organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2,7-Tri­chloro-3,4-di­hydro­naphthalen-1(2H)-one

aMedicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia, and bSchool of Chemistry, Monash University, Clayton, Victoria 3800, Australia
*Correspondence e-mail: craig.forsyth@sci.monash.edu.au

(Received 7 August 2009; accepted 18 August 2009; online 26 August 2009)

The title compound, C10H7Cl3O, obtained as a major byproduct from a classical Schmidt reaction. The cyclohexyl ring is distorted from a classical chair conformation, as observed for monocyclic analogues, presumably due to conjugation of the planar annulated benzo ring and the ketone group (r.m.s. deviation 0.024 Å). There are no significant intermolecular interactions.

Related literature

For the Schmidt reaction, see: Schmidt (1923[Schmidt, K. F. (1923). Angew. Chem. 36, 511-524.]). Lactams and their derived amidines are common structural moieties in a variety of phamaceutical agents (Fylaktakidou et al., 2008[Fylaktakidou, K. C., Hadjipavlou-Litina, D. J., Litinas, K. E., Varella, E. A. & Nicolaides, D. N. (2008). Curr. Pharm. Des. 14, 1001-1047.]), and are common in anti­psychotics (Capuano et al., 2002[Capuano, B., Crosby, I. T. & Lloyd, E. J. (2002). Curr. Med. Chem. 9, 521-548.], 2008[Capuano, B., Crosby, I. T., Lloyd, E. J., Podloucka, A. & Taylor, D. A. (2008). Aust. J. Chem. 61, 930-940.]). For the conformation of the cyclo­hexyl ring in monocyclic analogues, see: Lectard et al. (1973[Lectard, A. J., Petrissans, J. & Hauw, C. (1973). Cryst. Struct. Commun. 2, 1-4.]); Lichanot et al. (1974[Lichanot, A., J. Petrissans, J., Hauw, C. & Gaultier, J. (1974). Cryst. Struct. Commun. 3, 223-225.]).

[Scheme 1]

Experimental

Crystal data
  • C10H7Cl3O

  • Mr = 249.51

  • Monoclinic, P 21 /c

  • a = 8.5233 (1) Å

  • b = 8.0182 (2) Å

  • c = 14.8698 (3) Å

  • β = 102.561 (1)°

  • V = 991.90 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 123 K

  • 0.28 × 0.10 × 0.10 mm

Data collection
  • Nonius Kappa CCD diffractometer

  • Absorption correction: none

  • 9399 measured reflections

  • 2275 independent reflections

  • 1859 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.100

  • S = 1.06

  • 2275 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO–SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: CIFTAB (Sheldrick, 1997[Sheldrick, G. M. (1997). CIFTAB. University of Göttingen, Germany.]).

Supporting information


Comment top

The reaction between hydrazoic acid and carbonyl compounds in the presence of strong acid is known as the Schmidt reaction (Schmidt, 1923) and provides a method for conversion of cyclic ketones to lactams. Lactams as well as their derived amidines are common structural moieties in a variety of phamaceutical agents (Fylaktakidou, et al. 2008), but are specifically of interest to our group as they are common in antipsychotics (Capuano, et al. 2002, 2008). In the current study, reaction of 7-chloro-1-tetralone with sodium azide and hydrochloric acid gave the desired alkyl migration lactam, 8-chloro-2,3,4,5-tetrahydro-1 H-2-benzazepin-1-one, but also a significant amount of the title compound. The solid state structure shows a typical bicyclic ketone framework with two fused six-membered rings and a gem-dichloro substituent in the 2 position. The cyclohexyl ring is distorted from a classical chair conformation, as observed for monocyclic analogues (Lectard, et al., 1973, Lichanot, et al., 1974), presumably due to conjugation of the planar annulated benzo ring and the ketone group (RMS deviation 0.024Å). There are no significant intermolecular interactions.

Related literature top

For the Schmidt reaction, see: Schmidt (1923). Lactams and their derived amidines are common structural moieties in a variety of phamaceutical agents (Fylaktakidou et al., 2008), and are common in antipsychotics (Capuano et al., 2002, 2008). For the conformation of the cyclohexyl ring in monocyclic analogues, see: Lectard et al. (1973); Lichanot et al. (1974).

Experimental top

Sodium azide (1.30 g, 20.0 mmol) was added to a stirred solution of 7-chloro-3,4-dihydronaphthalen-1(2H)-one (1.00 g, 5.54 mmol) in concentrated HCl maintained at 0 °C. After warming to room temperature and stirring overnight, the mixture was poured into water and neutralized with K2CO3. The crude product mixture was extracted with CH2Cl2 and purified by flash chromatography (silica; ethyl acetate). The fractions containing the title compound were evaporated and the residue was recrystallized from CHCl3/hexane yielding beige prismatic crystals. (m.p. 435–436 K). 1H NMR (300 MHz, CDCl3 δ, p.p.m.): 8.12 (d, 1H, J = 2.5 Hz, H8), 7.52 (dd, 1H, J = 8.0, 2.5 Hz, H6), 7.23 (d, 1H, J = 8.0 Hz, H5), 3.18 (t, 2H, J = 6.0 Hz, H4), 2.95 (t, 2H, J = 6.0 Hz, H3). 13C NMR (75 MHz, CDCl3 δ, p.p.m.): 183.0, 140.4, 134.6, 133.9, 130.3, 129.8, 129.4, 85.7, 43.0, 27.0. m/z (EI, 70 ev): 254 (1%, M+[37Cl]3), 252 (7, M+[35Cl][37Cl]2, 250 (24, M+[35Cl]2[37Cl]), 248 (26, M+[35Cl]3), 213 (20), 152 (100), 124 (36), 89 (19). Calcd. for C10H7Cl3O: C 48.1, H 2.8, Cl 42.6; found C 48.1, H 2.9, Cl 42.6%.

Refinement top

All H atoms for the primary molecules were initially located in the difference Fourier map but were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.95–1.00 Å and Uiso(H) = 1.2–1.5 Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: CIFTAB (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Molecular diagram of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
2,2,7-Trichloro-3,4-dihydronaphthalen-1(2H)-one top
Crystal data top
C10H7Cl3OF(000) = 504
Mr = 249.51Dx = 1.671 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9399 reflections
a = 8.5233 (1) Åθ = 2.8–27.5°
b = 8.0182 (2) ŵ = 0.88 mm1
c = 14.8698 (3) ÅT = 123 K
β = 102.561 (1)°Prism, colourless
V = 991.90 (3) Å30.28 × 0.10 × 0.10 mm
Z = 4
Data collection top
Nonius Kappa CCD
diffractometer
1859 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.064
Graphite monochromatorθmax = 27.5°, θmin = 2.8°
ϕ and ω scansh = 1111
9399 measured reflectionsk = 1010
2275 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.6127P]
where P = (Fo2 + 2Fc2)/3
2275 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C10H7Cl3OV = 991.90 (3) Å3
Mr = 249.51Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.5233 (1) ŵ = 0.88 mm1
b = 8.0182 (2) ÅT = 123 K
c = 14.8698 (3) Å0.28 × 0.10 × 0.10 mm
β = 102.561 (1)°
Data collection top
Nonius Kappa CCD
diffractometer
1859 reflections with I > 2σ(I)
9399 measured reflectionsRint = 0.064
2275 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.06Δρmax = 0.53 e Å3
2275 reflectionsΔρmin = 0.34 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.11870 (6)0.58915 (7)0.26554 (4)0.02493 (16)
Cl20.48515 (6)1.11552 (6)0.63056 (4)0.02410 (15)
Cl30.25735 (6)0.91201 (7)0.70159 (4)0.02542 (16)
O10.20373 (18)1.05238 (18)0.48477 (11)0.0256 (4)
C10.2039 (2)0.7561 (2)0.48441 (13)0.0167 (4)
C20.2751 (2)0.6089 (2)0.52503 (14)0.0165 (4)
C30.2196 (2)0.4562 (3)0.48443 (14)0.0199 (4)
H30.26590.35550.51160.024*
C40.0986 (2)0.4492 (3)0.40537 (14)0.0200 (4)
H40.06160.34490.37860.024*
C50.0320 (2)0.5981 (3)0.36575 (14)0.0187 (4)
C60.0818 (2)0.7514 (2)0.40393 (13)0.0180 (4)
H60.03460.85140.37630.022*
C70.2542 (2)0.9236 (2)0.52247 (14)0.0182 (4)
C80.3773 (2)0.9241 (2)0.61578 (14)0.0173 (4)
C90.4939 (2)0.7787 (3)0.62603 (14)0.0200 (4)
H9A0.56450.78100.68840.024*
H9B0.56270.79040.58060.024*
C100.4060 (2)0.6127 (2)0.61131 (14)0.0198 (4)
H10A0.48450.52310.60790.024*
H10B0.35830.58940.66500.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0203 (3)0.0295 (3)0.0223 (3)0.0046 (2)0.0012 (2)0.0031 (2)
Cl20.0264 (3)0.0186 (3)0.0248 (3)0.0065 (2)0.0002 (2)0.0013 (2)
Cl30.0253 (3)0.0289 (3)0.0240 (3)0.0017 (2)0.0097 (2)0.0008 (2)
O10.0284 (8)0.0142 (7)0.0295 (8)0.0003 (6)0.0037 (7)0.0008 (6)
C10.0165 (9)0.0157 (10)0.0181 (9)0.0002 (7)0.0043 (8)0.0014 (8)
C20.0156 (9)0.0158 (10)0.0188 (9)0.0010 (7)0.0054 (7)0.0017 (8)
C30.0206 (10)0.0152 (10)0.0250 (10)0.0018 (8)0.0070 (8)0.0012 (8)
C40.0207 (10)0.0168 (9)0.0240 (10)0.0026 (8)0.0083 (8)0.0040 (8)
C50.0157 (9)0.0225 (11)0.0178 (9)0.0038 (8)0.0035 (8)0.0020 (8)
C60.0176 (9)0.0176 (10)0.0190 (10)0.0012 (8)0.0043 (8)0.0017 (8)
C70.0173 (9)0.0169 (10)0.0198 (10)0.0005 (8)0.0029 (8)0.0006 (8)
C80.0190 (9)0.0148 (9)0.0186 (9)0.0027 (8)0.0050 (8)0.0006 (8)
C90.0174 (9)0.0214 (10)0.0203 (10)0.0007 (8)0.0021 (8)0.0012 (8)
C100.0208 (10)0.0157 (10)0.0215 (10)0.0012 (8)0.0018 (8)0.0027 (8)
Geometric parameters (Å, º) top
Cl1—C51.744 (2)C4—C51.396 (3)
Cl2—C81.778 (2)C4—H40.9500
Cl3—C81.803 (2)C5—C61.382 (3)
O1—C71.208 (2)C6—H60.9500
C1—C21.402 (3)C7—C81.547 (3)
C1—C61.405 (3)C8—C91.518 (3)
C1—C71.484 (3)C9—C101.520 (3)
C2—C31.401 (3)C9—H9A0.9900
C2—C101.506 (3)C9—H9B0.9900
C3—C41.386 (3)C10—H10A0.9900
C3—H30.9500C10—H10B0.9900
C2—C1—C6120.99 (18)C1—C7—C8115.33 (16)
C2—C1—C7122.35 (17)C9—C8—C7112.93 (16)
C6—C1—C7116.65 (17)C9—C8—Cl2109.90 (14)
C3—C2—C1118.42 (18)C7—C8—Cl2110.16 (13)
C3—C2—C10120.16 (17)C9—C8—Cl3110.33 (14)
C1—C2—C10121.41 (17)C7—C8—Cl3104.88 (13)
C4—C3—C2121.35 (19)Cl2—C8—Cl3108.46 (11)
C4—C3—H3119.3C8—C9—C10111.50 (16)
C2—C3—H3119.3C8—C9—H9A109.3
C3—C4—C5118.84 (19)C10—C9—H9A109.3
C3—C4—H4120.6C8—C9—H9B109.3
C5—C4—H4120.6C10—C9—H9B109.3
C6—C5—C4121.79 (19)H9A—C9—H9B108.0
C6—C5—Cl1119.40 (16)C2—C10—C9112.99 (16)
C4—C5—Cl1118.80 (15)C2—C10—H10A109.0
C5—C6—C1118.60 (18)C9—C10—H10A109.0
C5—C6—H6120.7C2—C10—H10B109.0
C1—C6—H6120.7C9—C10—H10B109.0
O1—C7—C1123.49 (19)H10A—C10—H10B107.8
O1—C7—C8121.17 (18)

Experimental details

Crystal data
Chemical formulaC10H7Cl3O
Mr249.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)8.5233 (1), 8.0182 (2), 14.8698 (3)
β (°) 102.561 (1)
V3)991.90 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.28 × 0.10 × 0.10
Data collection
DiffractometerNonius Kappa CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9399, 2275, 1859
Rint0.064
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.06
No. of reflections2275
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.34

Computer programs: COLLECT (Nonius, 1998), DENZO–SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), CIFTAB (Sheldrick, 1997).

 

Acknowledgements

We acknowledge support from Monash University and the Monash Institue of Pharmaceutical Sciences (Clayton and Parkville campuses) for funding this work.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationCapuano, B., Crosby, I. T. & Lloyd, E. J. (2002). Curr. Med. Chem. 9, 521–548.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCapuano, B., Crosby, I. T., Lloyd, E. J., Podloucka, A. & Taylor, D. A. (2008). Aust. J. Chem. 61, 930–940.  Web of Science CrossRef CAS Google Scholar
First citationFylaktakidou, K. C., Hadjipavlou-Litina, D. J., Litinas, K. E., Varella, E. A. & Nicolaides, D. N. (2008). Curr. Pharm. Des. 14, 1001–1047.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLectard, A. J., Petrissans, J. & Hauw, C. (1973). Cryst. Struct. Commun. 2, 1–4.  CAS Google Scholar
First citationLichanot, A., J. Petrissans, J., Hauw, C. & Gaultier, J. (1974). Cryst. Struct. Commun. 3, 223–225.  CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSchmidt, K. F. (1923). Angew. Chem. 36, 511–524.  Google Scholar
First citationSheldrick, G. M. (1997). CIFTAB. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds