organic compounds
5-Bromo-2,7-dimethyl-3-methylsulfinyl-1-benzofuran
aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr
In the title compound, C11H11BrO2S, the O atom and the methyl group of the methylsulfinyl substituent are located on opposite sides of the plane of the benzofuran fragment. The is stabilized by non-classical intermolecular C—H⋯O hydrogen bonding, and by intermolecular C—Br⋯π interactions, with C—Br⋯Cg = 3.629 Å (Cg is the centroid of the benzene ring). In addition, the exhibits aromatic π–π interactions between the furan rings of neighbouring molecules [centroid–centroid distance = 4.206 (6) Å].
Related literature
For the crystal structures of similar 5-halo-2-methyl-3-methylsulfinyl-1-benzofuran derivatives. see: Choi et al. (2007a,b). For natural products with a benzofuran ring, see: Akgul & Anil (2003); von Reuss & König (2004). For the pharmacological activity of benzofuran compounds, see: Howlett et al. (1999).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809034011/hg2560sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809034011/hg2560Isup2.hkl
77% 3-chloroperoxybenzoic acid (247 mg, 1.1 mmol) was added in small portions to a stirred solution of 5-bromo-2,7-dimethyl-3-methylsulfanyl-1-benzofuran (287 mg, 1.0 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 3 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by
(ethyl acetate) to afford the title compound as a colorless solid [yield 83%, m.p. 411-412 K; Rf = 0.33 (ethyl acetate)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in chloroform at room temperature.All H atoms were geometrically positioned and refined using a riding model, with C–H = 0.93 Å for the aryl and 0.96 Å for the methyl H atoms. Uiso(H) = 1.2Ueq(C) for the aryl and 1.5Ueq(C) for the methyl H atoms.
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C11H11BrO2S | F(000) = 576 |
Mr = 287.17 | Dx = 1.674 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C -2yc | Cell parameters from 2606 reflections |
a = 16.929 (2) Å | θ = 2.5–27.4° |
b = 5.1001 (6) Å | µ = 3.77 mm−1 |
c = 13.800 (2) Å | T = 173 K |
β = 106.962 (2)° | Block, colorless |
V = 1139.7 (3) Å3 | 0.60 × 0.30 × 0.15 mm |
Z = 4 |
Bruker SMART CCD diffractometer | 1832 independent reflections |
Radiation source: fine-focus sealed tube | 1760 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.111 |
Detector resolution: 10.0 pixels mm-1 | θmax = 27.0°, θmin = 2.5° |
ϕ and ω scans | h = −21→19 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | k = −6→6 |
Tmin = 0.211, Tmax = 0.602 | l = −13→17 |
3270 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.102 | w = 1/[σ2(Fo2) + (0.071P)2 + 0.1P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
1832 reflections | Δρmax = 1.31 e Å−3 |
138 parameters | Δρmin = −0.82 e Å−3 |
2 restraints | Absolute structure: Flack (1983), 582 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.003 (12) |
C11H11BrO2S | V = 1139.7 (3) Å3 |
Mr = 287.17 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 16.929 (2) Å | µ = 3.77 mm−1 |
b = 5.1001 (6) Å | T = 173 K |
c = 13.800 (2) Å | 0.60 × 0.30 × 0.15 mm |
β = 106.962 (2)° |
Bruker SMART CCD diffractometer | 1832 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | 1760 reflections with I > 2σ(I) |
Tmin = 0.211, Tmax = 0.602 | Rint = 0.111 |
3270 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.102 | Δρmax = 1.31 e Å−3 |
S = 1.06 | Δρmin = −0.82 e Å−3 |
1832 reflections | Absolute structure: Flack (1983), 582 Friedel pairs |
138 parameters | Absolute structure parameter: −0.003 (12) |
2 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br | 0.80657 (3) | 1.10273 (9) | 0.53574 (4) | 0.03592 (18) | |
S2 | 0.47258 (6) | 0.4834 (2) | 0.39045 (8) | 0.0260 (3) | |
O1 | 0.60773 (18) | 0.2770 (7) | 0.6641 (2) | 0.0234 (7) | |
C2 | 0.6253 (2) | 0.5717 (8) | 0.5481 (3) | 0.0210 (9) | |
C1 | 0.5474 (2) | 0.4374 (8) | 0.5090 (3) | 0.0196 (8) | |
C3 | 0.6679 (2) | 0.7694 (9) | 0.5131 (3) | 0.0226 (8) | |
H3 | 0.6470 | 0.8467 | 0.4497 | 0.027* | |
C9 | 0.7699 (3) | 0.4064 (11) | 0.8116 (4) | 0.0362 (13) | |
H9A | 0.7768 | 0.2220 | 0.8027 | 0.043* | |
H9B | 0.7326 | 0.4324 | 0.8514 | 0.043* | |
H9C | 0.8225 | 0.4832 | 0.8457 | 0.043* | |
C8 | 0.5396 (2) | 0.2678 (9) | 0.5812 (3) | 0.0222 (9) | |
C6 | 0.7356 (3) | 0.5336 (10) | 0.7103 (3) | 0.0253 (9) | |
C4 | 0.7437 (3) | 0.8416 (9) | 0.5800 (4) | 0.0261 (9) | |
C7 | 0.6596 (2) | 0.4648 (9) | 0.6435 (3) | 0.0215 (8) | |
C5 | 0.7778 (3) | 0.7289 (10) | 0.6741 (4) | 0.0283 (10) | |
H5 | 0.8294 | 0.7837 | 0.7139 | 0.034* | |
O2 | 0.4684 (2) | 0.7724 (8) | 0.3685 (3) | 0.0389 (10) | |
C10 | 0.4738 (3) | 0.0806 (9) | 0.5865 (4) | 0.0279 (10) | |
H10A | 0.4286 | 0.0927 | 0.5255 | 0.042* | |
H10B | 0.4548 | 0.1227 | 0.6437 | 0.042* | |
H10C | 0.4955 | −0.0946 | 0.5937 | 0.042* | |
C11 | 0.5294 (4) | 0.3399 (11) | 0.3125 (4) | 0.0361 (12) | |
H11A | 0.4998 | 0.3659 | 0.2425 | 0.054* | |
H11B | 0.5362 | 0.1555 | 0.3264 | 0.054* | |
H11C | 0.5827 | 0.4216 | 0.3271 | 0.054* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br | 0.0297 (2) | 0.0241 (2) | 0.0578 (3) | −0.00886 (19) | 0.01865 (19) | −0.0052 (3) |
S2 | 0.0213 (5) | 0.0276 (6) | 0.0247 (5) | −0.0042 (4) | −0.0002 (4) | 0.0032 (4) |
O1 | 0.0239 (15) | 0.0250 (17) | 0.0218 (15) | −0.0003 (12) | 0.0075 (12) | 0.0008 (13) |
C2 | 0.018 (2) | 0.019 (2) | 0.025 (2) | 0.0008 (14) | 0.0051 (16) | −0.0027 (16) |
C1 | 0.0152 (17) | 0.0208 (19) | 0.0210 (19) | −0.0012 (14) | 0.0024 (14) | 0.0019 (16) |
C3 | 0.0211 (19) | 0.020 (2) | 0.026 (2) | 0.0005 (15) | 0.0066 (16) | 0.0004 (16) |
C9 | 0.027 (2) | 0.051 (4) | 0.026 (3) | 0.007 (2) | 0.0003 (19) | −0.002 (2) |
C8 | 0.0208 (18) | 0.024 (2) | 0.021 (2) | 0.0003 (15) | 0.0043 (16) | −0.0022 (16) |
C6 | 0.0197 (19) | 0.027 (2) | 0.027 (2) | 0.0039 (16) | 0.0047 (16) | −0.0055 (19) |
C4 | 0.0216 (19) | 0.0183 (19) | 0.040 (3) | −0.0028 (15) | 0.0121 (17) | −0.0054 (19) |
C7 | 0.0190 (18) | 0.021 (2) | 0.025 (2) | 0.0022 (15) | 0.0071 (15) | −0.0030 (18) |
C5 | 0.0176 (18) | 0.034 (3) | 0.032 (2) | −0.0017 (16) | 0.0051 (16) | −0.012 (2) |
O2 | 0.041 (2) | 0.0286 (19) | 0.039 (2) | 0.0081 (16) | −0.0001 (18) | 0.0065 (16) |
C10 | 0.027 (2) | 0.023 (2) | 0.035 (2) | −0.0066 (17) | 0.0121 (19) | 0.0006 (18) |
C11 | 0.052 (3) | 0.031 (3) | 0.026 (2) | −0.007 (2) | 0.012 (2) | −0.002 (2) |
Br—C4 | 1.913 (5) | C9—H9B | 0.9600 |
S2—O2 | 1.502 (4) | C9—H9C | 0.9600 |
S2—C1 | 1.769 (4) | C8—C10 | 1.486 (6) |
S2—C11 | 1.795 (7) | C6—C7 | 1.391 (6) |
O1—C8 | 1.368 (5) | C6—C5 | 1.400 (8) |
O1—C7 | 1.384 (6) | C4—C5 | 1.383 (8) |
C2—C7 | 1.387 (6) | C5—H5 | 0.9300 |
C2—C3 | 1.404 (7) | C10—H10A | 0.9600 |
C2—C1 | 1.444 (5) | C10—H10B | 0.9600 |
C1—C8 | 1.354 (7) | C10—H10C | 0.9600 |
C3—C4 | 1.394 (6) | C11—H11A | 0.9600 |
C3—H3 | 0.9300 | C11—H11B | 0.9600 |
C9—C6 | 1.496 (7) | C11—H11C | 0.9600 |
C9—H9A | 0.9600 | ||
O2—S2—C1 | 107.2 (2) | C7—C6—C9 | 122.8 (5) |
O2—S2—C11 | 106.4 (3) | C5—C6—C9 | 122.9 (4) |
C1—S2—C11 | 97.8 (2) | C5—C4—C3 | 124.3 (5) |
C8—O1—C7 | 106.4 (3) | C5—C4—Br | 118.1 (3) |
C7—C2—C3 | 119.6 (4) | C3—C4—Br | 117.6 (4) |
C7—C2—C1 | 104.6 (4) | O1—C7—C2 | 110.6 (3) |
C3—C2—C1 | 135.8 (4) | O1—C7—C6 | 123.9 (4) |
C8—C1—C2 | 107.6 (4) | C2—C7—C6 | 125.5 (5) |
C8—C1—S2 | 124.6 (3) | C4—C5—C6 | 121.0 (4) |
C2—C1—S2 | 127.7 (4) | C4—C5—H5 | 119.5 |
C4—C3—C2 | 115.3 (4) | C6—C5—H5 | 119.5 |
C4—C3—H3 | 122.4 | C8—C10—H10A | 109.5 |
C2—C3—H3 | 122.4 | C8—C10—H10B | 109.5 |
C6—C9—H9A | 109.5 | H10A—C10—H10B | 109.5 |
C6—C9—H9B | 109.5 | C8—C10—H10C | 109.5 |
H9A—C9—H9B | 109.5 | H10A—C10—H10C | 109.5 |
C6—C9—H9C | 109.5 | H10B—C10—H10C | 109.5 |
H9A—C9—H9C | 109.5 | S2—C11—H11A | 109.5 |
H9B—C9—H9C | 109.5 | S2—C11—H11B | 109.5 |
C1—C8—O1 | 110.8 (4) | H11A—C11—H11B | 109.5 |
C1—C8—C10 | 133.0 (4) | S2—C11—H11C | 109.5 |
O1—C8—C10 | 116.2 (4) | H11A—C11—H11C | 109.5 |
C7—C6—C5 | 114.3 (4) | H11B—C11—H11C | 109.5 |
C7—C2—C1—C8 | 0.8 (5) | C2—C3—C4—C5 | 1.1 (7) |
C3—C2—C1—C8 | −178.2 (5) | C2—C3—C4—Br | 178.2 (3) |
C7—C2—C1—S2 | 179.5 (3) | C8—O1—C7—C2 | −0.7 (5) |
C3—C2—C1—S2 | 0.6 (8) | C8—O1—C7—C6 | 179.5 (4) |
O2—S2—C1—C8 | 139.5 (4) | C3—C2—C7—O1 | 179.1 (4) |
C11—S2—C1—C8 | −110.6 (5) | C1—C2—C7—O1 | −0.1 (5) |
O2—S2—C1—C2 | −39.0 (5) | C3—C2—C7—C6 | −1.0 (7) |
C11—S2—C1—C2 | 70.8 (5) | C1—C2—C7—C6 | 179.8 (4) |
C7—C2—C3—C4 | 0.3 (7) | C5—C6—C7—O1 | −179.8 (4) |
C1—C2—C3—C4 | 179.1 (5) | C9—C6—C7—O1 | 1.1 (7) |
C2—C1—C8—O1 | −1.3 (5) | C5—C6—C7—C2 | 0.4 (7) |
S2—C1—C8—O1 | 179.9 (3) | C9—C6—C7—C2 | −178.7 (5) |
C2—C1—C8—C10 | 179.1 (5) | C3—C4—C5—C6 | −1.9 (8) |
S2—C1—C8—C10 | 0.3 (8) | Br—C4—C5—C6 | −179.0 (4) |
C7—O1—C8—C1 | 1.2 (5) | C7—C6—C5—C4 | 1.0 (7) |
C7—O1—C8—C10 | −179.0 (4) | C9—C6—C5—C4 | −179.9 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11B···O2i | 0.96 | 2.42 | 3.242 (7) | 143 |
Symmetry code: (i) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C11H11BrO2S |
Mr | 287.17 |
Crystal system, space group | Monoclinic, Cc |
Temperature (K) | 173 |
a, b, c (Å) | 16.929 (2), 5.1001 (6), 13.800 (2) |
β (°) | 106.962 (2) |
V (Å3) | 1139.7 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.77 |
Crystal size (mm) | 0.60 × 0.30 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2000) |
Tmin, Tmax | 0.211, 0.602 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3270, 1832, 1760 |
Rint | 0.111 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.102, 1.06 |
No. of reflections | 1832 |
No. of parameters | 138 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.31, −0.82 |
Absolute structure | Flack (1983), 582 Friedel pairs |
Absolute structure parameter | −0.003 (12) |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11B···O2i | 0.96 | 2.42 | 3.242 (7) | 143.2 |
Symmetry code: (i) x, y−1, z. |
Acknowledgements
This work was supported by Dong-eui University (grant No. 2009AA101).
References
Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. Web of Science CrossRef PubMed CAS Google Scholar
Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007a). Acta Cryst. E63, o521–o522. Web of Science CSD CrossRef IUCr Journals Google Scholar
Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007b). Acta Cryst. E63, o4811. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283–289. Web of Science CrossRef PubMed CAS Google Scholar
Reuss, S. H. von & König, W. A. (2004). Phytochemistry, 65, 3113–3118. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Benzofuran ring systems are widely occurring in natural products (Akgul & Anil, 2003; von Reuss & König, 2004) and in synthetic substances which exhibit a variety of pharmacological properties (Howlett et al., 1999). As a part of our continuing studies of the effect of side chain substituents on the solid state structures of 5-halo-2-methyl-3-methylsulfinyl-1-benzofuran analogues (Choi et al., 2007a,b), the crystal structure of the title compound has been determined (Fig. 1).
The benzofuran unit is essentially planar, with a mean deviation of 0.009 (4) Å from the least-squares plane defined by the nine constituent atoms. The molecular packing (Fig. 2) is stabilized by non-classical intermolecular C–H···O hydrogen bond between the methyl H atom of the methylsulfinyl substituent and the oxygen of the S═O unit, with a C11–H11B···O2i (Table 1). The crystal packing (Fig. 2) is further stabilized by intermolecular C–Br···π interaction between the Br atom and the benzene ring of an adjacent molecule, with a C4–Br···Cg2ii distance of 3.629Å (Cg2 is the centroid of the C2–C7 benzene ring). Additionally, the molecular packing (Fig. 2) exhibits aromatic π–π interaction between the furan rings of neighbouring molecules, with a Cg1···Cg1i distance of 4.206 Å (Cg1 is the centroid of the C1/C2/C7/O1/C8 furan ring).