organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Ethyl­enedi-p-phenyl­ene di­acetate

aDepartment für Chemie der Universität zu Köln, Greinstrasse 4, 50939 Köln, Germany
*Correspondence e-mail: schmalz@uni-koeln.de

(Received 12 August 2009; accepted 17 August 2009; online 26 August 2009)

The centrosymmetric title compound, C18H26O4, was prepared in high yield from 4-acetoxy­styrene via Ru-catalysed homo-olefin metathesis. Exclusive formation of the E-configurated isomer was observed. In the crystal, a strong C—H⋯π inter­molecular inter­action links the mol­ecules together.

Related literature

For the preparation of differently substituted stilbenes using a Ru-catalysed metathesis strategy, see: Velder et al. (2006[Velder, J., Ritter, S., Lex, J. & Schmalz, H.-G. (2006). Synthesis, 2, 273-278.]). For alternative methodologies for the synthesis of ­oxy-functionalized stilbenes using Wittig-type olefinations or Heck-couplings, see: Kim et al. (2002[Kim, S., Ko, H., Park, J. E., Jung, S., Lee, S. K. & Chun, Y.-J. (2002). J. Med. Chem. 45, 160-164.]); Lion et al. (2005[Lion, C. J., Matthews, C. S., Stevens, M. F. & Westwell, A. D. (2005). J. Med. Chem. 48, 1292-1295.]); Botella et al. (2004[Botella, L. & Nayera, C. (2004). Tetrahedron, 60, 5563-5570.]); Reetz et al. (1998[Reetz, M. T., Lohmer, G. & Schwinkardi, R. (1998). Angew. Chem. Int. Ed. 37, 481-483.]). For the bioactivity of various stilbenes with a focus on their anti­cancer activity, see: Aggarwal et al. (2004[Aggarwal, B. B., Bhardwaj, A., Aggarwal, R. S., Seeram, N. P., Shishodia, S. & Takada, Y. (2004). Anticancer Res. 24, 2783-2840.]); Wolter et al. (2002[Wolter, F. & Stein, J. (2002). Drugs Future, 27, 949-960.]); Fremont (2000[Fremont, L. (2000). Life Sci. 66, 663-673.]); Jang et al. (1997[Jang, M., Cai, L., Udeani, G. O., Slowing, K. V., Thomas, L. F., Beecher, C. W. W., Fong, H. H. S., Farnsworth, N. R., Kinghorn, A. D., Mehta, R. G., Moon, R. C. & Rezzuto, J. M. (1997). Science, 275, 218-220.]); Wieder et al. (2001[Wieder, T., Prokop, A., Bagci, B., Essmann, F., Bernicke, D., Schulze-Osthoff, K., Dorken, B., Schmalz, H. G., Daniel, P. T. & Henze, G. (2001). Leukemia, 15, 1735-1742.]). For related structures see: Malone et al. (1997[Malone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. & Lavery, A. J. (1997). J. Chem. Soc. Faraday Trans. 93, 3429-3436.]). For a previous synthesis of the title compound see: Johnson et al. (1952[Johnson, W. S., Ericson, C. A. & Ackerman, J. (1952). J. Am. Chem. Soc. 74, 2251-2253.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16O4

  • Mr = 296.31

  • Monoclinic, P 21 /c

  • a = 9.7430 (4) Å

  • b = 7.2839 (4) Å

  • c = 11.2723 (6) Å

  • β = 113.649 (3)°

  • V = 732.78 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.52 × 0.36 × 0.34 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 3533 measured reflections

  • 1595 independent reflections

  • 1119 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.106

  • S = 1.03

  • 1595 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Geometry the C—H⋯π interaction (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Cg1i 0.95 2.81 3.539 (2) 135
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 is the centroid of the C2–C7 ring.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SCHAKAL99 (Keller, 1999[Keller, E. (1999). SCHAKAL99. University of Freiburg, Germany.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Resveratrol-related stilbenes exhibit promising anticancer activity (Aggarwal et al., 2004; Wolter et al., 2002; Fremont et al., 2000; Jang et al., 1997). Based on our own research in the field of bioactive stilbenes (Wieder et al., 2001) we decided to reinvestigate the possibility of using a cross-metathesis strategy for the synthesis of compounds of type 1 (Velder et al., 2006) which turned out to be a highly efficient route towards symmetrically as well as unsymmetrically substituted E-stilbenes. Alternative strategies for the synthesis of stilbenes are based on Wittig-type olefinations or Heck couplings (Kim et al. (2002), Lion et al. (2005), Botella et al. (2004), Reetz et al. (1998)). One of the compounds prepared is the title compound trans-1,2-bis-(4-acetoxyphenyl)ethene. Within each molecule the two planes defined by the arene moieties are co-planar but slightly stepped (by 0.324 (2) Å) due to the fact that the plane defined by the central double bond is twisted by a torsion angle of -13.8 (2)° (C1a—C1—C2—C7) and 165.7 (15)° (C1a—C1—C2—C3), respectively (figure 1). The molecules form layers which are intermolecularly linked through a C—H···π interaction of type III (Malone et al. 1997). This interaction occurs between the H atom of one phenyl group and the π-system of the other phenyl moiety (figure 2). With a H···π distance of only 2.77 Å these interactions are rather strong.

Related literature top

For the preparation of differently substituted stilbenes using a Ru-catalysed metathesis strategy, see: Velder et al. (2006). For alternative methodologies for the synthesis of oxy-functionalized stilbenes using Wittig-type olefinations or Heck-couplings, see: Kim et al. (2002); Lion et al. (2005); Botella et al. (2004); Reetz et al. (1998). For the bioactivity of various stilbenes with a focus on their anticancer activity, see: Aggarwal et al. (2004); Wolter et al. (2002); Fremont (2000); Jang et al. (1997); Wieder et al. (2001). For related structures see: Malone et al. (1997). For a previous synthesis of the title compound see: Johnson et al. (1952). Cg1 is the centroid of the C2–C7 ring.

Experimental top

In a glove-box (Labmaster 130, mBraun), the catalyst (Grubbs-II, 2 mol %) was weighted into a 25 ml Schlenk tube, which was sealed with a rubber septum. This was then taken out of the box, connected to an Ar-vacuum double manifold and equipped with a reflux condenser under argon. A solution of 3-acetoxy-styrene (1.0 g, 6.17 mmol) in CH2Cl2 (20 ml) was added via syringe and the resulting solution was refluxed for 1.5 h under argon. After allowing the reaction mixture to cool to room temperature, the solvent was evaporated in vacuo and the crude product was purified by recrystallization from EtOAc/cyclohexane 5:1 to give 0.8 g (88%) of the homo-metathesis product 1. mp. 214 °C (Johnson et al. (1952) 215–218°C). 1H NMR (300 MHz, CDCl3): δ = 2.29 (s, 3H, CH3), 7.04 (s, 1H, CH=), 7.08 (d, 2H, J = 8.7 Hz, H-3, H-5), 7.49 (d, 2H, J = 8.7 Hz, H-2, H-6); 13C NMR (300 MHz, CDCl3): δ = 21.2 (CH3), 121.8 (C-3, C-5), 127.4 (C-2, C-6), 127.9 (C-7), 135.0 (C-1), 150.1 (C-4), 169.5 (C=O); HRMS, calcd for C18H16O4 (M+) 296.1048, found 296.105.

Refinement top

Hydrogen atoms were located in difference syntheses, and are refined at idealized positions (C—H = 0.98Å for methyl H atoms and 0.95Å for all other H Atoms) using a riding model, the U values of the H atoms are constrained relative to Ueq of the parent carbon atom (1.2 x Ueq(C) for C—H and 1.5 x Ueq(C) for methyl H).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SCHAKAL99 (Keller, 1999); software used to prepare material for publication: PLATON (Spek, 2009) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. A top view of 1. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Intramolecular C—H···π interactions.
trans-Ethylenedi-p-phenylene diacetate top
Crystal data top
C18H16O4F(000) = 312
Mr = 296.31Dx = 1.343 Mg m3
Monoclinic, P21/cMelting point: 214 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.7430 (4) ÅCell parameters from 3533 reflections
b = 7.2839 (4) Åθ = 2.3–27.0°
c = 11.2723 (6) ŵ = 0.10 mm1
β = 113.649 (3)°T = 100 K
V = 732.78 (7) Å3Needle, colourless
Z = 20.52 × 0.36 × 0.34 mm
Data collection top
Nonius KappaCCD
diffractometer
1119 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
Graphite monochromatorθmax = 27.0°, θmin = 2.3°
ϕ and ω scansh = 1212
3533 measured reflectionsk = 89
1595 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.0561P]
where P = (Fo2 + 2Fc2)/3
1595 reflections(Δ/σ)max = 0.002
101 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C18H16O4V = 732.78 (7) Å3
Mr = 296.31Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.7430 (4) ŵ = 0.10 mm1
b = 7.2839 (4) ÅT = 100 K
c = 11.2723 (6) Å0.52 × 0.36 × 0.34 mm
β = 113.649 (3)°
Data collection top
Nonius KappaCCD
diffractometer
1119 reflections with I > 2σ(I)
3533 measured reflectionsRint = 0.038
1595 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
1595 reflectionsΔρmin = 0.21 e Å3
101 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The coordinates of the hydrogen atoms are constrained, and the U values of the H atoms are constrained relative to the Ueq of the atom the hydrogen binds to (1.2 for CH and CH2, 1.5 for CH3).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.26496 (12)0.47976 (14)0.58904 (9)0.0210 (3)
O20.37476 (12)0.75603 (15)0.60504 (10)0.0249 (3)
C10.06877 (16)0.48067 (19)0.04361 (14)0.0165 (3)
H10.14120.44660.01110.020*
C20.11855 (16)0.48580 (19)0.18473 (14)0.0151 (3)
C30.25433 (16)0.4033 (2)0.26319 (14)0.0171 (3)
H30.31340.34680.22380.020*
C40.30488 (16)0.4019 (2)0.39715 (14)0.0176 (3)
H40.39710.34460.44920.021*
C50.21842 (17)0.4853 (2)0.45310 (13)0.0165 (4)
C60.08410 (17)0.5691 (2)0.37923 (14)0.0189 (4)
H60.02610.62590.41950.023*
C70.03502 (17)0.5694 (2)0.24605 (14)0.0179 (4)
H70.05720.62740.19500.021*
C80.34023 (17)0.6307 (2)0.65644 (15)0.0187 (4)
C90.37163 (18)0.6128 (2)0.79670 (14)0.0245 (4)
H9A0.42100.72450.84240.037*
H9B0.43730.50700.83300.037*
H9C0.27730.59510.80690.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0304 (7)0.0177 (6)0.0123 (6)0.0031 (5)0.0058 (5)0.0012 (4)
O20.0264 (7)0.0227 (6)0.0258 (6)0.0058 (5)0.0106 (5)0.0025 (5)
C10.0191 (8)0.0139 (8)0.0174 (8)0.0008 (6)0.0083 (6)0.0011 (6)
C20.0168 (8)0.0117 (7)0.0154 (8)0.0031 (6)0.0051 (6)0.0008 (6)
C30.0184 (8)0.0156 (8)0.0175 (8)0.0012 (6)0.0076 (7)0.0019 (6)
C40.0156 (8)0.0154 (8)0.0181 (8)0.0004 (6)0.0027 (6)0.0013 (6)
C50.0239 (9)0.0132 (8)0.0106 (8)0.0049 (6)0.0049 (7)0.0005 (6)
C60.0245 (9)0.0145 (8)0.0192 (8)0.0008 (6)0.0102 (7)0.0023 (6)
C70.0198 (9)0.0152 (8)0.0169 (8)0.0018 (6)0.0055 (7)0.0010 (6)
C80.0146 (8)0.0187 (9)0.0212 (8)0.0035 (6)0.0056 (7)0.0039 (7)
C90.0275 (9)0.0245 (9)0.0174 (9)0.0029 (7)0.0046 (7)0.0037 (7)
Geometric parameters (Å, º) top
O1—C81.3700 (18)C4—C51.380 (2)
O1—C51.4135 (16)C4—H40.9500
O2—C81.1994 (17)C5—C61.380 (2)
C1—C1i1.336 (3)C6—C71.381 (2)
C1—C21.466 (2)C6—H60.9500
C1—H10.9500C7—H70.9500
C2—C31.398 (2)C8—C91.491 (2)
C2—C71.401 (2)C9—H9A0.9800
C3—C41.388 (2)C9—H9B0.9800
C3—H30.9500C9—H9C0.9800
C8—O1—C5116.48 (11)C5—C6—C7119.19 (14)
C1i—C1—C2126.23 (17)C5—C6—H6120.4
C1i—C1—H1116.9C7—C6—H6120.4
C2—C1—H1116.9C6—C7—C2121.30 (14)
C3—C2—C7117.66 (14)C6—C7—H7119.3
C3—C2—C1119.52 (13)C2—C7—H7119.3
C7—C2—C1122.81 (13)O2—C8—O1122.30 (14)
C4—C3—C2121.62 (14)O2—C8—C9126.94 (14)
C4—C3—H3119.2O1—C8—C9110.76 (13)
C2—C3—H3119.2C8—C9—H9A109.5
C5—C4—C3118.61 (14)C8—C9—H9B109.5
C5—C4—H4120.7H9A—C9—H9B109.5
C3—C4—H4120.7C8—C9—H9C109.5
C4—C5—C6121.62 (13)H9A—C9—H9C109.5
C4—C5—O1119.59 (13)H9B—C9—H9C109.5
C6—C5—O1118.75 (13)
C1i—C1—C2—C3165.70 (18)C8—O1—C5—C685.05 (16)
C1i—C1—C2—C713.8 (3)C4—C5—C6—C70.0 (2)
C7—C2—C3—C40.6 (2)O1—C5—C6—C7177.66 (13)
C1—C2—C3—C4178.87 (13)C5—C6—C7—C20.3 (2)
C2—C3—C4—C50.4 (2)C3—C2—C7—C60.6 (2)
C3—C4—C5—C60.1 (2)C1—C2—C7—C6178.93 (13)
C3—C4—C5—O1177.71 (12)C5—O1—C8—O25.1 (2)
C8—O1—C5—C497.22 (15)C5—O1—C8—C9175.46 (12)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Cg1ii0.952.813.539 (2)135
Symmetry code: (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H16O4
Mr296.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.7430 (4), 7.2839 (4), 11.2723 (6)
β (°) 113.649 (3)
V3)732.78 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.52 × 0.36 × 0.34
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3533, 1595, 1119
Rint0.038
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.106, 1.03
No. of reflections1595
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SCHAKAL99 (Keller, 1999), PLATON (Spek, 2009) and enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Cg1i0.952.813.539 (2)135
Symmetry code: (i) x, y+1/2, z+1/2.
 

References

First citationAggarwal, B. B., Bhardwaj, A., Aggarwal, R. S., Seeram, N. P., Shishodia, S. & Takada, Y. (2004). Anticancer Res. 24, 2783–2840.  Web of Science PubMed CAS Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBotella, L. & Nayera, C. (2004). Tetrahedron, 60, 5563–5570.  Web of Science CrossRef CAS Google Scholar
First citationFremont, L. (2000). Life Sci. 66, 663–673.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJang, M., Cai, L., Udeani, G. O., Slowing, K. V., Thomas, L. F., Beecher, C. W. W., Fong, H. H. S., Farnsworth, N. R., Kinghorn, A. D., Mehta, R. G., Moon, R. C. & Rezzuto, J. M. (1997). Science, 275, 218–220.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJohnson, W. S., Ericson, C. A. & Ackerman, J. (1952). J. Am. Chem. Soc. 74, 2251–2253.  CrossRef CAS Web of Science Google Scholar
First citationKeller, E. (1999). SCHAKAL99. University of Freiburg, Germany.  Google Scholar
First citationKim, S., Ko, H., Park, J. E., Jung, S., Lee, S. K. & Chun, Y.-J. (2002). J. Med. Chem. 45, 160–164.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLion, C. J., Matthews, C. S., Stevens, M. F. & Westwell, A. D. (2005). J. Med. Chem. 48, 1292–1295.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMalone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. & Lavery, A. J. (1997). J. Chem. Soc. Faraday Trans. 93, 3429–3436.  CrossRef CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationReetz, M. T., Lohmer, G. & Schwinkardi, R. (1998). Angew. Chem. Int. Ed. 37, 481–483.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVelder, J., Ritter, S., Lex, J. & Schmalz, H.-G. (2006). Synthesis, 2, 273–278.  Google Scholar
First citationWieder, T., Prokop, A., Bagci, B., Essmann, F., Bernicke, D., Schulze-Osthoff, K., Dorken, B., Schmalz, H. G., Daniel, P. T. & Henze, G. (2001). Leukemia, 15, 1735–1742.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWolter, F. & Stein, J. (2002). Drugs Future, 27, 949–960.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds