organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2-Furylmethyl­ene)nicotinohydrazide

aKey Laboratory of Surface and Interface Science of Henan, School of Materials & Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: yinck@263.net

(Received 19 August 2009; accepted 24 August 2009; online 29 August 2009)

The asymmetric unit of the title compound, C11H9N3O2, contains two independent mol­ecules: the dihedral angles between the pyridine ring and the furyl ring are 17.00 (16) and 34.12 (15)°. The crystal structure involves inter­molecular C—H⋯O, N—H⋯N and N—H⋯O hydrogen bonds.

Related literature

For the role played by Schiff bases in the development of various proteins and enzymes, see: Kahwa et al. (1986[Kahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.]); Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9N3O2

  • Mr = 215.21

  • Monoclinic, C c

  • a = 17.4363 (3) Å

  • b = 16.9143 (3) Å

  • c = 7.9639 (1) Å

  • β = 115.326 (1)°

  • V = 2122.99 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.34 × 0.24 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.964, Tmax = 0.981

  • 9336 measured reflections

  • 2443 independent reflections

  • 1908 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.086

  • S = 1.06

  • 2443 reflections

  • 290 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O4i 0.86 2.26 3.080 (2) 161
N2—H2A⋯N4i 0.86 2.51 3.112 (3) 128
N5—H5A⋯O2ii 0.86 2.01 2.843 (3) 162
C8—H8A⋯O4i 0.93 2.56 3.433 (3) 156
C16—H16A⋯O2ii 0.93 2.45 3.228 (3) 141
C22—H22A⋯O2ii 0.93 2.43 3.260 (3) 149
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x, -y, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of Schiff bases has attracted a great deal of interest in recent years. These compounds play an important role in the development of various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). As part of our in the study of the coordination chemistry of Schiff bases, we synthesized the title compound and determined its crystal structure.

The molecular structure is shown in Fig.1. Each molecule is not planar, making the dihedral angle of 17.00 (16) and 34.12 (15)° between pyridine and furyl rings, respectively. In the crystal structure, molecules are linked through intermolecular C—H···O, N—H···N and N—H···O hydrogen bonds, forming a network.

Related literature top

For the role played by Schiff bases in the development of various

proteins and enzymes, see: Kahwa et al. (1986); Santos et al. (2001).

Experimental top

Pyridine-4-carboxylic acid hydrazide (1 mmol, 0.137 g) was dissolved in anhydrous ethanol (15 ml), The mixture was stirred for several minutes at 351 K. Furan-2-carbaldehyde (1 mmol, 0.96 g) in ethanol (8 mm l) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The product was isolated and recrystallized from methanol. Pink single crystals of (I) was obtained after 3 d.

Refinement top

All H atoms were positioned geometrically and refined as riding with C—H = 0.93(aromatic) and N—H = 0.86Å, with Uiso(H) = 1.2Ueq(CH, NH).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. the ORTEP plot of (I). Displacement ellipsoids are drawn at the 30% probability level.
N'-(2-Furylmethylene)nicotinohydrazide top
Crystal data top
C11H9N3O2F(000) = 896
Mr = 215.21Dx = 1.347 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 2878 reflections
a = 17.4363 (3) Åθ = 2.4–26.0°
b = 16.9143 (3) ŵ = 0.10 mm1
c = 7.9639 (1) ÅT = 296 K
β = 115.326 (1)°Block, pink
V = 2122.99 (6) Å30.34 × 0.24 × 0.15 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
2443 independent reflections
Radiation source: fine-focus sealed tube1908 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 2215
Tmin = 0.964, Tmax = 0.981k = 2021
9336 measured reflectionsl = 710
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0488P)2]
where P = (Fo2 + 2Fc2)/3
2443 reflections(Δ/σ)max = 0.006
290 parametersΔρmax = 0.10 e Å3
2 restraintsΔρmin = 0.16 e Å3
Crystal data top
C11H9N3O2V = 2122.99 (6) Å3
Mr = 215.21Z = 8
Monoclinic, CcMo Kα radiation
a = 17.4363 (3) ŵ = 0.10 mm1
b = 16.9143 (3) ÅT = 296 K
c = 7.9639 (1) Å0.34 × 0.24 × 0.15 mm
β = 115.326 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2443 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1908 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.981Rint = 0.026
9336 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0352 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.06Δρmax = 0.10 e Å3
2443 reflectionsΔρmin = 0.16 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.20002 (12)0.30973 (11)0.8151 (3)0.0512 (4)
N20.15397 (11)0.29763 (11)0.6278 (2)0.0500 (4)
H2A0.11010.32620.56530.060*
O40.52299 (10)0.06828 (10)0.4681 (3)0.0659 (5)
N40.45709 (11)0.21482 (11)0.4338 (2)0.0505 (5)
N50.40911 (11)0.14890 (11)0.3504 (3)0.0522 (5)
H5A0.35520.15320.28550.063*
C60.17831 (13)0.24079 (13)0.5439 (3)0.0503 (5)
C170.44693 (14)0.07807 (13)0.3711 (3)0.0490 (5)
O10.27842 (12)0.33154 (12)1.1928 (2)0.0715 (5)
O20.23970 (12)0.19833 (11)0.6284 (3)0.0763 (6)
C70.12722 (13)0.23106 (12)0.3412 (3)0.0461 (5)
O30.53896 (10)0.35845 (9)0.5715 (2)0.0622 (4)
C180.39031 (13)0.01116 (13)0.2696 (3)0.0478 (5)
C150.45280 (14)0.35168 (14)0.4952 (3)0.0532 (5)
C50.17080 (15)0.36173 (14)0.8885 (3)0.0539 (6)
H5B0.12170.38920.81430.065*
C160.41431 (15)0.27691 (14)0.4225 (3)0.0553 (6)
H16A0.35540.27380.36440.066*
C40.21241 (16)0.37849 (14)1.0833 (4)0.0572 (6)
C80.07516 (16)0.28882 (14)0.2286 (3)0.0589 (6)
H8A0.07190.33660.28290.071*
N30.02917 (18)0.28065 (15)0.0467 (3)0.0813 (7)
C210.28729 (18)0.10962 (16)0.0818 (4)0.0692 (7)
H21A0.25200.15150.01950.083*
C110.13288 (17)0.16115 (14)0.2577 (4)0.0650 (7)
H11A0.16780.12060.32830.078*
N60.26106 (14)0.03697 (14)0.0239 (3)0.0773 (7)
C140.41892 (19)0.42120 (16)0.5088 (5)0.0781 (8)
H14A0.36140.43240.46660.094*
C190.41546 (17)0.06558 (14)0.3224 (4)0.0628 (6)
H19A0.46760.07590.42140.075*
C220.31279 (16)0.02186 (15)0.1181 (4)0.0651 (7)
H22A0.29560.07340.07930.078*
C30.1971 (2)0.43309 (15)1.1883 (5)0.0737 (8)
H3B0.15540.47201.14650.088*
C90.0358 (2)0.2127 (2)0.0274 (4)0.0796 (8)
H9A0.00360.20590.15430.095*
C200.36299 (19)0.12676 (15)0.2276 (4)0.0705 (7)
H20A0.37880.17890.26210.085*
C130.4863 (2)0.47379 (17)0.5986 (5)0.0821 (9)
H13A0.48210.52630.62820.098*
C120.5564 (2)0.43447 (15)0.6328 (4)0.0706 (7)
H12A0.61070.45570.69110.085*
C10.3036 (2)0.3593 (2)1.3692 (4)0.0870 (9)
H1B0.34820.33831.47320.104*
C100.0865 (2)0.15199 (17)0.0696 (4)0.0729 (8)
H10A0.08970.10560.01020.087*
C20.2564 (2)0.4201 (2)1.3734 (5)0.0848 (9)
H2B0.26140.44851.47760.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0387 (9)0.0551 (10)0.0519 (11)0.0008 (8)0.0119 (9)0.0000 (8)
N20.0347 (9)0.0544 (10)0.0500 (10)0.0077 (8)0.0078 (8)0.0012 (8)
O40.0354 (8)0.0574 (9)0.0832 (12)0.0024 (7)0.0045 (8)0.0060 (8)
N40.0369 (9)0.0520 (11)0.0563 (11)0.0020 (8)0.0137 (9)0.0018 (8)
N50.0318 (9)0.0514 (11)0.0601 (12)0.0021 (8)0.0070 (8)0.0029 (8)
C60.0331 (11)0.0486 (12)0.0574 (13)0.0030 (9)0.0080 (10)0.0008 (10)
C170.0360 (11)0.0504 (12)0.0527 (12)0.0015 (9)0.0115 (10)0.0065 (9)
O10.0645 (11)0.0809 (12)0.0594 (10)0.0077 (10)0.0171 (9)0.0046 (9)
O20.0533 (10)0.0745 (11)0.0689 (11)0.0264 (9)0.0046 (9)0.0126 (9)
C70.0331 (10)0.0472 (11)0.0530 (12)0.0021 (9)0.0138 (10)0.0000 (9)
O30.0452 (9)0.0555 (9)0.0781 (11)0.0037 (8)0.0189 (9)0.0055 (8)
C180.0370 (11)0.0504 (12)0.0522 (12)0.0014 (9)0.0154 (10)0.0022 (9)
C150.0411 (12)0.0536 (13)0.0572 (13)0.0022 (10)0.0138 (11)0.0001 (10)
C50.0457 (12)0.0527 (12)0.0616 (15)0.0026 (10)0.0214 (12)0.0041 (10)
C160.0355 (11)0.0578 (14)0.0616 (14)0.0020 (10)0.0104 (10)0.0026 (11)
C40.0527 (14)0.0565 (13)0.0638 (14)0.0025 (11)0.0264 (12)0.0006 (11)
C80.0576 (15)0.0628 (14)0.0552 (14)0.0096 (12)0.0232 (12)0.0058 (11)
N30.0926 (19)0.0879 (16)0.0512 (12)0.0251 (14)0.0192 (12)0.0123 (12)
C210.0615 (17)0.0575 (15)0.0865 (19)0.0119 (13)0.0298 (15)0.0192 (13)
C110.0587 (15)0.0573 (13)0.0621 (15)0.0076 (12)0.0097 (12)0.0028 (11)
N60.0512 (13)0.0676 (14)0.0881 (16)0.0060 (11)0.0060 (12)0.0147 (12)
C140.0587 (16)0.0559 (15)0.113 (2)0.0062 (13)0.0302 (17)0.0049 (14)
C190.0551 (14)0.0523 (14)0.0685 (15)0.0050 (11)0.0145 (12)0.0060 (11)
C220.0495 (14)0.0530 (13)0.0729 (16)0.0022 (11)0.0073 (13)0.0017 (12)
C30.081 (2)0.0624 (15)0.086 (2)0.0060 (14)0.0431 (18)0.0135 (14)
C90.080 (2)0.094 (2)0.0501 (14)0.0059 (17)0.0138 (15)0.0000 (14)
C200.0716 (18)0.0484 (13)0.0849 (19)0.0006 (13)0.0272 (16)0.0019 (12)
C130.082 (2)0.0527 (15)0.110 (3)0.0018 (15)0.0400 (19)0.0111 (15)
C120.0660 (17)0.0595 (15)0.0796 (17)0.0141 (13)0.0246 (14)0.0079 (13)
C10.078 (2)0.107 (3)0.0601 (18)0.015 (2)0.0146 (16)0.0101 (16)
C100.0745 (18)0.0722 (18)0.0628 (16)0.0057 (15)0.0206 (14)0.0127 (13)
C20.103 (2)0.082 (2)0.082 (2)0.0289 (18)0.052 (2)0.0266 (16)
Geometric parameters (Å, º) top
N1—C51.277 (3)C8—N31.329 (3)
N1—N21.374 (3)C8—H8A0.9300
N2—C61.339 (3)N3—C91.319 (4)
N2—H2A0.8600C21—N61.323 (4)
O4—C171.227 (3)C21—C201.365 (4)
N4—C161.269 (3)C21—H21A0.9300
N4—N51.382 (2)C11—C101.374 (4)
N5—C171.343 (3)C11—H11A0.9300
N5—H5A0.8600N6—C221.337 (3)
C6—O21.224 (3)C14—C131.401 (4)
C6—C71.482 (3)C14—H14A0.9300
C17—C181.492 (3)C19—C201.374 (4)
O1—C41.363 (3)C19—H19A0.9300
O1—C11.363 (4)C22—H22A0.9300
C7—C81.374 (3)C3—C21.409 (5)
C7—C111.380 (3)C3—H3B0.9300
O3—C151.363 (3)C9—C101.360 (4)
O3—C121.363 (3)C9—H9A0.9300
C18—C191.377 (3)C20—H20A0.9300
C18—C221.386 (3)C13—C121.315 (4)
C15—C141.341 (4)C13—H13A0.9300
C15—C161.433 (3)C12—H12A0.9300
C5—C41.432 (4)C1—C21.327 (5)
C5—H5B0.9300C1—H1B0.9300
C16—H16A0.9300C10—H10A0.9300
C4—C31.346 (4)C2—H2B0.9300
C5—N1—N2115.95 (18)N6—C21—H21A118.0
C6—N2—N1119.08 (17)C20—C21—H21A118.0
C6—N2—H2A120.5C10—C11—C7119.5 (2)
N1—N2—H2A120.5C10—C11—H11A120.3
C16—N4—N5114.65 (17)C7—C11—H11A120.3
C17—N5—N4119.75 (17)C21—N6—C22116.5 (2)
C17—N5—H5A120.1C15—C14—C13107.2 (3)
N4—N5—H5A120.1C15—C14—H14A126.4
O2—C6—N2122.4 (2)C13—C14—H14A126.4
O2—C6—C7120.7 (2)C20—C19—C18119.5 (2)
N2—C6—C7116.88 (18)C20—C19—H19A120.3
O4—C17—N5122.6 (2)C18—C19—H19A120.3
O4—C17—C18121.7 (2)N6—C22—C18124.3 (2)
N5—C17—C18115.71 (18)N6—C22—H22A117.8
C4—O1—C1105.7 (2)C18—C22—H22A117.8
C8—C7—C11117.3 (2)C4—C3—C2106.9 (3)
C8—C7—C6123.6 (2)C4—C3—H3B126.5
C11—C7—C6119.08 (19)C2—C3—H3B126.5
C15—O3—C12105.9 (2)N3—C9—C10124.3 (3)
C19—C18—C22117.0 (2)N3—C9—H9A117.8
C19—C18—C17119.9 (2)C10—C9—H9A117.8
C22—C18—C17123.1 (2)C21—C20—C19118.8 (2)
C14—C15—O3109.3 (2)C21—C20—H20A120.6
C14—C15—C16131.3 (2)C19—C20—H20A120.6
O3—C15—C16119.4 (2)C12—C13—C14106.7 (2)
N1—C5—C4121.1 (2)C12—C13—H13A126.7
N1—C5—H5B119.5C14—C13—H13A126.7
C4—C5—H5B119.5C13—C12—O3110.9 (3)
N4—C16—C15122.9 (2)C13—C12—H12A124.5
N4—C16—H16A118.6O3—C12—H12A124.5
C15—C16—H16A118.6C2—C1—O1111.3 (3)
C3—C4—O1109.9 (2)C2—C1—H1B124.4
C3—C4—C5131.7 (3)O1—C1—H1B124.4
O1—C4—C5118.4 (2)C9—C10—C11118.1 (3)
N3—C8—C7124.0 (2)C9—C10—H10A121.0
N3—C8—H8A118.0C11—C10—H10A121.0
C7—C8—H8A118.0C1—C2—C3106.2 (3)
C9—N3—C8116.8 (2)C1—C2—H2B126.9
N6—C21—C20123.9 (2)C3—C2—H2B126.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4i0.862.263.080 (2)161
N2—H2A···N4i0.862.513.112 (3)128
N5—H5A···O2ii0.862.012.843 (3)162
C8—H8A···O4i0.932.563.433 (3)156
C16—H16A···O2ii0.932.453.228 (3)141
C22—H22A···O2ii0.932.433.260 (3)149
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC11H9N3O2
Mr215.21
Crystal system, space groupMonoclinic, Cc
Temperature (K)296
a, b, c (Å)17.4363 (3), 16.9143 (3), 7.9639 (1)
β (°) 115.326 (1)
V3)2122.99 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.34 × 0.24 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.964, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
9336, 2443, 1908
Rint0.026
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.086, 1.06
No. of reflections2443
No. of parameters290
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.10, 0.16

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4i0.862.263.080 (2)161
N2—H2A···N4i0.862.513.112 (3)128
N5—H5A···O2ii0.862.012.843 (3)162
C8—H8A···O4i0.932.563.433 (3)156
C16—H16A···O2ii0.932.453.228 (3)141
C22—H22A···O2ii0.932.433.260 (3)149
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x, y, z1/2.
 

Acknowledgements

The authors would like to express their deep appreciation to the Startup Fund for PhDs of the Natural Scientific Research of Zhengzhou University of Light Industry (No.2005001) and the Fund for Natural Scientific Research of Zhengzhou University of Light Industry (000455).

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.  CrossRef CAS Web of Science Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds