organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Bromo-2,7-di­methyl-3-methyl­sulfinyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 24 August 2009; accepted 25 August 2009; online 29 August 2009)

In the title compound, C11H11BrO2S, the O atom and the methyl group of the methyl­sulfinyl substituent are located on opposite sides of the plane of the benzofuran fragment. The crystal structure is stabilized by non-classical inter­molecular C—H⋯O hydrogen bonding, and by inter­molecular C—Br⋯π inter­actions, with C—Br⋯Cg = 3.629 Å (Cg is the centroid of the benzene ring). In addition, the crystal structure exhibits aromatic ππ interactions between the furan rings of neighbouring molecules [centroid–centroid distance = 4.206 (6) Å].

Related literature

For the crystal structures of similar 5-halo-2-methyl-3-methyl­sulfinyl-1-benzofuran derivatives. see: Choi et al. (2007a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007a). Acta Cryst. E63, o521-o522.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007b). Acta Cryst. E63, o4811.]). For natural products with a benzofuran ring, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); von Reuss & König (2004[Reuss, S. H. von & König, W. A. (2004). Phytochemistry, 65, 3113-3118.]). For the pharmacological activity of benzofuran compounds, see: Howlett et al. (1999[Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283-289.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11BrO2S

  • Mr = 287.17

  • Monoclinic, C c

  • a = 16.929 (2) Å

  • b = 5.1001 (6) Å

  • c = 13.800 (2) Å

  • β = 106.962 (2)°

  • V = 1139.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.77 mm−1

  • T = 173 K

  • 0.60 × 0.30 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.211, Tmax = 0.602

  • 3270 measured reflections

  • 1832 independent reflections

  • 1760 reflections with I > 2σ(I)

  • Rint = 0.111

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.102

  • S = 1.06

  • 1832 reflections

  • 138 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 1.31 e Å−3

  • Δρmin = −0.82 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 582 Friedel pairs

  • Flack parameter: −0.003 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯O2i 0.96 2.42 3.242 (7) 143
Symmetry code: (i) x, y-1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzofuran ring systems are widely occurring in natural products (Akgul & Anil, 2003; von Reuss & König, 2004) and in synthetic substances which exhibit a variety of pharmacological properties (Howlett et al., 1999). As a part of our continuing studies of the effect of side chain substituents on the solid state structures of 5-halo-2-methyl-3-methylsulfinyl-1-benzofuran analogues (Choi et al., 2007a,b), the crystal structure of the title compound has been determined (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.009 (4) Å from the least-squares plane defined by the nine constituent atoms. The molecular packing (Fig. 2) is stabilized by non-classical intermolecular C–H···O hydrogen bond between the methyl H atom of the methylsulfinyl substituent and the oxygen of the SO unit, with a C11–H11B···O2i (Table 1). The crystal packing (Fig. 2) is further stabilized by intermolecular C–Br···π interaction between the Br atom and the benzene ring of an adjacent molecule, with a C4–Br···Cg2ii distance of 3.629Å (Cg2 is the centroid of the C2–C7 benzene ring). Additionally, the molecular packing (Fig. 2) exhibits aromatic ππ interaction between the furan rings of neighbouring molecules, with a Cg1···Cg1i distance of 4.206 Å (Cg1 is the centroid of the C1/C2/C7/O1/C8 furan ring).

Related literature top

For the crystal structures of similar 5-halo-2-methyl-3-methylsulfinyl-1-benzofuran derivatives. see: Choi et al. (2007a,b). For natural products with a benzofuran ring, see: Akgul & Anil (2003); von Reuss & König (2004). For the pharmacological activity of benzofuran compounds, see: Howlett et al. (1999).

Experimental top

77% 3-chloroperoxybenzoic acid (247 mg, 1.1 mmol) was added in small portions to a stirred solution of 5-bromo-2,7-dimethyl-3-methylsulfanyl-1-benzofuran (287 mg, 1.0 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 3 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (ethyl acetate) to afford the title compound as a colorless solid [yield 83%, m.p. 411-412 K; Rf = 0.33 (ethyl acetate)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in chloroform at room temperature.

Refinement top

All H atoms were geometrically positioned and refined using a riding model, with C–H = 0.93 Å for the aryl and 0.96 Å for the methyl H atoms. Uiso(H) = 1.2Ueq(C) for the aryl and 1.5Ueq(C) for the methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small cycles of arbitrary radius.
[Figure 2] Fig. 2. C–H···O, C–Br···π and ππ interactions (dotted lines) in the title compound. Cg denotes the ring centroids. [Symmetry codes: (i) x, - 1 + y, z; (ii) x, 1 + y, z.]
5-Bromo-2,7-dimethyl-3-methylsulfinyl-1-benzofuran top
Crystal data top
C11H11BrO2SF(000) = 576
Mr = 287.17Dx = 1.674 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 2606 reflections
a = 16.929 (2) Åθ = 2.5–27.4°
b = 5.1001 (6) ŵ = 3.77 mm1
c = 13.800 (2) ÅT = 173 K
β = 106.962 (2)°Block, colorless
V = 1139.7 (3) Å30.60 × 0.30 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1832 independent reflections
Radiation source: fine-focus sealed tube1760 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.111
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 2.5°
ϕ and ω scansh = 2119
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
k = 66
Tmin = 0.211, Tmax = 0.602l = 1317
3270 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.071P)2 + 0.1P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
1832 reflectionsΔρmax = 1.31 e Å3
138 parametersΔρmin = 0.82 e Å3
2 restraintsAbsolute structure: Flack (1983), 582 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.003 (12)
Crystal data top
C11H11BrO2SV = 1139.7 (3) Å3
Mr = 287.17Z = 4
Monoclinic, CcMo Kα radiation
a = 16.929 (2) ŵ = 3.77 mm1
b = 5.1001 (6) ÅT = 173 K
c = 13.800 (2) Å0.60 × 0.30 × 0.15 mm
β = 106.962 (2)°
Data collection top
Bruker SMART CCD
diffractometer
1832 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
1760 reflections with I > 2σ(I)
Tmin = 0.211, Tmax = 0.602Rint = 0.111
3270 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.102Δρmax = 1.31 e Å3
S = 1.06Δρmin = 0.82 e Å3
1832 reflectionsAbsolute structure: Flack (1983), 582 Friedel pairs
138 parametersAbsolute structure parameter: 0.003 (12)
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.80657 (3)1.10273 (9)0.53574 (4)0.03592 (18)
S20.47258 (6)0.4834 (2)0.39045 (8)0.0260 (3)
O10.60773 (18)0.2770 (7)0.6641 (2)0.0234 (7)
C20.6253 (2)0.5717 (8)0.5481 (3)0.0210 (9)
C10.5474 (2)0.4374 (8)0.5090 (3)0.0196 (8)
C30.6679 (2)0.7694 (9)0.5131 (3)0.0226 (8)
H30.64700.84670.44970.027*
C90.7699 (3)0.4064 (11)0.8116 (4)0.0362 (13)
H9A0.77680.22200.80270.043*
H9B0.73260.43240.85140.043*
H9C0.82250.48320.84570.043*
C80.5396 (2)0.2678 (9)0.5812 (3)0.0222 (9)
C60.7356 (3)0.5336 (10)0.7103 (3)0.0253 (9)
C40.7437 (3)0.8416 (9)0.5800 (4)0.0261 (9)
C70.6596 (2)0.4648 (9)0.6435 (3)0.0215 (8)
C50.7778 (3)0.7289 (10)0.6741 (4)0.0283 (10)
H50.82940.78370.71390.034*
O20.4684 (2)0.7724 (8)0.3685 (3)0.0389 (10)
C100.4738 (3)0.0806 (9)0.5865 (4)0.0279 (10)
H10A0.42860.09270.52550.042*
H10B0.45480.12270.64370.042*
H10C0.49550.09460.59370.042*
C110.5294 (4)0.3399 (11)0.3125 (4)0.0361 (12)
H11A0.49980.36590.24250.054*
H11B0.53620.15550.32640.054*
H11C0.58270.42160.32710.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0297 (2)0.0241 (2)0.0578 (3)0.00886 (19)0.01865 (19)0.0052 (3)
S20.0213 (5)0.0276 (6)0.0247 (5)0.0042 (4)0.0002 (4)0.0032 (4)
O10.0239 (15)0.0250 (17)0.0218 (15)0.0003 (12)0.0075 (12)0.0008 (13)
C20.018 (2)0.019 (2)0.025 (2)0.0008 (14)0.0051 (16)0.0027 (16)
C10.0152 (17)0.0208 (19)0.0210 (19)0.0012 (14)0.0024 (14)0.0019 (16)
C30.0211 (19)0.020 (2)0.026 (2)0.0005 (15)0.0066 (16)0.0004 (16)
C90.027 (2)0.051 (4)0.026 (3)0.007 (2)0.0003 (19)0.002 (2)
C80.0208 (18)0.024 (2)0.021 (2)0.0003 (15)0.0043 (16)0.0022 (16)
C60.0197 (19)0.027 (2)0.027 (2)0.0039 (16)0.0047 (16)0.0055 (19)
C40.0216 (19)0.0183 (19)0.040 (3)0.0028 (15)0.0121 (17)0.0054 (19)
C70.0190 (18)0.021 (2)0.025 (2)0.0022 (15)0.0071 (15)0.0030 (18)
C50.0176 (18)0.034 (3)0.032 (2)0.0017 (16)0.0051 (16)0.012 (2)
O20.041 (2)0.0286 (19)0.039 (2)0.0081 (16)0.0001 (18)0.0065 (16)
C100.027 (2)0.023 (2)0.035 (2)0.0066 (17)0.0121 (19)0.0006 (18)
C110.052 (3)0.031 (3)0.026 (2)0.007 (2)0.012 (2)0.002 (2)
Geometric parameters (Å, º) top
Br—C41.913 (5)C9—H9B0.9600
S2—O21.502 (4)C9—H9C0.9600
S2—C11.769 (4)C8—C101.486 (6)
S2—C111.795 (7)C6—C71.391 (6)
O1—C81.368 (5)C6—C51.400 (8)
O1—C71.384 (6)C4—C51.383 (8)
C2—C71.387 (6)C5—H50.9300
C2—C31.404 (7)C10—H10A0.9600
C2—C11.444 (5)C10—H10B0.9600
C1—C81.354 (7)C10—H10C0.9600
C3—C41.394 (6)C11—H11A0.9600
C3—H30.9300C11—H11B0.9600
C9—C61.496 (7)C11—H11C0.9600
C9—H9A0.9600
O2—S2—C1107.2 (2)C7—C6—C9122.8 (5)
O2—S2—C11106.4 (3)C5—C6—C9122.9 (4)
C1—S2—C1197.8 (2)C5—C4—C3124.3 (5)
C8—O1—C7106.4 (3)C5—C4—Br118.1 (3)
C7—C2—C3119.6 (4)C3—C4—Br117.6 (4)
C7—C2—C1104.6 (4)O1—C7—C2110.6 (3)
C3—C2—C1135.8 (4)O1—C7—C6123.9 (4)
C8—C1—C2107.6 (4)C2—C7—C6125.5 (5)
C8—C1—S2124.6 (3)C4—C5—C6121.0 (4)
C2—C1—S2127.7 (4)C4—C5—H5119.5
C4—C3—C2115.3 (4)C6—C5—H5119.5
C4—C3—H3122.4C8—C10—H10A109.5
C2—C3—H3122.4C8—C10—H10B109.5
C6—C9—H9A109.5H10A—C10—H10B109.5
C6—C9—H9B109.5C8—C10—H10C109.5
H9A—C9—H9B109.5H10A—C10—H10C109.5
C6—C9—H9C109.5H10B—C10—H10C109.5
H9A—C9—H9C109.5S2—C11—H11A109.5
H9B—C9—H9C109.5S2—C11—H11B109.5
C1—C8—O1110.8 (4)H11A—C11—H11B109.5
C1—C8—C10133.0 (4)S2—C11—H11C109.5
O1—C8—C10116.2 (4)H11A—C11—H11C109.5
C7—C6—C5114.3 (4)H11B—C11—H11C109.5
C7—C2—C1—C80.8 (5)C2—C3—C4—C51.1 (7)
C3—C2—C1—C8178.2 (5)C2—C3—C4—Br178.2 (3)
C7—C2—C1—S2179.5 (3)C8—O1—C7—C20.7 (5)
C3—C2—C1—S20.6 (8)C8—O1—C7—C6179.5 (4)
O2—S2—C1—C8139.5 (4)C3—C2—C7—O1179.1 (4)
C11—S2—C1—C8110.6 (5)C1—C2—C7—O10.1 (5)
O2—S2—C1—C239.0 (5)C3—C2—C7—C61.0 (7)
C11—S2—C1—C270.8 (5)C1—C2—C7—C6179.8 (4)
C7—C2—C3—C40.3 (7)C5—C6—C7—O1179.8 (4)
C1—C2—C3—C4179.1 (5)C9—C6—C7—O11.1 (7)
C2—C1—C8—O11.3 (5)C5—C6—C7—C20.4 (7)
S2—C1—C8—O1179.9 (3)C9—C6—C7—C2178.7 (5)
C2—C1—C8—C10179.1 (5)C3—C4—C5—C61.9 (8)
S2—C1—C8—C100.3 (8)Br—C4—C5—C6179.0 (4)
C7—O1—C8—C11.2 (5)C7—C6—C5—C41.0 (7)
C7—O1—C8—C10179.0 (4)C9—C6—C5—C4179.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O2i0.962.423.242 (7)143
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC11H11BrO2S
Mr287.17
Crystal system, space groupMonoclinic, Cc
Temperature (K)173
a, b, c (Å)16.929 (2), 5.1001 (6), 13.800 (2)
β (°) 106.962 (2)
V3)1139.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.77
Crystal size (mm)0.60 × 0.30 × 0.15
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.211, 0.602
No. of measured, independent and
observed [I > 2σ(I)] reflections
3270, 1832, 1760
Rint0.111
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.102, 1.06
No. of reflections1832
No. of parameters138
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.31, 0.82
Absolute structureFlack (1983), 582 Friedel pairs
Absolute structure parameter0.003 (12)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O2i0.962.423.242 (7)143.2
Symmetry code: (i) x, y1, z.
 

Acknowledgements

This work was supported by Dong-eui University (grant No. 2009AA101).

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007a). Acta Cryst. E63, o521–o522.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007b). Acta Cryst. E63, o4811.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHowlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283–289.  Web of Science CrossRef PubMed CAS Google Scholar
First citationReuss, S. H. von & König, W. A. (2004). Phytochemistry, 65, 3113–3118.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds