organic compounds
2-Benzoyl-1-(2,4-dichlorophenyl)-3-phenylguanidine
aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, bDepartment of Chemistry, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu City 501-1193, Japan, and cDepartment of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
*Correspondence e-mail: khawar_rauf@hotmail.com
In the title compound, C20H15Cl2N3O, a typical polysubstituted guanidine with normal geometric parameters, the torsion angles [C—N—C—O = 3.8 (2), N—C—N—C = −6.1 (2)°] indicate that the guanidine and carbonyl groups are almost coplanar, due to the pseudo-hexagonal ring formed by intramolecular N—H⋯O hydrogen bonds. The crystal packing is stabilized by intermolecular N—H⋯O hydrogen bonds, which link the molecules into centrosymmetric dimers.
Related literature
The guanidinium group is present in diverse biologically active substances, see: Manimala & Anslyn (2002); Berlinck (2002). These compounds have received increasing interest as medicinal agents, for example having an effect on the neuromuscular junction, see: Rodrigues-Simioni et al. (1997). Guanidine derivatives are also useful building blocks in synthetic organic chemistry, see: Costa et al. (1998); Kovacevic & Maksic (2001), and due to their strongly basic character, guanidines can be considered as super-bases for biological systems, see: Ishikawa & Isobe (2002). For related structures, see: Cunha et al. (2005); Murtaza et al. (2007, 2008, 2009). For the preparation of N-benzoyl-N′-phenylthiourea, see: Rauf et al. (2009).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell CrystalClear; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and TEXSAN.
Supporting information
10.1107/S160053680903387X/hg2555sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680903387X/hg2555Isup2.hkl
N-Benzoyl-N'-phenylthiourea (0.256 g, 1 mmol) was prepared (Rauf et al., 2009) and dissolved in 10 ml of dimethylformamide and taken into two neck round bottom flask. 2,4-dichloroaniline (0.16 g, 1 mmol) and triethylamine (0.28 ml, 2 mmol) were added and the mixture was stirred well below 5°C. Mercuric chloride (0.272 g, 1 mmol) was then added and mixture was vigorously stirred for 15 h till the completion of reaction as monitored by TLC. When all the thiourea was consumed, 20 ml of chloroform was added and the suspension was filtered through sintered glass funnel to remove residual HgS formed as a byproduct during the reaction. The solvent was evaporated under reduced pressure and residue was dissolved in 20 ml of CH2Cl2. Other byproducts were extracted out with water (4×30 ml). The organic phase was dried over anhydrous MgSO4 and then filtered. The solvent was evaporated and product was further purified by
The target guanidine was recrystallized in ethanol to obtain single crystals suitable for X-ray analysis.Positional parameters of the H atoms bonded to N were refined with Uiso(H) = 1.2Ueq(N). Hydrogen atoms bonded to C were included in calculated positions and refined as riding on their parent C atom with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).
Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell
CrystalClear (Molecular Structure Corporation & Rigaku, 2001); data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and TEXSAN (Molecular Structure Corporation & Rigaku, 2004).C20H15Cl2N3O | F(000) = 792 |
Mr = 384.25 | Dx = 1.449 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71070 Å |
Hall symbol: -P 2ybc | Cell parameters from 5226 reflections |
a = 16.461 (6) Å | θ = 3.1–27.5° |
b = 6.663 (2) Å | µ = 0.38 mm−1 |
c = 19.388 (6) Å | T = 123 K |
β = 124.072 (5)° | Block, colourless |
V = 1761.0 (10) Å3 | 0.42 × 0.40 × 0.18 mm |
Z = 4 |
Rigaku/MSC Mercury CCD diffractometer | 3768 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.031 |
Graphite monochromator | θmax = 27.5°, θmin = 3.3° |
Detector resolution: 14.62 pixels mm-1 | h = −21→16 |
ω scans | k = −8→8 |
13586 measured reflections | l = −17→25 |
4023 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.099 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0364P)2 + 1.087P] where P = (Fo2 + 2Fc2)/3 |
4023 reflections | (Δ/σ)max < 0.001 |
241 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
C20H15Cl2N3O | V = 1761.0 (10) Å3 |
Mr = 384.25 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 16.461 (6) Å | µ = 0.38 mm−1 |
b = 6.663 (2) Å | T = 123 K |
c = 19.388 (6) Å | 0.42 × 0.40 × 0.18 mm |
β = 124.072 (5)° |
Rigaku/MSC Mercury CCD diffractometer | 3768 reflections with I > 2σ(I) |
13586 measured reflections | Rint = 0.031 |
4023 independent reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.099 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | Δρmax = 0.34 e Å−3 |
4023 reflections | Δρmin = −0.27 e Å−3 |
241 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.16683 (11) | 0.5401 (2) | 0.00837 (10) | 0.0159 (3) | |
N1 | 0.23055 (9) | 0.3930 (2) | 0.05737 (8) | 0.0168 (3) | |
N2 | 0.27838 (10) | 0.1383 (2) | 0.15357 (9) | 0.0190 (3) | |
H2 | 0.2660 (14) | 0.070 (3) | 0.1846 (13) | 0.023* | |
N3 | 0.12213 (10) | 0.2596 (2) | 0.09071 (9) | 0.0176 (3) | |
H3 | 0.0802 (15) | 0.344 (3) | 0.0586 (13) | 0.021* | |
C2 | 0.20779 (11) | 0.2689 (2) | 0.09780 (10) | 0.0159 (3) | |
O1 | 0.08319 (8) | 0.57114 (18) | −0.00799 (7) | 0.0198 (2) | |
C3 | 0.20711 (11) | 0.6783 (2) | −0.02684 (10) | 0.0169 (3) | |
C4 | 0.16230 (12) | 0.8635 (3) | −0.05922 (10) | 0.0197 (3) | |
H4 | 0.1064 | 0.9001 | −0.0594 | 0.024* | |
C5 | 0.19875 (13) | 0.9949 (3) | −0.09131 (11) | 0.0244 (4) | |
H5 | 0.1687 | 1.1222 | −0.1121 | 0.029* | |
C6 | 0.27903 (13) | 0.9406 (3) | −0.09309 (11) | 0.0270 (4) | |
H6 | 0.3033 | 1.0292 | −0.1159 | 0.032* | |
C7 | 0.32341 (14) | 0.7558 (3) | −0.06128 (12) | 0.0294 (4) | |
H7 | 0.3782 | 0.7180 | −0.0626 | 0.035* | |
C8 | 0.28878 (13) | 0.6261 (3) | −0.02765 (11) | 0.0233 (4) | |
H8 | 0.3206 | 0.5011 | −0.0050 | 0.028* | |
C9 | 0.37728 (11) | 0.1401 (2) | 0.17925 (10) | 0.0160 (3) | |
C10 | 0.45195 (12) | 0.1401 (2) | 0.26411 (10) | 0.0162 (3) | |
C11 | 0.55020 (11) | 0.1405 (2) | 0.29205 (10) | 0.0170 (3) | |
H11 | 0.6005 | 0.1393 | 0.3499 | 0.020* | |
C12 | 0.57271 (11) | 0.1428 (2) | 0.23292 (11) | 0.0173 (3) | |
C13 | 0.50041 (12) | 0.1377 (2) | 0.14848 (10) | 0.0186 (3) | |
H13 | 0.5175 | 0.1366 | 0.1091 | 0.022* | |
C14 | 0.40293 (12) | 0.1341 (2) | 0.12201 (10) | 0.0184 (3) | |
H14 | 0.3530 | 0.1276 | 0.0642 | 0.022* | |
Cl1 | 0.42229 (3) | 0.14079 (6) | 0.33735 (2) | 0.02082 (11) | |
Cl2 | 0.69542 (3) | 0.15526 (6) | 0.26631 (3) | 0.02167 (11) | |
C15 | 0.10396 (11) | 0.1209 (2) | 0.13708 (10) | 0.0160 (3) | |
C16 | 0.11539 (12) | 0.1817 (3) | 0.21063 (11) | 0.0216 (3) | |
H16 | 0.1332 | 0.3162 | 0.2295 | 0.026* | |
C17 | 0.10044 (13) | 0.0438 (3) | 0.25644 (11) | 0.0259 (4) | |
H17 | 0.1086 | 0.0843 | 0.3069 | 0.031* | |
C18 | 0.07378 (12) | −0.1519 (3) | 0.22886 (11) | 0.0237 (4) | |
H18 | 0.0639 | −0.2454 | 0.2605 | 0.028* | |
C19 | 0.06150 (12) | −0.2117 (3) | 0.15488 (11) | 0.0224 (4) | |
H19 | 0.0423 | −0.3454 | 0.1355 | 0.027* | |
C20 | 0.07740 (11) | −0.0753 (3) | 0.10929 (10) | 0.0191 (3) | |
H20 | 0.0701 | −0.1165 | 0.0592 | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0155 (7) | 0.0168 (7) | 0.0129 (7) | −0.0014 (6) | 0.0065 (6) | −0.0022 (6) |
N1 | 0.0163 (6) | 0.0181 (7) | 0.0157 (6) | 0.0015 (5) | 0.0086 (5) | 0.0019 (5) |
N2 | 0.0148 (6) | 0.0207 (7) | 0.0200 (7) | 0.0019 (5) | 0.0089 (6) | 0.0060 (6) |
N3 | 0.0143 (6) | 0.0184 (7) | 0.0177 (7) | 0.0020 (5) | 0.0074 (5) | 0.0049 (6) |
C2 | 0.0155 (7) | 0.0152 (7) | 0.0140 (7) | 0.0002 (6) | 0.0064 (6) | −0.0012 (6) |
O1 | 0.0161 (5) | 0.0210 (6) | 0.0226 (6) | 0.0033 (4) | 0.0110 (5) | 0.0056 (5) |
C3 | 0.0158 (7) | 0.0205 (8) | 0.0114 (7) | −0.0024 (6) | 0.0058 (6) | −0.0008 (6) |
C4 | 0.0186 (7) | 0.0226 (8) | 0.0143 (7) | 0.0000 (6) | 0.0070 (6) | 0.0013 (6) |
C5 | 0.0273 (8) | 0.0230 (9) | 0.0166 (8) | −0.0022 (7) | 0.0085 (7) | 0.0035 (7) |
C6 | 0.0302 (9) | 0.0326 (10) | 0.0199 (8) | −0.0075 (8) | 0.0152 (7) | 0.0026 (8) |
C7 | 0.0284 (9) | 0.0380 (11) | 0.0301 (10) | 0.0001 (8) | 0.0215 (8) | 0.0038 (8) |
C8 | 0.0233 (8) | 0.0271 (9) | 0.0223 (8) | 0.0037 (7) | 0.0145 (7) | 0.0039 (7) |
C9 | 0.0147 (7) | 0.0123 (7) | 0.0183 (8) | 0.0014 (6) | 0.0076 (6) | 0.0019 (6) |
C10 | 0.0195 (7) | 0.0139 (7) | 0.0170 (7) | 0.0002 (6) | 0.0113 (6) | 0.0008 (6) |
C11 | 0.0160 (7) | 0.0146 (7) | 0.0159 (7) | 0.0009 (6) | 0.0062 (6) | 0.0007 (6) |
C12 | 0.0149 (7) | 0.0139 (7) | 0.0212 (8) | 0.0011 (6) | 0.0089 (6) | 0.0005 (6) |
C13 | 0.0204 (8) | 0.0170 (8) | 0.0199 (8) | 0.0025 (6) | 0.0123 (7) | 0.0023 (6) |
C14 | 0.0186 (7) | 0.0174 (8) | 0.0151 (7) | 0.0010 (6) | 0.0069 (6) | 0.0007 (6) |
Cl1 | 0.0237 (2) | 0.0222 (2) | 0.0199 (2) | 0.00056 (15) | 0.01430 (17) | 0.00129 (15) |
Cl2 | 0.01518 (19) | 0.0240 (2) | 0.0251 (2) | 0.00091 (14) | 0.01083 (16) | 0.00198 (16) |
C15 | 0.0118 (6) | 0.0189 (8) | 0.0151 (7) | 0.0017 (6) | 0.0062 (6) | 0.0035 (6) |
C16 | 0.0253 (8) | 0.0186 (8) | 0.0193 (8) | −0.0010 (6) | 0.0114 (7) | −0.0014 (7) |
C17 | 0.0311 (9) | 0.0315 (10) | 0.0180 (8) | 0.0018 (8) | 0.0155 (7) | 0.0019 (7) |
C18 | 0.0219 (8) | 0.0255 (9) | 0.0235 (9) | 0.0023 (7) | 0.0126 (7) | 0.0087 (7) |
C19 | 0.0199 (8) | 0.0178 (8) | 0.0260 (9) | −0.0009 (6) | 0.0106 (7) | 0.0015 (7) |
C20 | 0.0173 (7) | 0.0218 (8) | 0.0162 (8) | 0.0006 (6) | 0.0082 (6) | 0.0001 (6) |
C1—O1 | 1.2447 (19) | C9—C10 | 1.397 (2) |
C1—N1 | 1.359 (2) | C10—C11 | 1.388 (2) |
C1—C3 | 1.504 (2) | C10—Cl1 | 1.7412 (17) |
N1—C2 | 1.329 (2) | C11—C12 | 1.388 (2) |
N2—C2 | 1.367 (2) | C11—H11 | 0.9500 |
N2—C9 | 1.411 (2) | C12—C13 | 1.384 (2) |
N2—H2 | 0.86 (2) | C12—Cl2 | 1.7439 (17) |
N3—C2 | 1.339 (2) | C13—C14 | 1.384 (2) |
N3—C15 | 1.433 (2) | C13—H13 | 0.9500 |
N3—H3 | 0.84 (2) | C14—H14 | 0.9500 |
C3—C4 | 1.393 (2) | C15—C20 | 1.388 (2) |
C3—C8 | 1.397 (2) | C15—C16 | 1.390 (2) |
C4—C5 | 1.390 (2) | C16—C17 | 1.392 (3) |
C4—H4 | 0.9500 | C16—H16 | 0.9500 |
C5—C6 | 1.389 (3) | C17—C18 | 1.384 (3) |
C5—H5 | 0.9500 | C17—H17 | 0.9500 |
C6—C7 | 1.388 (3) | C18—C19 | 1.390 (3) |
C6—H6 | 0.9500 | C18—H18 | 0.9500 |
C7—C8 | 1.383 (3) | C19—C20 | 1.391 (2) |
C7—H7 | 0.9500 | C19—H19 | 0.9500 |
C8—H8 | 0.9500 | C20—H20 | 0.9500 |
C9—C14 | 1.392 (2) | ||
O1—C1—N1 | 127.45 (15) | C11—C10—C9 | 121.57 (15) |
O1—C1—C3 | 119.26 (14) | C11—C10—Cl1 | 118.64 (13) |
N1—C1—C3 | 113.27 (13) | C9—C10—Cl1 | 119.79 (13) |
C2—N1—C1 | 119.92 (13) | C10—C11—C12 | 117.98 (15) |
C2—N2—C9 | 125.14 (14) | C10—C11—H11 | 121.0 |
C2—N2—H2 | 117.2 (13) | C12—C11—H11 | 121.0 |
C9—N2—H2 | 115.8 (13) | C13—C12—C11 | 121.75 (15) |
C2—N3—C15 | 122.90 (14) | C13—C12—Cl2 | 119.34 (13) |
C2—N3—H3 | 115.4 (14) | C11—C12—Cl2 | 118.91 (12) |
C15—N3—H3 | 121.7 (14) | C12—C13—C14 | 119.28 (16) |
N1—C2—N3 | 126.61 (14) | C12—C13—H13 | 120.4 |
N1—C2—N2 | 117.82 (14) | C14—C13—H13 | 120.4 |
N3—C2—N2 | 115.56 (14) | C13—C14—C9 | 120.69 (15) |
C4—C3—C8 | 119.04 (15) | C13—C14—H14 | 119.7 |
C4—C3—C1 | 119.33 (14) | C9—C14—H14 | 119.7 |
C8—C3—C1 | 121.63 (15) | C20—C15—C16 | 120.33 (15) |
C5—C4—C3 | 120.48 (16) | C20—C15—N3 | 119.68 (15) |
C5—C4—H4 | 119.8 | C16—C15—N3 | 119.97 (15) |
C3—C4—H4 | 119.8 | C15—C16—C17 | 119.43 (16) |
C6—C5—C4 | 120.14 (17) | C15—C16—H16 | 120.3 |
C6—C5—H5 | 119.9 | C17—C16—H16 | 120.3 |
C4—C5—H5 | 119.9 | C18—C17—C16 | 120.42 (17) |
C7—C6—C5 | 119.44 (17) | C18—C17—H17 | 119.8 |
C7—C6—H6 | 120.3 | C16—C17—H17 | 119.8 |
C5—C6—H6 | 120.3 | C17—C18—C19 | 119.99 (16) |
C8—C7—C6 | 120.71 (17) | C17—C18—H18 | 120.0 |
C8—C7—H7 | 119.6 | C19—C18—H18 | 120.0 |
C6—C7—H7 | 119.6 | C18—C19—C20 | 119.90 (16) |
C7—C8—C3 | 120.18 (17) | C18—C19—H19 | 120.1 |
C7—C8—H8 | 119.9 | C20—C19—H19 | 120.1 |
C3—C8—H8 | 119.9 | C15—C20—C19 | 119.93 (16) |
C14—C9—C10 | 118.64 (15) | C15—C20—H20 | 120.0 |
C14—C9—N2 | 121.60 (14) | C19—C20—H20 | 120.0 |
C10—C9—N2 | 119.71 (15) | ||
O1—C1—N1—C2 | −3.8 (3) | N2—C9—C10—C11 | 179.58 (14) |
C3—C1—N1—C2 | 174.94 (14) | C14—C9—C10—Cl1 | −178.31 (12) |
C1—N1—C2—N3 | 6.2 (2) | N2—C9—C10—Cl1 | −0.7 (2) |
C1—N1—C2—N2 | −172.70 (14) | C9—C10—C11—C12 | 0.6 (2) |
C15—N3—C2—N1 | −179.82 (15) | Cl1—C10—C11—C12 | −179.13 (12) |
C15—N3—C2—N2 | −0.9 (2) | C10—C11—C12—C13 | −2.3 (2) |
C9—N2—C2—N1 | 8.0 (2) | C10—C11—C12—Cl2 | 177.02 (12) |
C9—N2—C2—N3 | −171.02 (15) | C11—C12—C13—C14 | 1.3 (2) |
O1—C1—C3—C4 | 15.7 (2) | Cl2—C12—C13—C14 | −177.99 (12) |
N1—C1—C3—C4 | −163.16 (14) | C12—C13—C14—C9 | 1.4 (2) |
O1—C1—C3—C8 | −164.54 (16) | C10—C9—C14—C13 | −3.0 (2) |
N1—C1—C3—C8 | 16.6 (2) | N2—C9—C14—C13 | 179.45 (15) |
C8—C3—C4—C5 | −0.5 (2) | C2—N3—C15—C20 | −82.0 (2) |
C1—C3—C4—C5 | 179.28 (15) | C2—N3—C15—C16 | 96.34 (19) |
C3—C4—C5—C6 | 1.5 (3) | C20—C15—C16—C17 | 0.3 (2) |
C4—C5—C6—C7 | −1.1 (3) | N3—C15—C16—C17 | −178.04 (15) |
C5—C6—C7—C8 | −0.3 (3) | C15—C16—C17—C18 | −0.4 (3) |
C6—C7—C8—C3 | 1.3 (3) | C16—C17—C18—C19 | −0.2 (3) |
C4—C3—C8—C7 | −0.9 (3) | C17—C18—C19—C20 | 0.9 (3) |
C1—C3—C8—C7 | 179.35 (16) | C16—C15—C20—C19 | 0.4 (2) |
C2—N2—C9—C14 | −53.8 (2) | N3—C15—C20—C19 | 178.77 (14) |
C2—N2—C9—C10 | 128.62 (17) | C18—C19—C20—C15 | −1.0 (2) |
C14—C9—C10—C11 | 2.0 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O1 | 0.84 (2) | 2.01 (2) | 2.6471 (19) | 132.7 (18) |
N3—H3···O1i | 0.84 (2) | 2.36 (2) | 3.032 (2) | 138.2 (18) |
Symmetry code: (i) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C20H15Cl2N3O |
Mr | 384.25 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 123 |
a, b, c (Å) | 16.461 (6), 6.663 (2), 19.388 (6) |
β (°) | 124.072 (5) |
V (Å3) | 1761.0 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.38 |
Crystal size (mm) | 0.42 × 0.40 × 0.18 |
Data collection | |
Diffractometer | Rigaku/MSC Mercury CCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13586, 4023, 3768 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.099, 1.12 |
No. of reflections | 4023 |
No. of parameters | 241 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.34, −0.27 |
Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2001), SIR97 (Altomare et al., 1999), ORTEPII (Johnson, 1976) and ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and TEXSAN (Molecular Structure Corporation & Rigaku, 2004).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O1 | 0.84 (2) | 2.01 (2) | 2.6471 (19) | 132.7 (18) |
N3—H3···O1i | 0.84 (2) | 2.36 (2) | 3.032 (2) | 138.2 (18) |
Symmetry code: (i) −x, −y+1, −z. |
Acknowledgements
The authors are grateful to the Higher Education Commission of Pakistan for financial support of this research project.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Berlinck, R. G. S. (2002). Nat. Prod. Rep. 19, 617–649. Web of Science CrossRef PubMed CAS Google Scholar
Costa, M., Chiusoli, G. P., Taffurelli, D. & Dalmonego, G. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 1541–1546. Web of Science CrossRef Google Scholar
Cunha, S., Rodrigues, M. T. Jr, da Silva, C. C., Napolitano, H. B., Vencato, I. & Lariucci, C. (2005). Tetrahedron, 61, 10536–10540. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Ishikawa, T. & Isobe, T. (2002). Chem. Eur. J. 8, 552–557. CrossRef PubMed CAS Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tenessee, USA. Google Scholar
Kovacevic, B. & Maksic, Z. B. (2001). Org. Lett. 3, 1523–1526. Web of Science CrossRef PubMed CAS Google Scholar
Manimala, J. C. & Anslyn, E. V. (2002). Eur. J. Org. Chem. 23, 3909–3922. CrossRef Google Scholar
Molecular Structure Corporation & Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan. Google Scholar
Molecular Structure Corporation & Rigaku (2004). TEXSAN. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan. Google Scholar
Murtaza, G., Hanif-Ur-Rehman,, Khawar Rauf, M., Ebihara, M. & Badshah, A. (2009). Acta Cryst. E65, o343. Google Scholar
Murtaza, G., Said, M., Rauf, M. K., Ebihara, M. & Badshah, A. (2007). Acta Cryst. E63, o4664. Web of Science CSD CrossRef IUCr Journals Google Scholar
Murtaza, G., Said, M., Khawar Rauf, M., Masahiro, E. & Badshah, A. (2008). Acta Cryst. E64, o333. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rauf, M. K., Imtiaz-ud-Din Badshah, A., Gielen, M., de Ebihara, M., Vos, D. & Ahmed, S. (2009). J. Inorg. Biochem. 103, 1135–1144. Web of Science CSD CrossRef PubMed CAS Google Scholar
Rodrigues-Simioni, L., Silva-Carvalho, I., Heluany, N. F., Leite, G. B., Prado-Franceschi, J., Cruz-Hofling, M. A., Ballejo, G. & Corrado, A. P. (1997). Gen. Pharmacol. 284, 599–605. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Polysubstituted guanidines is a field of intense investigation as guanidinium group is present in diverse biologically active substances (Manimala & Anslyn, 2002; Berlinck, 2002) These compounds have received increasing interest as medicinal agents, e.g it has effect on the neuromuscular junction (Rodrigues-Simioni et al., 1997). In addition to their biological role, guanidine derivatives are very useful building blocks in synthetic organic chemistry (Costa et al., 1998; Kovacevic & Maksic, 2001). Due to their strongly basic character, guanidines can be considered as super-bases for the biological systems (Ishikawa & Isobe, 2002). The title compound (I), (Fig.1) is a typical N,N',N"-tri-substituted guanidine with normal geometric parameters (Cunha et al., 2005; Murtaza et al., 2007, 2008, 2009). The C3—O1 bond shows expected full double bond character while the short values for C1—N1, C2—N1, C2—N2 and C2—N3 bonds indicate partial double bond character. The dihedral angles between the guanidine plane [C2/N1/N2/N3] and the mean planes of phenyl rings C3–C8, C9–C14 & C15–C20 are 22.23 (11)°, 48.06 (7)° & 83.53 (7)°, respectively. The guanidine moiety and carbonyl group are almost co-planar as reflected by the torsion angles [C1—N1—C2—O1 = 3.8 (2)° and N3—C1—N1—C2= -6.1 (2)°], due to the presence of intramolecular N—H···O hydrogen bonding (Table 1), forming a six-membered ring commonly observed in this class of compounds (Cunha et al., 2005). The crystal packing shows intermolecular N—H···O hydrogen bonds which link the molecules into centrosymmetric dimers (Fig. 2).