)C13—C141.343 (6)
Mo6—O111.905 (3)C13—H130.93
Mo6—O20ii1.962 (3)C12—C12iii1.340 (9)
Mo6—O13ii2.013 (3)C12—H120.93
Mo6—O12.3222 (4)C14—H140.93
S4—C201.746 (5)C9—C9iii1.343 (9)
S4—C21.774 (4)C9—H90.93
S1—C191.739 (5)C17—C181.347 (6)
S1—C11.766 (3)C17—H170.93
S2—C91.749 (5)C18—H180.93
S2—C101.774 (4)C20—C20iii1.347 (9)
S3—C231.723 (4)C20—H200.93
S3—C221.724 (4)C19—C19iii1.335 (9)
S5—C61.721 (5)C19—H190.93
S5—C41.727 (4)C24—C231.344 (6)
S6—C241.724 (5)C24—H240.93
S6—C221.732 (4)C23—H230.93
S7—C41.728 (4)C26—C251.323 (9)
S7—C51.728 (5)C26—H260.93
S8—C31.743 (6)C25—H250.93
S8—C81.764 (7)S16—C291.748 (5)
S9—C181.728 (5)S16—C271.767 (5)
S9—C161.728 (5)S27—C281.749 (5)
S10—C251.746 (6)S27—C271.759 (5)
S10—C211.769 (6)C27—C27iv1.330 (8)
S11—C71.737 (7)C29—C281.322 (7)
S11—C81.772 (6)C29—H290.93
S12—C211.759 (6)C28—H280.93
S12—C261.761 (7)N1—C301.136 (12)
S13—C161.722 (5)C30—C311.492 (13)
S13—C171.725 (5)C31—H31A0.96
S14—C151.729 (4)C31—H31B0.96
S14—C131.729 (5)C31—H31C0.96
O17—Mo1—O12105.04 (14)Mo2—O2—Mo5i89.589 (13)
O17—Mo1—O3104.43 (14)Mo2i—O2—Mo5i90.411 (14)
O12—Mo1—O391.61 (13)Mo2—O2—Mo590.411 (14)
O17—Mo1—O5102.70 (14)Mo2i—O2—Mo589.589 (13)
O12—Mo1—O587.90 (12)Mo5i—O2—Mo5180.000 (15)
O3—Mo1—O5152.02 (12)Mo2—O2—Mo189.800 (13)
O17—Mo1—O7101.69 (14)Mo2i—O2—Mo190.200 (13)
O12—Mo1—O7152.99 (12)Mo5i—O2—Mo189.969 (14)
O3—Mo1—O785.42 (12)Mo5—O2—Mo190.031 (14)
O5—Mo1—O782.51 (12)Mo2—O2—Mo1i90.200 (13)
O17—Mo1—O2176.68 (11)Mo2i—O2—Mo1i89.800 (13)
O12—Mo1—O277.94 (9)Mo5i—O2—Mo1i90.031 (14)
O3—Mo1—O276.77 (9)Mo5—O2—Mo1i89.969 (14)
O5—Mo1—O275.78 (8)Mo1—O2—Mo1i180
O7—Mo1—O275.24 (8)Mo2—O5—Mo1116.42 (14)
O4—Mo2—O5103.76 (13)Mo1—O3—Mo2i117.16 (14)
O4—Mo2—O9103.37 (13)Mo5i—O6—Mo2116.11 (14)
O5—Mo2—O988.74 (12)Mo1—O12—Mo5116.50 (14)
O4—Mo2—O6102.89 (13)Mo5i—O7—Mo1116.59 (14)
O5—Mo2—O689.50 (12)Mo4ii—O8—Mo3117.46 (15)
O9—Mo2—O6153.33 (12)Mo2—O9—Mo5117.05 (14)
O4—Mo2—O3i102.71 (13)Mo6—O10—Mo4116.53 (14)
O5—Mo2—O3i153.52 (12)Mo6—O11—Mo3116.24 (15)
O9—Mo2—O3i84.73 (12)Mo4—O13—Mo6ii116.26 (15)
O6—Mo2—O3i85.07 (12)Mo3—O15—Mo4116.10 (14)
O4—Mo2—O2178.36 (10)Mo3—O20—Mo6ii116.81 (15)
O5—Mo2—O277.87 (9)C2—C1—S1123.08 (17)
O9—Mo2—O276.54 (9)C2—C1—S1iii123.08 (17)
O6—Mo2—O277.07 (9)S1—C1—S1iii113.8 (3)
O3i—Mo2—O275.66 (8)C22—C4—S5120.9 (3)
O16—Mo5—O7i104.41 (14)C22—C4—S7123.4 (3)
O16—Mo5—O6i103.77 (14)S5—C4—S7115.7 (3)
O7i—Mo5—O6i90.34 (12)C7—C3—S8118.0 (5)
O16—Mo5—O9103.27 (14)C7—C3—H3121
O7i—Mo5—O989.55 (12)S8—C3—H3121
O6i—Mo5—O9152.09 (12)C1—C2—S4iii122.83 (18)
O16—Mo5—O12101.98 (14)C1—C2—S4122.83 (18)
O7i—Mo5—O12153.60 (12)S4iii—C2—S4114.3 (4)
O6i—Mo5—O1284.01 (12)C3—C7—S11118.3 (5)
O9—Mo5—O1283.78 (12)C3—C7—H7120.8
O16—Mo5—O2177.36 (11)S11—C7—H7120.8
O7i—Mo5—O278.16 (9)C21—C8—S8122.5 (5)
O6i—Mo5—O276.70 (8)C21—C8—S11123.0 (5)
O9—Mo5—O275.98 (8)S8—C8—S11114.5 (4)
O12—Mo5—O275.45 (8)C5—C6—S5117.6 (4)
O14—Mo3—O15106.28 (14)C5—C6—H6121.2
O14—Mo3—O20104.51 (14)S5—C6—H6121.2
O15—Mo3—O2091.14 (13)C6—C5—S7117.0 (4)
O14—Mo3—O11101.82 (14)C6—C5—H5121.5
O15—Mo3—O1187.94 (12)S7—C5—H5121.5
O20—Mo3—O11152.81 (13)C10—C11—S18iii122.77 (18)
O14—Mo3—O8100.35 (14)C10—C11—S18122.77 (18)
O15—Mo3—O8153.12 (13)S18iii—C11—S18114.5 (4)
O20—Mo3—O885.58 (13)C11—C10—S2123.05 (18)
O11—Mo3—O883.12 (12)C11—C10—S2iii123.05 (18)
O14—Mo3—O1175.05 (11)S2—C10—S2iii113.8 (4)
O15—Mo3—O178.15 (9)C16—C15—S14122.5 (3)
O20—Mo3—O177.32 (9)C16—C15—S15122.4 (3)
O11—Mo3—O175.90 (9)S14—C15—S15115.1 (3)
O8—Mo3—O175.10 (9)C15—C16—S13122.1 (4)
O18—Mo4—O13105.18 (14)C15—C16—S9122.2 (4)
O18—Mo4—O8ii102.97 (15)S13—C16—S9115.7 (3)
O13—Mo4—O8ii92.59 (13)C14—C13—S14117.2 (4)
O18—Mo4—O15103.98 (14)C14—C13—H13121.4
O13—Mo4—O1588.36 (13)S14—C13—H13121.4
O8ii—Mo4—O15151.77 (12)C12iii—C12—S18117.92 (15)
O18—Mo4—O10101.72 (13)C12iii—C12—H12121
O13—Mo4—O10152.84 (12)S18—C12—H12121
O8ii—Mo4—O1084.97 (12)C13—C14—S15117.2 (4)
O15—Mo4—O1081.52 (12)C13—C14—H14121.4
O18—Mo4—O1176.53 (11)S15—C14—H14121.4
O13—Mo4—O178.29 (9)C9iii—C9—S2117.77 (15)
O8ii—Mo4—O176.83 (9)C9iii—C9—H9121.1
O15—Mo4—O175.75 (8)S2—C9—H9121.1
O10—Mo4—O174.81 (8)C4—C22—S3122.2 (3)
O19—Mo6—O10105.57 (14)C4—C22—S6122.1 (3)
O19—Mo6—O11104.81 (14)S3—C22—S6115.7 (3)
O10—Mo6—O1191.35 (13)C18—C17—S13117.3 (4)
O19—Mo6—O20ii101.65 (14)C18—C17—H17121.3
O10—Mo6—O20ii88.78 (13)S13—C17—H17121.3
O11—Mo6—O20ii152.48 (12)C17—C18—S9117.0 (4)
O19—Mo6—O13ii100.43 (14)C17—C18—H18121.5
O10—Mo6—O13ii153.81 (12)S9—C18—H18121.5
O11—Mo6—O13ii84.97 (13)C8—C21—S12121.4 (5)
O20ii—Mo6—O13ii82.91 (13)C8—C21—S10123.7 (5)
O19—Mo6—O1175.58 (11)S12—C21—S10115.0 (4)
O10—Mo6—O178.25 (9)C20iii—C20—S4117.88 (15)
O11—Mo6—O177.08 (8)C20iii—C20—H20121.1
O20ii—Mo6—O176.01 (9)S4—C20—H20121.1
O13ii—Mo6—O175.65 (8)C19iii—C19—S1117.84 (15)
C20—S4—C294.7 (2)C19iii—C19—H19121.1
C19—S1—C194.0 (2)S1—C19—H19121.1
C9—S2—C1094.6 (2)C23—C24—S6117.3 (4)
C23—S3—C2294.9 (2)C23—C24—H24121.4
C6—S5—C494.8 (2)S6—C24—H24121.4
C24—S6—C2294.7 (2)C24—C23—S3117.4 (4)
C4—S7—C594.9 (2)C24—C23—H23121.3
C3—S8—C894.6 (3)S3—C23—H23121.3
C18—S9—C1695.0 (2)C25—C26—S12117.1 (5)
C25—S10—C2194.1 (3)C25—C26—H26121.4
C7—S11—C894.5 (3)S12—C26—H26121.4
C21—S12—C2694.7 (3)C26—C25—S10119.1 (5)
C16—S13—C1795.0 (2)C26—C25—H25120.4
C15—S14—C1395.3 (2)S10—C25—H25120.4
C14—S15—C1595.2 (2)C29—S16—C2794.5 (2)
C12—S18—C1194.8 (2)C28—S27—C2795.1 (2)
Mo6—O1—Mo6ii180.000 (19)C27iv—C27—S27123.3 (5)
Mo6—O1—Mo3ii89.861 (13)C27iv—C27—S16122.4 (5)
Mo6ii—O1—Mo3ii90.139 (13)S27—C27—S16114.3 (2)
Mo6—O1—Mo390.139 (13)C28—C29—S16118.5 (4)
Mo6ii—O1—Mo389.861 (13)C28—C29—H29120.8
Mo3ii—O1—Mo3180.0000 (10)S16—C29—H29120.8
Mo6—O1—Mo490.402 (14)C29—C28—S27117.5 (4)
Mo6ii—O1—Mo489.598 (13)C29—C28—H28121.3
Mo3ii—O1—Mo490.504 (14)S27—C28—H28121.3
Mo3—O1—Mo489.496 (14)N1—C30—C31178.7 (11)
Mo6—O1—Mo4ii89.598 (13)C30—C31—H31A109.5
Mo6ii—O1—Mo4ii90.402 (14)C30—C31—H31B109.5
Mo3ii—O1—Mo4ii89.496 (14)H31A—C31—H31B109.5
Mo3—O1—Mo4ii90.504 (14)C30—C31—H31C109.5
Mo4—O1—Mo4ii180.0000 (10)H31A—C31—H31C109.5
Mo2—O2—Mo2i180H31B—C31—H31C109.5
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+2; (iii) x, y+1/2, z; (iv) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O11v0.932.283.192 (6)167
C7—H7···O19vi0.932.473.251 (7)141
C7—H7···O19vii0.932.473.251 (7)141
C9—H9···O120.932.543.388 (5)151
C13—H13···O17viii0.932.413.239 (6)149
C14—H14···O19ix0.932.593.175 (5)121
C18—H18···O18x0.932.413.145 (5)136
C19—H19···O10xi0.932.413.298 (5)160
C20—H20···O120.932.543.437 (5)162
C24—H24···O8xii0.932.253.075 (6)148
C28—H28···O4xii0.932.533.384 (6)152
C29—H29···O5xii0.932.523.256 (6)137
C29—H29···O6xii0.932.553.284 (6)136
Symmetry codes: (v) x+1, y+1/2, z; (vi) x, y+1/2, z+1; (vii) x, y+1, z+1; (viii) x, y+1/2, z1; (ix) x+1, y, z1; (x) x, y, z1; (xi) x+1, y+1/2, z1; (xii) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula(C6H4S4)8[Mo6O19]2·C2H3N
Mr3434.99
Crystal system, space groupMonoclinic, P21/m
Temperature (K)100
a, b, c (Å)14.3179 (8), 20.2299 (10), 16.7625 (10)
β (°) 101.266 (3)
V3)4761.7 (5)
Z2
Radiation typeMo Kα
µ (mm1)2.31
Crystal size (mm)0.25 × 0.15 × 0.1
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.597, 0.802
No. of measured, independent and
observed [I > 2σ(I)] reflections
45527, 11170, 8144
Rint0.072
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.073, 1
No. of reflections11170
No. of parameters629
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.88, 0.70

Computer programs: COLLECT (Nonius, 2002), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O11i0.93002.28003.192 (6)167.00
C7—H7···O19ii0.93002.47003.251 (7)141.00
C7—H7···O19iii0.93002.47003.251 (7)141.00
C9—H9···O120.93002.54003.388 (5)151.00
C13—H13···O17iv0.93002.41003.239 (6)149.00
C14—H14···O19v0.93002.59003.175 (5)121.00
C18—H18···O18vi0.93002.41003.145 (5)136.00
C19—H19···O10vii0.93002.41003.298 (5)160.00
C20—H20···O120.93002.54003.437 (5)162.00
C24—H24···O8viii0.93002.25003.075 (6)148.00
C28—H28···O4viii0.93002.53003.384 (6)152.00
C29—H29···O5viii0.93002.52003.256 (6)137.00
C29—H29···O6viii0.93002.55003.284 (6)136.00
Symmetry codes: (i) x+1, y+1/2, z; (ii) x, y+1/2, z+1; (iii) x, y+1, z+1; (iv) x, y+1/2, z1; (v) x+1, y, z1; (vi) x, y, z1; (vii) x+1, y+1/2, z1; (viii) x+1, y+1/2, z+1.
 

Acknowledgements

This work was supported by Laboratoire de Chimie des Matériaux Faculté des Sciences, Université Mentouri. We would like to thank J.-Y. Saillard and Thierry Roisnel from Rennes 1 University for providing diffraction facilities.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBoyle, P. D., Stauffer, T. C., Wirgau, J. I. & Cornman, C. R. (1998). Acta Cryst. C54, IUC9800011.  CrossRef IUCr Journals Google Scholar
First citationDeng, X.-T., Wang, X.-Y. & Wang, C.-G. (2006). Acta Cryst. E62, m2000–m2001.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHagrman, P. J., Hagrman, D. & Zubieta, Z. (1999). Angew. Chem. Int. Ed. Engl. 38, 2638–2684.  CrossRef PubMed Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaeda, D., Aritome, I., Shimakoshi, H. & Hisaeda, Y. (2006). Acta Cryst. E62, m1272–m1274.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Y., Yang, W., Xue, G., Hu, H. & Wang, J. (2006). J. Mol. Struct. 784, 244–248.  Web of Science CSD CrossRef CAS Google Scholar
First citationTriki, S., Ouahab, L. & Grandjean, D. (1993). Acta Cryst. C49, 132–135.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWang, X., Guo, Y., Wang, E., Duan, L., Xu, X. & Hu, C. (2004). J. Mol. Struct. 691, 171–180.  Web of Science CSD CrossRef CAS Google Scholar
First citationYeh, C.-W., Lin, C.-H. & Chen, J.-D. (2008). Acta Cryst. E64, m41.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZebiri, I., Bencharif, L., Direm, A., Bencharif, M. & Benali-Cherif, N. (2008). Acta Cryst. E64, m474–m475.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1063-m1064
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds