organic compounds
trans-1,2-Bis(3,5-dimethoxyphenyl)ethene
aDepartment für Chemie der Universität zu Köln, Greinstrasse 4, 50939 Köln, Germany
*Correspondence e-mail: schmalz@uni-koeln.de
The title compound, C18H20O4, was prepared in high yield from 3,5-dimethoxystyrene via a Ru-catalysed homo-olefin metathesis. Exclusive formation of the E-configurated isomer was observed. Interestingly, one symmetric unit contains two molecules adopting an s-syn-anti and and an all-s-anti conformation.
Related literature
For the preparation of differently substituted stilbenes using a Ru-catalysed metathesis strategy, see: Velder et al. (2006). Alternative methodologies for the synthesis of oxy-functionalized stilbenes using Wittig-type olefinations or Heck couplings have been described by Kim et al. (2002), Lion et al. (2005), Botella & Nayera (2004) and Reetz et al. (1998). For the bioactivity of various stilbenes with a focus on their anticancer activity, see: Aggarwal et al. (2004); Wolter & Stein (2002); Fremont (2000); Jang et al. (1997); Wieder et al. (2001). For related structures and syntheses see: Yin et al. (2002); Uda et al. (2002).
Experimental
Crystal data
|
Data collection: COLLECT (Hooft, 1998); cell DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SCHAKAL99 (Keller 1999); software used to prepare material for publication: PLATON (Spek, 2009) and enCIFer (Allen et al., 2004).
Supporting information
10.1107/S160053680903116X/hg2547sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680903116X/hg2547Isup2.hkl
In a glove-box (Labmaster 130, mBraun), the catalyst (Grubbs-II, 2 mol %) was weighted into a 25 ml Schlenk tube, which was then sealed with a rubber septum. This was then taken out of the box, connected to an Ar-vacuum double manifold and equipped with a reflux condenser under argon. A solution of 3,5-dimethoxy-styrene (1 mmol) in CH2Cl2 (10 ml) was then added via syringe and the resulting solution was refluxed for 1.5 h under argon. After allowing the reaction mixture to cool to room temperature, the solvent was evaporated in vacuo and the crude product was purified by flash δ = 3.81 (s, 6H, OCH3), 6.4 (t, 1H, J = 2.1 Hz,H-4), 6.67 (d, 2H, J = 2.1 Hz, H-2, H-6), 7.00 (s, 1H, H-7); 13C NMR (75 MHz, CDCl3): δ = 55.4 (OCH3), 100.2 (C-4), 104.7 (C-2, C-6), 129.2 (C-7), 139.2 (C-1), 161.0 (C-3, C-5); HRMS, calcd for C18H20O4 (M+) 300.1361, found 300.136.
(SiO2, cyclohexane/ ethyl acetate = 10:1) to give 138 mg (0.46 mmol; 92%) of the homo metathesis product (1). mp. 142 °C (Uda et al., 2002: 141–144 °C). 1H NMR (300 MHz, CDCl3):Data collection: COLLECT (Hooft, 1998); cell
DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SCHAKAL99 (Keller 1999); software used to prepare material for publication: PLATON (Spek, 2009) and enCIFer (Allen et al., 2004).Fig. 1. A view of (1). Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. View of the unit cell along the b axis. | |
Fig. 3. Top view of two pseudo layers. |
C18H20O4 | F(000) = 640 |
Mr = 300.34 | Dx = 1.301 Mg m−3 |
Monoclinic, P21/c | Melting point: 142 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 7.1954 (3) Å | Cell parameters from 7687 reflections |
b = 9.4203 (4) Å | θ = 2.3–27.0° |
c = 22.6762 (5) Å | µ = 0.09 mm−1 |
β = 93.783 (2)° | T = 100 K |
V = 1533.71 (10) Å3 | Needle, colourless |
Z = 4 | 0.4 × 0.2 × 0.2 mm |
Nonius KappaCCD diffractometer | 2142 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.041 |
Graphite monochromator | θmax = 27.0°, θmin = 2.3° |
ϕ and ω scans | h = −6→9 |
7687 measured reflections | k = −12→10 |
3320 independent reflections | l = −25→28 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.150 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0722P)2 + 0.274P] where P = (Fo2 + 2Fc2)/3 |
3320 reflections | (Δ/σ)max < 0.001 |
207 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
C18H20O4 | V = 1533.71 (10) Å3 |
Mr = 300.34 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.1954 (3) Å | µ = 0.09 mm−1 |
b = 9.4203 (4) Å | T = 100 K |
c = 22.6762 (5) Å | 0.4 × 0.2 × 0.2 mm |
β = 93.783 (2)° |
Nonius KappaCCD diffractometer | 2142 reflections with I > 2σ(I) |
7687 measured reflections | Rint = 0.041 |
3320 independent reflections |
R[F2 > 2σ(F2)] = 0.055 | 0 restraints |
wR(F2) = 0.150 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.24 e Å−3 |
3320 reflections | Δρmin = −0.24 e Å−3 |
207 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The coordinates of the hydrogenatoms are constrained, and the U values of the H atoms are constrained relative to the Ueq of the atom the hydrogen binds to (1.2 for CH and CH2, 1.5 for CH3). |
x | y | z | Uiso*/Ueq | ||
O1 | 0.16550 (18) | 0.11969 (13) | 0.29039 (5) | 0.0322 (4) | |
O2 | 0.11990 (18) | 0.52539 (13) | 0.41414 (6) | 0.0346 (4) | |
C1 | 0.0096 (2) | 0.07001 (18) | 0.49846 (8) | 0.0272 (4) | |
H1 | −0.0099 | 0.1220 | 0.5334 | 0.033* | |
C2 | 0.0575 (2) | 0.15286 (19) | 0.44674 (8) | 0.0256 (4) | |
C3 | 0.0903 (2) | 0.0879 (2) | 0.39261 (8) | 0.0268 (4) | |
H3 | 0.0831 | −0.0123 | 0.3885 | 0.032* | |
C4 | 0.1329 (2) | 0.17169 (19) | 0.34549 (8) | 0.0259 (4) | |
C5 | 0.1450 (2) | 0.31913 (19) | 0.35017 (8) | 0.0275 (4) | |
H5 | 0.1748 | 0.3753 | 0.3173 | 0.033* | |
C6 | 0.1123 (2) | 0.38210 (19) | 0.40394 (8) | 0.0267 (4) | |
C7 | 0.0691 (2) | 0.2989 (2) | 0.45200 (8) | 0.0274 (4) | |
H7 | 0.0475 | 0.3428 | 0.4886 | 0.033* | |
C8 | 0.1666 (3) | −0.03060 (19) | 0.28252 (8) | 0.0312 (5) | |
H8A | 0.2575 | −0.0734 | 0.3113 | 0.047* | |
H8B | 0.2006 | −0.0530 | 0.2424 | 0.047* | |
H8C | 0.0424 | −0.0687 | 0.2884 | 0.047* | |
C9 | 0.1455 (3) | 0.6156 (2) | 0.36467 (9) | 0.0359 (5) | |
H9A | 0.2645 | 0.5933 | 0.3482 | 0.054* | |
H9B | 0.1457 | 0.7149 | 0.3775 | 0.054* | |
H9C | 0.0437 | 0.6003 | 0.3344 | 0.054* | |
O3 | 0.31579 (18) | 0.49045 (14) | 0.21349 (5) | 0.0360 (4) | |
O4 | 0.33384 (18) | 0.03486 (14) | 0.13362 (6) | 0.0392 (4) | |
C10 | 0.4952 (2) | 0.43244 (19) | 0.00794 (8) | 0.0299 (4) | |
H10 | 0.5284 | 0.3637 | −0.0202 | 0.040 (6)* | |
C11 | 0.4382 (2) | 0.3787 (2) | 0.06489 (8) | 0.0273 (4) | |
C12 | 0.4051 (2) | 0.4693 (2) | 0.11208 (8) | 0.0289 (4) | |
H12 | 0.4206 | 0.5689 | 0.1083 | 0.020 (5)* | |
C13 | 0.3493 (2) | 0.4114 (2) | 0.16439 (8) | 0.0288 (5) | |
C14 | 0.3246 (2) | 0.2665 (2) | 0.17034 (8) | 0.0303 (5) | |
H14 | 0.2849 | 0.2285 | 0.2062 | 0.047 (6)* | |
C15 | 0.3581 (2) | 0.1774 (2) | 0.12378 (8) | 0.0296 (5) | |
C16 | 0.4155 (2) | 0.2328 (2) | 0.07095 (8) | 0.0293 (5) | |
H16 | 0.4391 | 0.1711 | 0.0392 | 0.030 (5)* | |
C17 | 0.3394 (3) | 0.6410 (2) | 0.20992 (9) | 0.0373 (5) | |
H17A | 0.4679 | 0.6625 | 0.2011 | 0.056* | |
H17B | 0.3128 | 0.6845 | 0.2477 | 0.056* | |
H17C | 0.2536 | 0.6792 | 0.1785 | 0.056* | |
C18 | 0.3671 (3) | −0.0593 (2) | 0.08589 (9) | 0.0386 (5) | |
H18A | 0.2853 | −0.0340 | 0.0512 | 0.058* | |
H18B | 0.3415 | −0.1571 | 0.0976 | 0.058* | |
H18C | 0.4974 | −0.0514 | 0.0761 | 0.058* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0478 (8) | 0.0283 (7) | 0.0216 (7) | −0.0022 (6) | 0.0118 (6) | 0.0006 (6) |
O2 | 0.0487 (8) | 0.0268 (8) | 0.0291 (8) | −0.0033 (6) | 0.0080 (6) | 0.0032 (6) |
C1 | 0.0288 (9) | 0.0332 (10) | 0.0200 (9) | 0.0004 (8) | 0.0046 (7) | −0.0001 (8) |
C2 | 0.0249 (9) | 0.0291 (11) | 0.0227 (10) | 0.0000 (8) | 0.0014 (7) | 0.0040 (8) |
C3 | 0.0280 (10) | 0.0261 (10) | 0.0265 (11) | −0.0010 (7) | 0.0028 (8) | 0.0025 (8) |
C4 | 0.0256 (9) | 0.0307 (11) | 0.0216 (10) | 0.0010 (8) | 0.0034 (7) | 0.0005 (8) |
C5 | 0.0291 (10) | 0.0288 (11) | 0.0252 (10) | −0.0006 (8) | 0.0053 (8) | 0.0073 (8) |
C6 | 0.0269 (10) | 0.0249 (10) | 0.0281 (11) | −0.0020 (8) | 0.0008 (8) | 0.0025 (8) |
C7 | 0.0294 (10) | 0.0295 (10) | 0.0235 (10) | −0.0007 (8) | 0.0040 (8) | 0.0012 (8) |
C8 | 0.0372 (11) | 0.0303 (11) | 0.0266 (11) | −0.0027 (8) | 0.0056 (8) | −0.0018 (8) |
C9 | 0.0444 (12) | 0.0292 (11) | 0.0342 (12) | −0.0031 (9) | 0.0046 (9) | 0.0078 (9) |
O3 | 0.0443 (8) | 0.0397 (8) | 0.0251 (8) | −0.0033 (6) | 0.0097 (6) | 0.0002 (6) |
O4 | 0.0489 (9) | 0.0328 (8) | 0.0370 (8) | −0.0008 (6) | 0.0108 (7) | 0.0093 (6) |
C10 | 0.0324 (10) | 0.0344 (10) | 0.0232 (10) | −0.0013 (9) | 0.0044 (8) | 0.0020 (9) |
C11 | 0.0248 (9) | 0.0339 (11) | 0.0234 (10) | −0.0013 (8) | 0.0019 (7) | 0.0060 (8) |
C12 | 0.0285 (10) | 0.0308 (11) | 0.0275 (11) | −0.0019 (8) | 0.0020 (8) | 0.0048 (8) |
C13 | 0.0252 (10) | 0.0396 (12) | 0.0218 (10) | −0.0017 (8) | 0.0027 (7) | 0.0028 (8) |
C14 | 0.0294 (10) | 0.0383 (12) | 0.0237 (10) | −0.0005 (8) | 0.0051 (8) | 0.0093 (9) |
C15 | 0.0266 (10) | 0.0320 (11) | 0.0304 (11) | −0.0018 (8) | 0.0023 (8) | 0.0090 (9) |
C16 | 0.0282 (10) | 0.0339 (12) | 0.0259 (11) | −0.0001 (8) | 0.0025 (8) | 0.0018 (8) |
C17 | 0.0434 (12) | 0.0404 (12) | 0.0287 (12) | −0.0045 (10) | 0.0078 (9) | −0.0043 (9) |
C18 | 0.0412 (12) | 0.0330 (12) | 0.0423 (13) | −0.0009 (9) | 0.0070 (10) | 0.0054 (10) |
O1—C4 | 1.376 (2) | O3—C13 | 1.374 (2) |
O1—C8 | 1.427 (2) | O3—C17 | 1.432 (2) |
O2—C6 | 1.370 (2) | O4—C15 | 1.375 (2) |
O2—C9 | 1.429 (2) | O4—C18 | 1.432 (2) |
C1—C1i | 1.328 (3) | C10—C10ii | 1.326 (4) |
C1—C2 | 1.469 (2) | C10—C11 | 1.470 (2) |
C1—H1 | 0.9500 | C10—H10 | 0.9500 |
C2—C7 | 1.383 (3) | C11—C16 | 1.392 (3) |
C2—C3 | 1.405 (2) | C11—C12 | 1.401 (3) |
C3—C4 | 1.379 (2) | C12—C13 | 1.389 (2) |
C3—H3 | 0.9500 | C12—H12 | 0.9500 |
C4—C5 | 1.395 (3) | C13—C14 | 1.384 (3) |
C5—C6 | 1.390 (2) | C14—C15 | 1.382 (3) |
C5—H5 | 0.9500 | C14—H14 | 0.9500 |
C6—C7 | 1.394 (2) | C15—C16 | 1.394 (2) |
C7—H7 | 0.9500 | C16—H16 | 0.9500 |
C8—H8A | 0.9800 | C17—H17A | 0.9800 |
C8—H8B | 0.9800 | C17—H17B | 0.9800 |
C8—H8C | 0.9800 | C17—H17C | 0.9800 |
C9—H9A | 0.9800 | C18—H18A | 0.9800 |
C9—H9B | 0.9800 | C18—H18B | 0.9800 |
C9—H9C | 0.9800 | C18—H18C | 0.9800 |
C4—O1—C8 | 117.99 (13) | C13—O3—C17 | 117.61 (14) |
C6—O2—C9 | 117.31 (15) | C15—O4—C18 | 116.97 (14) |
C1i—C1—C2 | 126.9 (2) | C10ii—C10—C11 | 126.3 (2) |
C1i—C1—H1 | 116.6 | C10ii—C10—H10 | 116.9 |
C2—C1—H1 | 116.6 | C11—C10—H10 | 116.9 |
C7—C2—C3 | 119.73 (16) | C16—C11—C12 | 119.91 (16) |
C7—C2—C1 | 118.41 (16) | C16—C11—C10 | 117.89 (17) |
C3—C2—C1 | 121.87 (16) | C12—C11—C10 | 122.19 (17) |
C4—C3—C2 | 119.10 (17) | C13—C12—C11 | 119.14 (17) |
C4—C3—H3 | 120.5 | C13—C12—H12 | 120.4 |
C2—C3—H3 | 120.5 | C11—C12—H12 | 120.4 |
O1—C4—C3 | 124.02 (16) | O3—C13—C14 | 115.15 (16) |
O1—C4—C5 | 114.20 (15) | O3—C13—C12 | 123.76 (17) |
C3—C4—C5 | 121.77 (16) | C14—C13—C12 | 121.09 (17) |
C6—C5—C4 | 118.58 (16) | C15—C14—C13 | 119.63 (16) |
C6—C5—H5 | 120.7 | C15—C14—H14 | 120.2 |
C4—C5—H5 | 120.7 | C13—C14—H14 | 120.2 |
O2—C6—C5 | 124.17 (16) | O4—C15—C14 | 116.03 (16) |
O2—C6—C7 | 115.49 (16) | O4—C15—C16 | 123.58 (17) |
C5—C6—C7 | 120.34 (17) | C14—C15—C16 | 120.38 (17) |
C2—C7—C6 | 120.47 (17) | C11—C16—C15 | 119.84 (17) |
C2—C7—H7 | 119.8 | C11—C16—H16 | 120.1 |
C6—C7—H7 | 119.8 | C15—C16—H16 | 120.1 |
O1—C8—H8A | 109.5 | O3—C17—H17A | 109.5 |
O1—C8—H8B | 109.5 | O3—C17—H17B | 109.5 |
H8A—C8—H8B | 109.5 | H17A—C17—H17B | 109.5 |
O1—C8—H8C | 109.5 | O3—C17—H17C | 109.5 |
H8A—C8—H8C | 109.5 | H17A—C17—H17C | 109.5 |
H8B—C8—H8C | 109.5 | H17B—C17—H17C | 109.5 |
O2—C9—H9A | 109.5 | O4—C18—H18A | 109.5 |
O2—C9—H9B | 109.5 | O4—C18—H18B | 109.5 |
H9A—C9—H9B | 109.5 | H18A—C18—H18B | 109.5 |
O2—C9—H9C | 109.5 | O4—C18—H18C | 109.5 |
H9A—C9—H9C | 109.5 | H18A—C18—H18C | 109.5 |
H9B—C9—H9C | 109.5 | H18B—C18—H18C | 109.5 |
C1i—C1—C2—C7 | 179.3 (2) | C10ii—C10—C11—C16 | 172.5 (2) |
C1i—C1—C2—C3 | −0.3 (3) | C10ii—C10—C11—C12 | −6.9 (4) |
C7—C2—C3—C4 | −0.2 (3) | C16—C11—C12—C13 | −0.2 (3) |
C1—C2—C3—C4 | 179.35 (16) | C10—C11—C12—C13 | 179.18 (17) |
C8—O1—C4—C3 | −4.1 (2) | C17—O3—C13—C14 | 179.90 (16) |
C8—O1—C4—C5 | 176.49 (15) | C17—O3—C13—C12 | 0.3 (3) |
C2—C3—C4—O1 | −179.24 (16) | C11—C12—C13—O3 | 179.04 (16) |
C2—C3—C4—C5 | 0.2 (3) | C11—C12—C13—C14 | −0.5 (3) |
O1—C4—C5—C6 | 179.31 (15) | O3—C13—C14—C15 | −178.83 (15) |
C3—C4—C5—C6 | −0.2 (3) | C12—C13—C14—C15 | 0.8 (3) |
C9—O2—C6—C5 | 6.2 (3) | C18—O4—C15—C14 | 179.78 (16) |
C9—O2—C6—C7 | −173.96 (15) | C18—O4—C15—C16 | −1.1 (3) |
C4—C5—C6—O2 | 179.99 (16) | C13—C14—C15—O4 | 178.80 (16) |
C4—C5—C6—C7 | 0.2 (3) | C13—C14—C15—C16 | −0.3 (3) |
C3—C2—C7—C6 | 0.2 (3) | C12—C11—C16—C15 | 0.6 (3) |
C1—C2—C7—C6 | −179.33 (16) | C10—C11—C16—C15 | −178.75 (16) |
O2—C6—C7—C2 | 179.95 (15) | O4—C15—C16—C11 | −179.43 (16) |
C5—C6—C7—C2 | −0.2 (3) | C14—C15—C16—C11 | −0.4 (3) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C18H20O4 |
Mr | 300.34 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 7.1954 (3), 9.4203 (4), 22.6762 (5) |
β (°) | 93.783 (2) |
V (Å3) | 1533.71 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.4 × 0.2 × 0.2 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7687, 3320, 2142 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.055, 0.150, 1.03 |
No. of reflections | 3320 |
No. of parameters | 207 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.24 |
Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SCHAKAL99 (Keller 1999), PLATON (Spek, 2009) and enCIFer (Allen et al., 2004).
References
Aggarwal, B. B., Bhardwaj, A., Aggarwal, R. S., Seeram, N. P., Shishodia, S. & Takada, Y. (2004). Anticancer Res. 24, 2783–2840. Web of Science PubMed CAS Google Scholar
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Botella, L. & Nayera, C. (2004). Tetrahedron, 60, 5563–5570. Web of Science CrossRef CAS Google Scholar
Fremont, L. (2000). Life Sci. 66, 663–673. Web of Science CrossRef PubMed CAS Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Jang, M., Cai, L., Udeani, G. O., Slowing, K. V., Thomas, L. F., Beecher, C. W. W., Fong, H. H. S., Farnsworth, N. R., Kinghorn, A. D., Mehta, R. G., Moon, R. C. & Rezzuto, J. M. (1997). Science, 275, 218–220. CrossRef CAS PubMed Web of Science Google Scholar
Keller, E. (1999). SCHAKAL99. University of Freiburg, Germany. Google Scholar
Kim, S., Ko, H., Park, J. E., Jung, S., Lee, S. K. & Chun, Y.-J. (2002). J. Med. Chem. 45, 160–164. Web of Science CrossRef PubMed CAS Google Scholar
Lion, C. J., Matthews, C. S., Stevens, M. F. & Westwell, A. D. (2005). J. Med. Chem. 48, 1292–1295. Web of Science CrossRef PubMed CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Reetz, M. T., Lohmer, G. & Schwinkardi, R. (1998). Angew. Chem. Int. Ed. 37, 481–483. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Uda, M., Mizutani, T., Hayakawa, J., Momotake, A., Ikegami, M., Nagahata, R. & Arai, T. (2002). Photochem. Photobiol. 6, 596–605. Web of Science CrossRef Google Scholar
Velder, J., Ritter, S., Lex, J. & Schmalz, H.-G. (2006). Synthesis, 2, 273–278. Google Scholar
Wieder, T., Prokop, A., Bagci, B., Essmann, F., Bernicke, D., Schulze-Osthoff, K., Dorken, B., Schmalz, H. G., Daniel, P. T. & Henze, G. (2001). Leukemia, 15, 1735–1742. Web of Science CrossRef PubMed CAS Google Scholar
Wolter, F. & Stein, J. (2002). Drugs Future, 27, 949–960. Web of Science CrossRef CAS Google Scholar
Yin, Q., Shi, Y.-M., Liu, H.-M., Li, C.-B. & Zhang, W.-Q. (2002). Acta Cryst. E58, o1180–o1181. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, polyhydroxylated stilbenes such as resveratrol have gained a tremendous importance especially due to their potential for the prevention and therapy of cancer (Aggarwal et al. (2004), Wolter et al. (2002), Fremont (2000), Jang et al. (1997)). In the course of our own research in the field of bioactive stilbenes (Wieder et al. (2001)) we were able to develop a highly efficient synthetic route towards symmetrically as well as unsymmetrically substituted E-stilbenes applying a Ru-catalyzed metathesis strategy (Velder et al. (2006)). Alternative strategies for the synthesis of stilbenes are based on Wittig-type olefinations or Heck couplings (Kim et al. (2002), Lion et al. (2005), Botella et al. (2004), Reetz et al. (1998). One of the compounds prepared was the title compound trans-1,2-bis-(3,5-dimethoxyphenyl)ethene. The asymmetric unit contains two molecules, A and B, both of which exhibit a center of symmetry (figure 1). The 3,5-dimethoxy groups of molecule B all adopt a s-anti configuration, whereas in molecule A, a s-syn as well as a s-anti conformation is found on both sides. Zhang and co-workers reported the same observation on a related structure (Yin et al., 2002). The torsion angles between the benzene ring planes in molecule A are 0.2 (3)° (C1a—C1—C2—C3), which gives the molecule a planar shape. Molecule B, in contrast, adopts a slightly twisted conformation with a torsion angle of 7.0 (2)° (C10b—C10—C11—C12). The molecules form slightly twisted pseudo-layers which are arranged along the b axis (Fig. 2). In figure 3, two of those pseudo-layers are shown from the top view (with the front layer being displayed in dark and the retral layer in light green).