organic compounds
trans-Ethylenedi-p-phenylene diacetate
aDepartment für Chemie der Universität zu Köln, Greinstrasse 4, 50939 Köln, Germany
*Correspondence e-mail: schmalz@uni-koeln.de
The centrosymmetric title compound, C18H26O4, was prepared in high yield from 4-acetoxystyrene via Ru-catalysed homo-olefin metathesis. Exclusive formation of the E-configurated isomer was observed. In the crystal, a strong C—H⋯π intermolecular interaction links the molecules together.
Related literature
For the preparation of differently substituted stilbenes using a Ru-catalysed metathesis strategy, see: Velder et al. (2006). For alternative methodologies for the synthesis of oxy-functionalized stilbenes using Wittig-type olefinations or Heck-couplings, see: Kim et al. (2002); Lion et al. (2005); Botella et al. (2004); Reetz et al. (1998). For the bioactivity of various stilbenes with a focus on their anticancer activity, see: Aggarwal et al. (2004); Wolter et al. (2002); Fremont (2000); Jang et al. (1997); Wieder et al. (2001). For related structures see: Malone et al. (1997). For a previous synthesis of the title compound see: Johnson et al. (1952).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: COLLECT (Hooft, 1998); cell DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SCHAKAL99 (Keller, 1999); software used to prepare material for publication: PLATON (Spek, 2009) and enCIFer (Allen et al., 2004).
Supporting information
10.1107/S1600536809032620/hg2554sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809032620/hg2554Isup2.hkl
In a glove-box (Labmaster 130, mBraun), the catalyst (Grubbs-II, 2 mol %) was weighted into a 25 ml Schlenk tube, which was sealed with a rubber septum. This was then taken out of the box, connected to an Ar-vacuum double manifold and equipped with a reflux condenser under argon. A solution of 3-acetoxy-styrene (1.0 g, 6.17 mmol) in CH2Cl2 (20 ml) was added via syringe and the resulting solution was refluxed for 1.5 h under argon. After allowing the reaction mixture to cool to room temperature, the solvent was evaporated in vacuo and the crude product was purified by recrystallization from EtOAc/cyclohexane 5:1 to give 0.8 g (88%) of the homo-metathesis product 1. mp. 214 °C (Johnson et al. (1952) 215–218°C). 1H NMR (300 MHz, CDCl3): δ = 2.29 (s, 3H, CH3), 7.04 (s, 1H, CH=), 7.08 (d, 2H, J = 8.7 Hz, H-3, H-5), 7.49 (d, 2H, J = 8.7 Hz, H-2, H-6); 13C NMR (300 MHz, CDCl3): δ = 21.2 (CH3), 121.8 (C-3, C-5), 127.4 (C-2, C-6), 127.9 (C-7), 135.0 (C-1), 150.1 (C-4), 169.5 (C=O); HRMS, calcd for C18H16O4 (M+) 296.1048, found 296.105.
Hydrogen atoms were located in difference syntheses, and are refined at idealized positions (C—H = 0.98Å for methyl H atoms and 0.95Å for all other H Atoms) using a riding model, the U values of the H atoms are constrained relative to Ueq of the parent carbon atom (1.2 x Ueq(C) for C—H and 1.5 x Ueq(C) for methyl H).
Data collection: COLLECT (Hooft, 1998); cell
DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SCHAKAL99 (Keller, 1999); software used to prepare material for publication: PLATON (Spek, 2009) and enCIFer (Allen et al., 2004).Fig. 1. A top view of 1. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. Intramolecular C—H···π interactions. |
C18H16O4 | F(000) = 312 |
Mr = 296.31 | Dx = 1.343 Mg m−3 |
Monoclinic, P21/c | Melting point: 214 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 9.7430 (4) Å | Cell parameters from 3533 reflections |
b = 7.2839 (4) Å | θ = 2.3–27.0° |
c = 11.2723 (6) Å | µ = 0.10 mm−1 |
β = 113.649 (3)° | T = 100 K |
V = 732.78 (7) Å3 | Needle, colourless |
Z = 2 | 0.52 × 0.36 × 0.34 mm |
Nonius KappaCCD diffractometer | 1119 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.038 |
Graphite monochromator | θmax = 27.0°, θmin = 2.3° |
ϕ and ω scans | h = −12→12 |
3533 measured reflections | k = −8→9 |
1595 independent reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0486P)2 + 0.0561P] where P = (Fo2 + 2Fc2)/3 |
1595 reflections | (Δ/σ)max = 0.002 |
101 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
C18H16O4 | V = 732.78 (7) Å3 |
Mr = 296.31 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.7430 (4) Å | µ = 0.10 mm−1 |
b = 7.2839 (4) Å | T = 100 K |
c = 11.2723 (6) Å | 0.52 × 0.36 × 0.34 mm |
β = 113.649 (3)° |
Nonius KappaCCD diffractometer | 1119 reflections with I > 2σ(I) |
3533 measured reflections | Rint = 0.038 |
1595 independent reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.20 e Å−3 |
1595 reflections | Δρmin = −0.21 e Å−3 |
101 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The coordinates of the hydrogen atoms are constrained, and the U values of the H atoms are constrained relative to the Ueq of the atom the hydrogen binds to (1.2 for CH and CH2, 1.5 for CH3). |
x | y | z | Uiso*/Ueq | ||
O1 | 0.26496 (12) | 0.47976 (14) | 0.58904 (9) | 0.0210 (3) | |
O2 | 0.37476 (12) | 0.75603 (15) | 0.60504 (10) | 0.0249 (3) | |
C1 | 0.06877 (16) | 0.48067 (19) | 0.04361 (14) | 0.0165 (3) | |
H1 | 0.1412 | 0.4466 | 0.0111 | 0.020* | |
C2 | 0.11855 (16) | 0.48580 (19) | 0.18473 (14) | 0.0151 (3) | |
C3 | 0.25433 (16) | 0.4033 (2) | 0.26319 (14) | 0.0171 (3) | |
H3 | 0.3134 | 0.3468 | 0.2238 | 0.020* | |
C4 | 0.30488 (16) | 0.4019 (2) | 0.39715 (14) | 0.0176 (3) | |
H4 | 0.3971 | 0.3446 | 0.4492 | 0.021* | |
C5 | 0.21842 (17) | 0.4853 (2) | 0.45310 (13) | 0.0165 (4) | |
C6 | 0.08410 (17) | 0.5691 (2) | 0.37923 (14) | 0.0189 (4) | |
H6 | 0.0261 | 0.6259 | 0.4195 | 0.023* | |
C7 | 0.03502 (17) | 0.5694 (2) | 0.24605 (14) | 0.0179 (4) | |
H7 | −0.0572 | 0.6274 | 0.1950 | 0.021* | |
C8 | 0.34023 (17) | 0.6307 (2) | 0.65644 (15) | 0.0187 (4) | |
C9 | 0.37163 (18) | 0.6128 (2) | 0.79670 (14) | 0.0245 (4) | |
H9A | 0.4210 | 0.7245 | 0.8424 | 0.037* | |
H9B | 0.4373 | 0.5070 | 0.8330 | 0.037* | |
H9C | 0.2773 | 0.5951 | 0.8069 | 0.037* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0304 (7) | 0.0177 (6) | 0.0123 (6) | −0.0031 (5) | 0.0058 (5) | −0.0012 (4) |
O2 | 0.0264 (7) | 0.0227 (6) | 0.0258 (6) | −0.0058 (5) | 0.0106 (5) | −0.0025 (5) |
C1 | 0.0191 (8) | 0.0139 (8) | 0.0174 (8) | −0.0008 (6) | 0.0083 (6) | −0.0011 (6) |
C2 | 0.0168 (8) | 0.0117 (7) | 0.0154 (8) | −0.0031 (6) | 0.0051 (6) | 0.0008 (6) |
C3 | 0.0184 (8) | 0.0156 (8) | 0.0175 (8) | −0.0012 (6) | 0.0076 (7) | −0.0019 (6) |
C4 | 0.0156 (8) | 0.0154 (8) | 0.0181 (8) | −0.0004 (6) | 0.0027 (6) | 0.0013 (6) |
C5 | 0.0239 (9) | 0.0132 (8) | 0.0106 (8) | −0.0049 (6) | 0.0049 (7) | −0.0005 (6) |
C6 | 0.0245 (9) | 0.0145 (8) | 0.0192 (8) | 0.0008 (6) | 0.0102 (7) | −0.0023 (6) |
C7 | 0.0198 (9) | 0.0152 (8) | 0.0169 (8) | 0.0018 (6) | 0.0055 (7) | 0.0010 (6) |
C8 | 0.0146 (8) | 0.0187 (9) | 0.0212 (8) | 0.0035 (6) | 0.0056 (7) | −0.0039 (7) |
C9 | 0.0275 (9) | 0.0245 (9) | 0.0174 (9) | 0.0029 (7) | 0.0046 (7) | −0.0037 (7) |
O1—C8 | 1.3700 (18) | C4—C5 | 1.380 (2) |
O1—C5 | 1.4135 (16) | C4—H4 | 0.9500 |
O2—C8 | 1.1994 (17) | C5—C6 | 1.380 (2) |
C1—C1i | 1.336 (3) | C6—C7 | 1.381 (2) |
C1—C2 | 1.466 (2) | C6—H6 | 0.9500 |
C1—H1 | 0.9500 | C7—H7 | 0.9500 |
C2—C3 | 1.398 (2) | C8—C9 | 1.491 (2) |
C2—C7 | 1.401 (2) | C9—H9A | 0.9800 |
C3—C4 | 1.388 (2) | C9—H9B | 0.9800 |
C3—H3 | 0.9500 | C9—H9C | 0.9800 |
C8—O1—C5 | 116.48 (11) | C5—C6—C7 | 119.19 (14) |
C1i—C1—C2 | 126.23 (17) | C5—C6—H6 | 120.4 |
C1i—C1—H1 | 116.9 | C7—C6—H6 | 120.4 |
C2—C1—H1 | 116.9 | C6—C7—C2 | 121.30 (14) |
C3—C2—C7 | 117.66 (14) | C6—C7—H7 | 119.3 |
C3—C2—C1 | 119.52 (13) | C2—C7—H7 | 119.3 |
C7—C2—C1 | 122.81 (13) | O2—C8—O1 | 122.30 (14) |
C4—C3—C2 | 121.62 (14) | O2—C8—C9 | 126.94 (14) |
C4—C3—H3 | 119.2 | O1—C8—C9 | 110.76 (13) |
C2—C3—H3 | 119.2 | C8—C9—H9A | 109.5 |
C5—C4—C3 | 118.61 (14) | C8—C9—H9B | 109.5 |
C5—C4—H4 | 120.7 | H9A—C9—H9B | 109.5 |
C3—C4—H4 | 120.7 | C8—C9—H9C | 109.5 |
C4—C5—C6 | 121.62 (13) | H9A—C9—H9C | 109.5 |
C4—C5—O1 | 119.59 (13) | H9B—C9—H9C | 109.5 |
C6—C5—O1 | 118.75 (13) | ||
C1i—C1—C2—C3 | 165.70 (18) | C8—O1—C5—C6 | −85.05 (16) |
C1i—C1—C2—C7 | −13.8 (3) | C4—C5—C6—C7 | 0.0 (2) |
C7—C2—C3—C4 | 0.6 (2) | O1—C5—C6—C7 | −177.66 (13) |
C1—C2—C3—C4 | −178.87 (13) | C5—C6—C7—C2 | 0.3 (2) |
C2—C3—C4—C5 | −0.4 (2) | C3—C2—C7—C6 | −0.6 (2) |
C3—C4—C5—C6 | 0.1 (2) | C1—C2—C7—C6 | 178.93 (13) |
C3—C4—C5—O1 | 177.71 (12) | C5—O1—C8—O2 | −5.1 (2) |
C8—O1—C5—C4 | 97.22 (15) | C5—O1—C8—C9 | 175.46 (12) |
Symmetry code: (i) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···Cg1ii | 0.95 | 2.81 | 3.539 (2) | 135 |
Symmetry code: (ii) −x, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C18H16O4 |
Mr | 296.31 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 9.7430 (4), 7.2839 (4), 11.2723 (6) |
β (°) | 113.649 (3) |
V (Å3) | 732.78 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.52 × 0.36 × 0.34 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3533, 1595, 1119 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.106, 1.03 |
No. of reflections | 1595 |
No. of parameters | 101 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.21 |
Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SCHAKAL99 (Keller, 1999), PLATON (Spek, 2009) and enCIFer (Allen et al., 2004).
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···Cg1i | 0.95 | 2.81 | 3.539 (2) | 135 |
Symmetry code: (i) −x, y+1/2, −z+1/2. |
References
Aggarwal, B. B., Bhardwaj, A., Aggarwal, R. S., Seeram, N. P., Shishodia, S. & Takada, Y. (2004). Anticancer Res. 24, 2783–2840. Web of Science PubMed CAS Google Scholar
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Botella, L. & Nayera, C. (2004). Tetrahedron, 60, 5563–5570. Web of Science CrossRef CAS Google Scholar
Fremont, L. (2000). Life Sci. 66, 663–673. Web of Science CrossRef PubMed CAS Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Jang, M., Cai, L., Udeani, G. O., Slowing, K. V., Thomas, L. F., Beecher, C. W. W., Fong, H. H. S., Farnsworth, N. R., Kinghorn, A. D., Mehta, R. G., Moon, R. C. & Rezzuto, J. M. (1997). Science, 275, 218–220. CrossRef CAS PubMed Web of Science Google Scholar
Johnson, W. S., Ericson, C. A. & Ackerman, J. (1952). J. Am. Chem. Soc. 74, 2251–2253. CrossRef CAS Web of Science Google Scholar
Keller, E. (1999). SCHAKAL99. University of Freiburg, Germany. Google Scholar
Kim, S., Ko, H., Park, J. E., Jung, S., Lee, S. K. & Chun, Y.-J. (2002). J. Med. Chem. 45, 160–164. Web of Science CrossRef PubMed CAS Google Scholar
Lion, C. J., Matthews, C. S., Stevens, M. F. & Westwell, A. D. (2005). J. Med. Chem. 48, 1292–1295. Web of Science CrossRef PubMed CAS Google Scholar
Malone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. & Lavery, A. J. (1997). J. Chem. Soc. Faraday Trans. 93, 3429–3436. CrossRef CAS Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Reetz, M. T., Lohmer, G. & Schwinkardi, R. (1998). Angew. Chem. Int. Ed. 37, 481–483. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Velder, J., Ritter, S., Lex, J. & Schmalz, H.-G. (2006). Synthesis, 2, 273–278. Google Scholar
Wieder, T., Prokop, A., Bagci, B., Essmann, F., Bernicke, D., Schulze-Osthoff, K., Dorken, B., Schmalz, H. G., Daniel, P. T. & Henze, G. (2001). Leukemia, 15, 1735–1742. Web of Science CrossRef PubMed CAS Google Scholar
Wolter, F. & Stein, J. (2002). Drugs Future, 27, 949–960. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Resveratrol-related stilbenes exhibit promising anticancer activity (Aggarwal et al., 2004; Wolter et al., 2002; Fremont et al., 2000; Jang et al., 1997). Based on our own research in the field of bioactive stilbenes (Wieder et al., 2001) we decided to reinvestigate the possibility of using a cross-metathesis strategy for the synthesis of compounds of type 1 (Velder et al., 2006) which turned out to be a highly efficient route towards symmetrically as well as unsymmetrically substituted E-stilbenes. Alternative strategies for the synthesis of stilbenes are based on Wittig-type olefinations or Heck couplings (Kim et al. (2002), Lion et al. (2005), Botella et al. (2004), Reetz et al. (1998)). One of the compounds prepared is the title compound trans-1,2-bis-(4-acetoxyphenyl)ethene. Within each molecule the two planes defined by the arene moieties are co-planar but slightly stepped (by 0.324 (2) Å) due to the fact that the plane defined by the central double bond is twisted by a torsion angle of -13.8 (2)° (C1a—C1—C2—C7) and 165.7 (15)° (C1a—C1—C2—C3), respectively (figure 1). The molecules form layers which are intermolecularly linked through a C—H···π interaction of type III (Malone et al. 1997). This interaction occurs between the H atom of one phenyl group and the π-system of the other phenyl moiety (figure 2). With a H···π distance of only 2.77 Å these interactions are rather strong.