organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2297-o2298

2-Benzoyl-1-(2,4-di­chloro­phen­yl)-3-phenyl­guanidine

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, bDepartment of Chemistry, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu City 501-1193, Japan, and cDepartment of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
*Correspondence e-mail: khawar_rauf@hotmail.com

(Received 14 August 2009; accepted 24 August 2009; online 29 August 2009)

In the title compound, C20H15Cl2N3O, a typical polysubstituted guanidine with normal geometric parameters, the torsion angles [C—N—C—O = 3.8 (2), N—C—N—C = −6.1 (2)°] indicate that the guanidine and carbonyl groups are almost coplanar, due to the pseudo-hexa­gonal ring formed by intra­molecular N—H⋯O hydrogen bonds. The crystal packing is stabilized by inter­molecular N—H⋯O hydrogen bonds, which link the mol­ecules into centrosymmetric dimers.

Related literature

The guanidinium group is present in diverse biologically active substances, see: Manimala & Anslyn (2002[Manimala, J. C. & Anslyn, E. V. (2002). Eur. J. Org. Chem. 23, 3909-3922.]); Berlinck (2002[Berlinck, R. G. S. (2002). Nat. Prod. Rep. 19, 617-649.]). These compounds have received increasing inter­est as medicinal agents, for example having an effect on the neuromuscular junction, see: Rodrigues-Simioni et al. (1997[Rodrigues-Simioni, L., Silva-Carvalho, I., Heluany, N. F., Leite, G. B., Prado-Franceschi, J., Cruz-Hofling, M. A., Ballejo, G. & Corrado, A. P. (1997). Gen. Pharmacol. 284, 599-605.]). Guanidine derivatives are also useful building blocks in synthetic organic chemistry, see: Costa et al. (1998[Costa, M., Chiusoli, G. P., Taffurelli, D. & Dalmonego, G. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 1541-1546.]); Kovacevic & Maksic (2001[Kovacevic, B. & Maksic, Z. B. (2001). Org. Lett. 3, 1523-1526.]), and due to their strongly basic character, guanidines can be considered as super-bases for biological systems, see: Ishikawa & Isobe (2002[Ishikawa, T. & Isobe, T. (2002). Chem. Eur. J. 8, 552-557.]). For related structures, see: Cunha et al. (2005[Cunha, S., Rodrigues, M. T. Jr, da Silva, C. C., Napolitano, H. B., Vencato, I. & Lariucci, C. (2005). Tetrahedron, 61, 10536-10540.]); Murtaza et al. (2007[Murtaza, G., Said, M., Rauf, M. K., Ebihara, M. & Badshah, A. (2007). Acta Cryst. E63, o4664.], 2008[Murtaza, G., Said, M., Khawar Rauf, M., Masahiro, E. & Badshah, A. (2008). Acta Cryst. E64, o333.], 2009[Murtaza, G., Hanif-Ur-Rehman,, Khawar Rauf, M., Ebihara, M. & Badshah, A. (2009). Acta Cryst. E65, o343.]). For the preparation of N-benzoyl-N′-phenyl­thio­urea, see: Rauf et al. (2009[Rauf, M. K., Imtiaz-ud-Din Badshah, A., Gielen, M., de Ebihara, M., Vos, D. & Ahmed, S. (2009). J. Inorg. Biochem. 103, 1135-1144.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15Cl2N3O

  • Mr = 384.25

  • Monoclinic, P 21 /c

  • a = 16.461 (6) Å

  • b = 6.663 (2) Å

  • c = 19.388 (6) Å

  • β = 124.072 (5)°

  • V = 1761.0 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 123 K

  • 0.42 × 0.40 × 0.18 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: none

  • 13586 measured reflections

  • 4023 independent reflections

  • 3768 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.099

  • S = 1.12

  • 4023 reflections

  • 241 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1 0.84 (2) 2.01 (2) 2.6471 (19) 132.7 (18)
N3—H3⋯O1i 0.84 (2) 2.36 (2) 3.032 (2) 138.2 (18)
Symmetry code: (i) -x, -y+1, -z.

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001[Molecular Structure Corporation & Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2004[Molecular Structure Corporation & Rigaku (2004). TEXSAN. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tenessee, USA.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and TEXSAN.

Supporting information


Comment top

Polysubstituted guanidines is a field of intense investigation as guanidinium group is present in diverse biologically active substances (Manimala & Anslyn, 2002; Berlinck, 2002) These compounds have received increasing interest as medicinal agents, e.g it has effect on the neuromuscular junction (Rodrigues-Simioni et al., 1997). In addition to their biological role, guanidine derivatives are very useful building blocks in synthetic organic chemistry (Costa et al., 1998; Kovacevic & Maksic, 2001). Due to their strongly basic character, guanidines can be considered as super-bases for the biological systems (Ishikawa & Isobe, 2002). The title compound (I), (Fig.1) is a typical N,N',N"-tri-substituted guanidine with normal geometric parameters (Cunha et al., 2005; Murtaza et al., 2007, 2008, 2009). The C3—O1 bond shows expected full double bond character while the short values for C1—N1, C2—N1, C2—N2 and C2—N3 bonds indicate partial double bond character. The dihedral angles between the guanidine plane [C2/N1/N2/N3] and the mean planes of phenyl rings C3–C8, C9–C14 & C15–C20 are 22.23 (11)°, 48.06 (7)° & 83.53 (7)°, respectively. The guanidine moiety and carbonyl group are almost co-planar as reflected by the torsion angles [C1—N1—C2—O1 = 3.8 (2)° and N3—C1—N1—C2= -6.1 (2)°], due to the presence of intramolecular N—H···O hydrogen bonding (Table 1), forming a six-membered ring commonly observed in this class of compounds (Cunha et al., 2005). The crystal packing shows intermolecular N—H···O hydrogen bonds which link the molecules into centrosymmetric dimers (Fig. 2).

Related literature top

The guanidinium group is present in diverse biologically active substances, see: Manimala & Anslyn (2002); Berlinck (2002). These compounds have received increasing interest as medicinal agents, for example having an effect on the neuromuscular junction, see: Rodrigues-Simioni et al. (1997). Guanidine derivatives are also useful building blocks in synthetic organic chemistry, see: Costa et al. (1998); Kovacevic & Maksic (2001), and due to their strongly basic character, guanidines can be considered as super-bases for biological systems, see: Ishikawa & Isobe (2002). For related structures, see: Cunha et al. (2005); Murtaza et al. (2007, 2008, 2009). For the preparation of N-benzoyl-N'-phenylthiourea, see: Rauf et al. (2009).

Experimental top

N-Benzoyl-N'-phenylthiourea (0.256 g, 1 mmol) was prepared (Rauf et al., 2009) and dissolved in 10 ml of dimethylformamide and taken into two neck round bottom flask. 2,4-dichloroaniline (0.16 g, 1 mmol) and triethylamine (0.28 ml, 2 mmol) were added and the mixture was stirred well below 5°C. Mercuric chloride (0.272 g, 1 mmol) was then added and mixture was vigorously stirred for 15 h till the completion of reaction as monitored by TLC. When all the thiourea was consumed, 20 ml of chloroform was added and the suspension was filtered through sintered glass funnel to remove residual HgS formed as a byproduct during the reaction. The solvent was evaporated under reduced pressure and residue was dissolved in 20 ml of CH2Cl2. Other byproducts were extracted out with water (4×30 ml). The organic phase was dried over anhydrous MgSO4 and then filtered. The solvent was evaporated and product was further purified by column chromatography. The target guanidine was recrystallized in ethanol to obtain single crystals suitable for X-ray analysis.

Refinement top

Positional parameters of the H atoms bonded to N were refined with Uiso(H) = 1.2Ueq(N). Hydrogen atoms bonded to C were included in calculated positions and refined as riding on their parent C atom with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and TEXSAN (Molecular Structure Corporation & Rigaku, 2004).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen-bonded dimer structure of (I). Hydrogen bonds shown as dashed lines.
2-Benzoyl-1-(2,4-dichlorophenyl)-3-phenylguanidine top
Crystal data top
C20H15Cl2N3OF(000) = 792
Mr = 384.25Dx = 1.449 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 5226 reflections
a = 16.461 (6) Åθ = 3.1–27.5°
b = 6.663 (2) ŵ = 0.38 mm1
c = 19.388 (6) ÅT = 123 K
β = 124.072 (5)°Block, colourless
V = 1761.0 (10) Å30.42 × 0.40 × 0.18 mm
Z = 4
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3768 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
Detector resolution: 14.62 pixels mm-1h = 2116
ω scansk = 88
13586 measured reflectionsl = 1725
4023 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0364P)2 + 1.087P]
where P = (Fo2 + 2Fc2)/3
4023 reflections(Δ/σ)max < 0.001
241 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C20H15Cl2N3OV = 1761.0 (10) Å3
Mr = 384.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.461 (6) ŵ = 0.38 mm1
b = 6.663 (2) ÅT = 123 K
c = 19.388 (6) Å0.42 × 0.40 × 0.18 mm
β = 124.072 (5)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3768 reflections with I > 2σ(I)
13586 measured reflectionsRint = 0.031
4023 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.34 e Å3
4023 reflectionsΔρmin = 0.27 e Å3
241 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.16683 (11)0.5401 (2)0.00837 (10)0.0159 (3)
N10.23055 (9)0.3930 (2)0.05737 (8)0.0168 (3)
N20.27838 (10)0.1383 (2)0.15357 (9)0.0190 (3)
H20.2660 (14)0.070 (3)0.1846 (13)0.023*
N30.12213 (10)0.2596 (2)0.09071 (9)0.0176 (3)
H30.0802 (15)0.344 (3)0.0586 (13)0.021*
C20.20779 (11)0.2689 (2)0.09780 (10)0.0159 (3)
O10.08319 (8)0.57114 (18)0.00799 (7)0.0198 (2)
C30.20711 (11)0.6783 (2)0.02684 (10)0.0169 (3)
C40.16230 (12)0.8635 (3)0.05922 (10)0.0197 (3)
H40.10640.90010.05940.024*
C50.19875 (13)0.9949 (3)0.09131 (11)0.0244 (4)
H50.16871.12220.11210.029*
C60.27903 (13)0.9406 (3)0.09309 (11)0.0270 (4)
H60.30331.02920.11590.032*
C70.32341 (14)0.7558 (3)0.06128 (12)0.0294 (4)
H70.37820.71800.06260.035*
C80.28878 (13)0.6261 (3)0.02765 (11)0.0233 (4)
H80.32060.50110.00500.028*
C90.37728 (11)0.1401 (2)0.17925 (10)0.0160 (3)
C100.45195 (12)0.1401 (2)0.26411 (10)0.0162 (3)
C110.55020 (11)0.1405 (2)0.29205 (10)0.0170 (3)
H110.60050.13930.34990.020*
C120.57271 (11)0.1428 (2)0.23292 (11)0.0173 (3)
C130.50041 (12)0.1377 (2)0.14848 (10)0.0186 (3)
H130.51750.13660.10910.022*
C140.40293 (12)0.1341 (2)0.12201 (10)0.0184 (3)
H140.35300.12760.06420.022*
Cl10.42229 (3)0.14079 (6)0.33735 (2)0.02082 (11)
Cl20.69542 (3)0.15526 (6)0.26631 (3)0.02167 (11)
C150.10396 (11)0.1209 (2)0.13708 (10)0.0160 (3)
C160.11539 (12)0.1817 (3)0.21063 (11)0.0216 (3)
H160.13320.31620.22950.026*
C170.10044 (13)0.0438 (3)0.25644 (11)0.0259 (4)
H170.10860.08430.30690.031*
C180.07378 (12)0.1519 (3)0.22886 (11)0.0237 (4)
H180.06390.24540.26050.028*
C190.06150 (12)0.2117 (3)0.15488 (11)0.0224 (4)
H190.04230.34540.13550.027*
C200.07740 (11)0.0753 (3)0.10929 (10)0.0191 (3)
H200.07010.11650.05920.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0155 (7)0.0168 (7)0.0129 (7)0.0014 (6)0.0065 (6)0.0022 (6)
N10.0163 (6)0.0181 (7)0.0157 (6)0.0015 (5)0.0086 (5)0.0019 (5)
N20.0148 (6)0.0207 (7)0.0200 (7)0.0019 (5)0.0089 (6)0.0060 (6)
N30.0143 (6)0.0184 (7)0.0177 (7)0.0020 (5)0.0074 (5)0.0049 (6)
C20.0155 (7)0.0152 (7)0.0140 (7)0.0002 (6)0.0064 (6)0.0012 (6)
O10.0161 (5)0.0210 (6)0.0226 (6)0.0033 (4)0.0110 (5)0.0056 (5)
C30.0158 (7)0.0205 (8)0.0114 (7)0.0024 (6)0.0058 (6)0.0008 (6)
C40.0186 (7)0.0226 (8)0.0143 (7)0.0000 (6)0.0070 (6)0.0013 (6)
C50.0273 (8)0.0230 (9)0.0166 (8)0.0022 (7)0.0085 (7)0.0035 (7)
C60.0302 (9)0.0326 (10)0.0199 (8)0.0075 (8)0.0152 (7)0.0026 (8)
C70.0284 (9)0.0380 (11)0.0301 (10)0.0001 (8)0.0215 (8)0.0038 (8)
C80.0233 (8)0.0271 (9)0.0223 (8)0.0037 (7)0.0145 (7)0.0039 (7)
C90.0147 (7)0.0123 (7)0.0183 (8)0.0014 (6)0.0076 (6)0.0019 (6)
C100.0195 (7)0.0139 (7)0.0170 (7)0.0002 (6)0.0113 (6)0.0008 (6)
C110.0160 (7)0.0146 (7)0.0159 (7)0.0009 (6)0.0062 (6)0.0007 (6)
C120.0149 (7)0.0139 (7)0.0212 (8)0.0011 (6)0.0089 (6)0.0005 (6)
C130.0204 (8)0.0170 (8)0.0199 (8)0.0025 (6)0.0123 (7)0.0023 (6)
C140.0186 (7)0.0174 (8)0.0151 (7)0.0010 (6)0.0069 (6)0.0007 (6)
Cl10.0237 (2)0.0222 (2)0.0199 (2)0.00056 (15)0.01430 (17)0.00129 (15)
Cl20.01518 (19)0.0240 (2)0.0251 (2)0.00091 (14)0.01083 (16)0.00198 (16)
C150.0118 (6)0.0189 (8)0.0151 (7)0.0017 (6)0.0062 (6)0.0035 (6)
C160.0253 (8)0.0186 (8)0.0193 (8)0.0010 (6)0.0114 (7)0.0014 (7)
C170.0311 (9)0.0315 (10)0.0180 (8)0.0018 (8)0.0155 (7)0.0019 (7)
C180.0219 (8)0.0255 (9)0.0235 (9)0.0023 (7)0.0126 (7)0.0087 (7)
C190.0199 (8)0.0178 (8)0.0260 (9)0.0009 (6)0.0106 (7)0.0015 (7)
C200.0173 (7)0.0218 (8)0.0162 (8)0.0006 (6)0.0082 (6)0.0001 (6)
Geometric parameters (Å, º) top
C1—O11.2447 (19)C9—C101.397 (2)
C1—N11.359 (2)C10—C111.388 (2)
C1—C31.504 (2)C10—Cl11.7412 (17)
N1—C21.329 (2)C11—C121.388 (2)
N2—C21.367 (2)C11—H110.9500
N2—C91.411 (2)C12—C131.384 (2)
N2—H20.86 (2)C12—Cl21.7439 (17)
N3—C21.339 (2)C13—C141.384 (2)
N3—C151.433 (2)C13—H130.9500
N3—H30.84 (2)C14—H140.9500
C3—C41.393 (2)C15—C201.388 (2)
C3—C81.397 (2)C15—C161.390 (2)
C4—C51.390 (2)C16—C171.392 (3)
C4—H40.9500C16—H160.9500
C5—C61.389 (3)C17—C181.384 (3)
C5—H50.9500C17—H170.9500
C6—C71.388 (3)C18—C191.390 (3)
C6—H60.9500C18—H180.9500
C7—C81.383 (3)C19—C201.391 (2)
C7—H70.9500C19—H190.9500
C8—H80.9500C20—H200.9500
C9—C141.392 (2)
O1—C1—N1127.45 (15)C11—C10—C9121.57 (15)
O1—C1—C3119.26 (14)C11—C10—Cl1118.64 (13)
N1—C1—C3113.27 (13)C9—C10—Cl1119.79 (13)
C2—N1—C1119.92 (13)C10—C11—C12117.98 (15)
C2—N2—C9125.14 (14)C10—C11—H11121.0
C2—N2—H2117.2 (13)C12—C11—H11121.0
C9—N2—H2115.8 (13)C13—C12—C11121.75 (15)
C2—N3—C15122.90 (14)C13—C12—Cl2119.34 (13)
C2—N3—H3115.4 (14)C11—C12—Cl2118.91 (12)
C15—N3—H3121.7 (14)C12—C13—C14119.28 (16)
N1—C2—N3126.61 (14)C12—C13—H13120.4
N1—C2—N2117.82 (14)C14—C13—H13120.4
N3—C2—N2115.56 (14)C13—C14—C9120.69 (15)
C4—C3—C8119.04 (15)C13—C14—H14119.7
C4—C3—C1119.33 (14)C9—C14—H14119.7
C8—C3—C1121.63 (15)C20—C15—C16120.33 (15)
C5—C4—C3120.48 (16)C20—C15—N3119.68 (15)
C5—C4—H4119.8C16—C15—N3119.97 (15)
C3—C4—H4119.8C15—C16—C17119.43 (16)
C6—C5—C4120.14 (17)C15—C16—H16120.3
C6—C5—H5119.9C17—C16—H16120.3
C4—C5—H5119.9C18—C17—C16120.42 (17)
C7—C6—C5119.44 (17)C18—C17—H17119.8
C7—C6—H6120.3C16—C17—H17119.8
C5—C6—H6120.3C17—C18—C19119.99 (16)
C8—C7—C6120.71 (17)C17—C18—H18120.0
C8—C7—H7119.6C19—C18—H18120.0
C6—C7—H7119.6C18—C19—C20119.90 (16)
C7—C8—C3120.18 (17)C18—C19—H19120.1
C7—C8—H8119.9C20—C19—H19120.1
C3—C8—H8119.9C15—C20—C19119.93 (16)
C14—C9—C10118.64 (15)C15—C20—H20120.0
C14—C9—N2121.60 (14)C19—C20—H20120.0
C10—C9—N2119.71 (15)
O1—C1—N1—C23.8 (3)N2—C9—C10—C11179.58 (14)
C3—C1—N1—C2174.94 (14)C14—C9—C10—Cl1178.31 (12)
C1—N1—C2—N36.2 (2)N2—C9—C10—Cl10.7 (2)
C1—N1—C2—N2172.70 (14)C9—C10—C11—C120.6 (2)
C15—N3—C2—N1179.82 (15)Cl1—C10—C11—C12179.13 (12)
C15—N3—C2—N20.9 (2)C10—C11—C12—C132.3 (2)
C9—N2—C2—N18.0 (2)C10—C11—C12—Cl2177.02 (12)
C9—N2—C2—N3171.02 (15)C11—C12—C13—C141.3 (2)
O1—C1—C3—C415.7 (2)Cl2—C12—C13—C14177.99 (12)
N1—C1—C3—C4163.16 (14)C12—C13—C14—C91.4 (2)
O1—C1—C3—C8164.54 (16)C10—C9—C14—C133.0 (2)
N1—C1—C3—C816.6 (2)N2—C9—C14—C13179.45 (15)
C8—C3—C4—C50.5 (2)C2—N3—C15—C2082.0 (2)
C1—C3—C4—C5179.28 (15)C2—N3—C15—C1696.34 (19)
C3—C4—C5—C61.5 (3)C20—C15—C16—C170.3 (2)
C4—C5—C6—C71.1 (3)N3—C15—C16—C17178.04 (15)
C5—C6—C7—C80.3 (3)C15—C16—C17—C180.4 (3)
C6—C7—C8—C31.3 (3)C16—C17—C18—C190.2 (3)
C4—C3—C8—C70.9 (3)C17—C18—C19—C200.9 (3)
C1—C3—C8—C7179.35 (16)C16—C15—C20—C190.4 (2)
C2—N2—C9—C1453.8 (2)N3—C15—C20—C19178.77 (14)
C2—N2—C9—C10128.62 (17)C18—C19—C20—C151.0 (2)
C14—C9—C10—C112.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O10.84 (2)2.01 (2)2.6471 (19)132.7 (18)
N3—H3···O1i0.84 (2)2.36 (2)3.032 (2)138.2 (18)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H15Cl2N3O
Mr384.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)16.461 (6), 6.663 (2), 19.388 (6)
β (°) 124.072 (5)
V3)1761.0 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.42 × 0.40 × 0.18
Data collection
DiffractometerRigaku/MSC Mercury CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13586, 4023, 3768
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.099, 1.12
No. of reflections4023
No. of parameters241
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.27

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2001), SIR97 (Altomare et al., 1999), ORTEPII (Johnson, 1976) and ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and TEXSAN (Molecular Structure Corporation & Rigaku, 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O10.84 (2)2.01 (2)2.6471 (19)132.7 (18)
N3—H3···O1i0.84 (2)2.36 (2)3.032 (2)138.2 (18)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors are grateful to the Higher Education Commission of Pakistan for financial support of this research project.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBerlinck, R. G. S. (2002). Nat. Prod. Rep. 19, 617–649.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCosta, M., Chiusoli, G. P., Taffurelli, D. & Dalmonego, G. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 1541–1546.  Web of Science CrossRef Google Scholar
First citationCunha, S., Rodrigues, M. T. Jr, da Silva, C. C., Napolitano, H. B., Vencato, I. & Lariucci, C. (2005). Tetrahedron, 61, 10536–10540.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationIshikawa, T. & Isobe, T. (2002). Chem. Eur. J. 8, 552–557.  CrossRef PubMed CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tenessee, USA.  Google Scholar
First citationKovacevic, B. & Maksic, Z. B. (2001). Org. Lett. 3, 1523–1526.  Web of Science CrossRef PubMed CAS Google Scholar
First citationManimala, J. C. & Anslyn, E. V. (2002). Eur. J. Org. Chem. 23, 3909–3922.  CrossRef Google Scholar
First citationMolecular Structure Corporation & Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2004). TEXSAN. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMurtaza, G., Hanif-Ur-Rehman,, Khawar Rauf, M., Ebihara, M. & Badshah, A. (2009). Acta Cryst. E65, o343.  Google Scholar
First citationMurtaza, G., Said, M., Rauf, M. K., Ebihara, M. & Badshah, A. (2007). Acta Cryst. E63, o4664.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMurtaza, G., Said, M., Khawar Rauf, M., Masahiro, E. & Badshah, A. (2008). Acta Cryst. E64, o333.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRauf, M. K., Imtiaz-ud-Din Badshah, A., Gielen, M., de Ebihara, M., Vos, D. & Ahmed, S. (2009). J. Inorg. Biochem. 103, 1135–1144.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRodrigues-Simioni, L., Silva-Carvalho, I., Heluany, N. F., Leite, G. B., Prado-Franceschi, J., Cruz-Hofling, M. A., Ballejo, G. & Corrado, A. P. (1997). Gen. Pharmacol. 284, 599–605.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2297-o2298
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds