metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{5-meth­­oxy-2-[(1H-pyrrol-2-yl)methyl­imino­meth­yl]phenolato}zinc(II)

aEngineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, People's Republic of China
*Correspondence e-mail: Qiangqiang_wang@163.com

(Received 8 August 2009; accepted 18 August 2009; online 22 August 2009)

The title compound, [Zn(C13H13N2O2)2], contains a Zn(II) centre, located on a twofold rotation axis, that is coordinated by two O atoms and two N atoms from two salicylal Schiff base mol­ecules. The crystal structure is stabilized by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the importance of zinc derivatives in biological processes, see: Chen et al. (2007[Chen, K., You, Z.-L. & Zhu, H.-L. (2007). Aust. J. Chem. 60, 375-379.]); Xiao & Xiao (2008[Xiao, Z.-P. & Xiao, H.-Y. (2008). Acta Cryst. E64, o2324.]); Xiao et al. (2007[Xiao, Z.-P., Shi, D.-H., Li, H.-Q., Zhang, L.-N., Xu, C. & Zhu, H.-L. (2007). Bioorg. Med. Chem. 15, 3703-3710.], 2008[Xiao, Z.-P., Li, H.-Q., Shi, L., Lv, P.-C., Song, Z.-C. & Zhu, H.-L. (2008). ChemMedChem, 3, 1077-1083.]). For related structures, see: You & Zhu (2006[You, Z.-L. & Zhu, H.-L. (2006). Z. Anorg. Allg. Chem. 632, 140-146.]); Zhu et al. (2004[Zhu, H.-L., Ma, J.-L. & Wang, D.-Q. (2004). Z. Anorg. Allg. Chem. 630, 1317-1320.]); Qiu et al. (2004[Qiu, X.-Y., Liu, Q.-X., Wang, Z.-G., Lin, Y.-S., Zeng, W.-J., Fun, H.-K. & Zhu, H.-L. (2004). Z. Kristallogr. New Cryst. Struct. 219, 150-152.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C13H13N2O2)2]

  • Mr = 523.88

  • Monoclinic, C 2/c

  • a = 27.210 (4) Å

  • b = 5.2239 (9) Å

  • c = 24.335 (3) Å

  • β = 137.179 (9)°

  • V = 2351.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 298 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.736, Tmax = 0.812

  • 8100 measured reflections

  • 2881 independent reflections

  • 2429 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.154

  • S = 1.08

  • 2881 reflections

  • 160 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O1i 0.97 2.32 3.291 (4) 177
Symmetry code: (i) [-x+2, y+1, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Zinc derivatives are particularly interesting owing to their essential importance in several biological processes (Xiao et al., 2008; Xiao & Xiao, 2008; Xiao et al., 2007; Chen et al., 2007). We have reported the structures of a few zinc(II) complexes (You & Zhu, 2006; Qiu et al., 2004; Zhu et al., 2004). As an extension of our work on the structural characterization of zinc compounds, we report the crystal structure of the title compound, (I), which has been determined in an attempt to understand the structural behaviour of nitrogen containing ligands.

The present X-ray single-crystal diffraction study reveals that compound (I), Bis(4-methoxysalicylidene(1H-pyrrol-2-yl)methanaminato)zinc(II), consists of a Zn(II) atom and two bidentate salicylal Schiff base ligands. As shown in Fig. 1, The central Zn atom exhibits 4-coordination by two N atoms from imine moieties and two O-anions from salicylal groups, forming a slightly distorted tetrahedron. The distortion arises from the difference between O—Zn and Zn—N (Table 1). The O1—C1 distance (1.308 (3) Å) and C2—C8 (1.425 (4) Å) are shorter than classical single C—O and C—C bonds, respectively. This suggests that electron significantly delocalized over the O1—C1—C2—C8—N1 group and the same to the O1A—C1A—C2A—C8A—N1A group. Zn1, N1, C8 and O1 almost stand in the plane of ring C1 to C6, and makes dihedral angle of 85.569 (45) ° with corresponding plane of the other half molecules.

The hydrogen-bonding interactions occur between the C—H in the CH2 group as donors and O in the salicylal moiety as acceptors (Table 1). These intermolecular hydrogen bonds construct an infinite ribbon. Interactions between the ribbons are van der Waals forces.

Related literature top

For the importance of zinc derivatives in biological processes, see: Chen et al. (2007); Xiao & Xiao (2008); Xiao et al. (2007, 2008). For related structures, see: You & Zhu (2006); Zhu et al. (2004); Qiu et al. (2004).

Experimental top

0.5 mmol of zinc oxide, 1 mmol of 4-methoxysalicylaldehyde and 1 mmol of (1H-pyrrol-2-yl)methanamine were dissolved in 10 ml methanol. After 3 ml ammonia was added, the result solution was then heated to 423 K for 12 h. The reactor was cooled to room temperature at a rate of 10 K h-1. The mixture was filtered and held at room temperature for 12 d. Colorless block crystals were isolated in 41% yield.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms. Uiso(H) values were set at 1.2 times Ueq(C, N) for aromatic C and N in pyrrole ring groups and 1.5 times Ueq(C) for CH3 groups.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The independent components of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
Bis{5-methoxy-2-[(1H-pyrrol-2-yl)methyliminomethyl]phenolato}zinc(II) top
Crystal data top
[Zn(C13H13N2O2)2]F(000) = 1088
Mr = 523.88Dx = 1.480 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2301 reflections
a = 27.210 (4) Åθ = 2.5–26.1°
b = 5.2239 (9) ŵ = 1.09 mm1
c = 24.335 (3) ÅT = 298 K
β = 137.179 (9)°Block, colorless
V = 2351.1 (6) Å30.30 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX area-detector
diffractometer
2881 independent reflections
Radiation source: fine-focus sealed tube2429 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3635
Tmin = 0.736, Tmax = 0.812k = 66
8100 measured reflectionsl = 2632
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0814P)2 + 2.3252P]
where P = (Fo2 + 2Fc2)/3
2881 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
[Zn(C13H13N2O2)2]V = 2351.1 (6) Å3
Mr = 523.88Z = 4
Monoclinic, C2/cMo Kα radiation
a = 27.210 (4) ŵ = 1.09 mm1
b = 5.2239 (9) ÅT = 298 K
c = 24.335 (3) Å0.30 × 0.30 × 0.20 mm
β = 137.179 (9)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
2881 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2429 reflections with I > 2σ(I)
Tmin = 0.736, Tmax = 0.812Rint = 0.028
8100 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.08Δρmax = 0.72 e Å3
2881 reflectionsΔρmin = 0.57 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.93603 (16)0.2495 (6)0.29548 (18)0.0401 (6)
C20.87592 (16)0.4163 (6)0.24129 (18)0.0398 (6)
C30.81985 (18)0.3941 (7)0.2349 (2)0.0503 (8)
H30.78020.50260.19960.060*
C40.82168 (18)0.2211 (7)0.2782 (2)0.0550 (8)
H40.78380.21050.27200.066*
C50.8813 (2)0.0602 (7)0.3317 (2)0.0490 (8)
C60.93736 (19)0.0707 (6)0.3401 (2)0.0462 (7)
H60.97630.04090.37540.055*
C70.9380 (2)0.2809 (8)0.4279 (2)0.0673 (10)
H7A0.93850.39530.39730.101*
H7B0.93170.37740.45590.101*
H7C0.98300.18960.46630.101*
C80.86588 (16)0.6031 (6)0.19107 (18)0.0418 (7)
H80.82400.70090.15920.050*
C90.88198 (18)0.8391 (7)0.1226 (2)0.0507 (8)
H9A0.92080.95540.14490.061*
H9B0.84300.93890.10650.061*
C100.85569 (18)0.7069 (7)0.0508 (2)0.0523 (8)
C110.8621 (2)0.7591 (13)0.0026 (3)0.0938 (18)
H110.88690.89410.00660.113*
C120.8210 (3)0.5539 (14)0.0582 (3)0.103 (2)
H120.81550.53180.10040.123*
C130.7934 (3)0.4069 (13)0.0421 (3)0.103 (2)
H130.76460.26370.07170.124*
N10.90797 (13)0.6538 (5)0.18427 (15)0.0398 (5)
N20.81349 (18)0.4967 (6)0.02362 (19)0.0571 (8)
H20.80160.43200.04510.069*
O10.99094 (12)0.2514 (5)0.30668 (15)0.0552 (6)
O20.88016 (16)0.1038 (6)0.37455 (17)0.0663 (7)
Zn11.00000.46424 (10)0.25000.0430 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0412 (15)0.0449 (16)0.0473 (16)0.0004 (12)0.0366 (14)0.0027 (13)
C20.0376 (14)0.0469 (17)0.0450 (16)0.0015 (12)0.0334 (14)0.0038 (13)
C30.0426 (16)0.065 (2)0.0567 (19)0.0051 (15)0.0406 (16)0.0019 (16)
C40.0501 (18)0.073 (2)0.065 (2)0.0037 (17)0.0497 (18)0.0036 (18)
C50.058 (2)0.0520 (18)0.0553 (19)0.0101 (15)0.0475 (18)0.0071 (15)
C60.0513 (18)0.0469 (17)0.0528 (18)0.0015 (14)0.0421 (16)0.0016 (14)
C70.086 (3)0.060 (2)0.067 (2)0.011 (2)0.059 (2)0.0029 (19)
C80.0363 (14)0.0465 (16)0.0448 (16)0.0037 (12)0.0304 (14)0.0004 (13)
C90.0515 (18)0.0459 (18)0.060 (2)0.0014 (14)0.0424 (17)0.0043 (15)
C100.0449 (17)0.067 (2)0.0499 (18)0.0130 (15)0.0363 (16)0.0157 (16)
C110.067 (3)0.156 (5)0.081 (3)0.038 (3)0.061 (3)0.049 (3)
C120.081 (4)0.168 (6)0.059 (3)0.047 (4)0.051 (3)0.013 (3)
C130.091 (4)0.114 (5)0.060 (3)0.025 (3)0.042 (3)0.013 (3)
N10.0355 (12)0.0458 (13)0.0423 (13)0.0016 (10)0.0298 (11)0.0022 (11)
N20.0605 (19)0.0552 (18)0.0486 (16)0.0063 (13)0.0378 (16)0.0074 (13)
O10.0481 (12)0.0674 (15)0.0712 (15)0.0150 (11)0.0504 (13)0.0210 (12)
O20.0821 (18)0.0695 (17)0.0832 (19)0.0025 (15)0.0719 (17)0.0089 (15)
Zn10.0374 (3)0.0513 (3)0.0530 (3)0.0000.0372 (3)0.000
Geometric parameters (Å, º) top
C1—O11.308 (3)C9—N11.460 (4)
C1—C61.412 (4)C9—C101.487 (5)
C1—C21.417 (4)C9—H9A0.9700
C2—C31.421 (4)C9—H9B0.9700
C2—C81.425 (4)C10—C111.333 (5)
C3—C41.360 (5)C10—N21.359 (5)
C3—H30.9300C11—C121.471 (8)
C4—C51.391 (5)C11—H110.9300
C4—H40.9300C12—C131.318 (9)
C5—O21.367 (4)C12—H120.9300
C5—C61.384 (5)C13—N21.340 (6)
C6—H60.9300C13—H130.9300
C7—O21.422 (5)N1—Zn11.983 (2)
C7—H7A0.9600N2—H20.8600
C7—H7B0.9600O1—Zn11.923 (2)
C7—H7C0.9600Zn1—O1i1.923 (2)
C8—N11.299 (4)Zn1—N1i1.983 (2)
C8—H80.9300
O1—C1—C6117.6 (3)N1—C9—H9B109.5
O1—C1—C2123.5 (3)C10—C9—H9B109.5
C6—C1—C2118.9 (3)H9A—C9—H9B108.1
C1—C2—C3117.7 (3)C11—C10—N2110.3 (4)
C1—C2—C8125.7 (3)C11—C10—C9132.7 (4)
C3—C2—C8116.6 (3)N2—C10—C9116.9 (3)
C4—C3—C2122.9 (3)C10—C11—C12104.0 (5)
C4—C3—H3118.6C10—C11—H11128.0
C2—C3—H3118.6C12—C11—H11128.0
C3—C4—C5118.8 (3)C13—C12—C11107.7 (5)
C3—C4—H4120.6C13—C12—H12126.1
C5—C4—H4120.6C11—C12—H12126.1
O2—C5—C6123.5 (3)C12—C13—N2109.2 (6)
O2—C5—C4115.5 (3)C12—C13—H13125.4
C6—C5—C4121.1 (3)N2—C13—H13125.4
C5—C6—C1120.6 (3)C8—N1—C9117.3 (3)
C5—C6—H6119.7C8—N1—Zn1120.3 (2)
C1—C6—H6119.7C9—N1—Zn1122.2 (2)
O2—C7—H7A109.5C13—N2—C10108.8 (5)
O2—C7—H7B109.5C13—N2—H2125.6
H7A—C7—H7B109.5C10—N2—H2125.6
O2—C7—H7C109.5C1—O1—Zn1125.7 (2)
H7A—C7—H7C109.5C5—O2—C7118.3 (3)
H7B—C7—H7C109.5O1—Zn1—O1i109.36 (15)
N1—C8—C2128.1 (3)O1—Zn1—N1i117.41 (10)
N1—C8—H8116.0O1i—Zn1—N1i96.71 (10)
C2—C8—H8116.0O1—Zn1—N196.71 (10)
N1—C9—C10110.7 (3)O1i—Zn1—N1117.41 (10)
N1—C9—H9A109.5N1i—Zn1—N1120.10 (15)
C10—C9—H9A109.5
O1—C1—C2—C3180.0 (3)C2—C8—N1—C9174.4 (3)
C6—C1—C2—C30.1 (4)C2—C8—N1—Zn11.1 (4)
O1—C1—C2—C81.2 (5)C10—C9—N1—C8102.9 (3)
C6—C1—C2—C8178.8 (3)C10—C9—N1—Zn172.5 (3)
C1—C2—C3—C40.1 (5)C12—C13—N2—C100.4 (6)
C8—C2—C3—C4178.8 (3)C11—C10—N2—C131.4 (5)
C2—C3—C4—C50.7 (5)C9—C10—N2—C13178.5 (4)
C3—C4—C5—O2178.3 (3)C6—C1—O1—Zn1177.0 (2)
C3—C4—C5—C61.3 (5)C2—C1—O1—Zn13.0 (5)
O2—C5—C6—C1178.3 (3)C6—C5—O2—C73.0 (5)
C4—C5—C6—C11.3 (5)C4—C5—O2—C7177.4 (3)
O1—C1—C6—C5179.4 (3)C1—O1—Zn1—O1i119.8 (3)
C2—C1—C6—C50.7 (5)C1—O1—Zn1—N1i131.4 (3)
C1—C2—C8—N11.1 (5)C1—O1—Zn1—N12.4 (3)
C3—C2—C8—N1177.8 (3)C8—N1—Zn1—O10.4 (3)
N1—C9—C10—C11139.4 (4)C9—N1—Zn1—O1175.6 (2)
N1—C9—C10—N244.4 (4)C8—N1—Zn1—O1i115.5 (2)
N2—C10—C11—C121.7 (4)C9—N1—Zn1—O1i59.7 (3)
C9—C10—C11—C12178.1 (4)C8—N1—Zn1—N1i127.6 (3)
C10—C11—C12—C131.4 (6)C9—N1—Zn1—N1i57.2 (2)
C11—C12—C13—N20.6 (6)
Symmetry code: (i) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1ii0.972.323.291 (4)177
Symmetry code: (ii) x+2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C13H13N2O2)2]
Mr523.88
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)27.210 (4), 5.2239 (9), 24.335 (3)
β (°) 137.179 (9)
V3)2351.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.736, 0.812
No. of measured, independent and
observed [I > 2σ(I)] reflections
8100, 2881, 2429
Rint0.028
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.154, 1.08
No. of reflections2881
No. of parameters160
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.57

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.972.323.291 (4)176.8
Symmetry code: (i) x+2, y+1, z+1/2.
 

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, K., You, Z.-L. & Zhu, H.-L. (2007). Aust. J. Chem. 60, 375–379.  Google Scholar
First citationQiu, X.-Y., Liu, Q.-X., Wang, Z.-G., Lin, Y.-S., Zeng, W.-J., Fun, H.-K. & Zhu, H.-L. (2004). Z. Kristallogr. New Cryst. Struct. 219, 150–152.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, Z.-P., Li, H.-Q., Shi, L., Lv, P.-C., Song, Z.-C. & Zhu, H.-L. (2008). ChemMedChem, 3, 1077–1083.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXiao, Z.-P., Shi, D.-H., Li, H.-Q., Zhang, L.-N., Xu, C. & Zhu, H.-L. (2007). Bioorg. Med. Chem. 15, 3703–3710.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXiao, Z.-P. & Xiao, H.-Y. (2008). Acta Cryst. E64, o2324.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYou, Z.-L. & Zhu, H.-L. (2006). Z. Anorg. Allg. Chem. 632, 140–146.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, H.-L., Ma, J.-L. & Wang, D.-Q. (2004). Z. Anorg. Allg. Chem. 630, 1317–1320.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds