organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4S,5S)-2-(3-Meth­oxy­phen­yl)-1,3-dioxolane-4,5-dicarboxamide

aState Key Laboratory of Materials-Oriented Chemical Engineering, College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: dcwang@njut.edu.cn

(Received 29 June 2009; accepted 19 August 2009; online 26 August 2009)

In the title compound, C12H14N2O5, the five-membered ring adopts an envelope conformation. In the crystal structure, inter­molecular N—H⋯O inter­actions link the mol­ecules into a three-dimensional network. A weak C—H⋯π inter­action is also found.

Related literature

For general background, see: Kim et al. (1994[Kim, D. K., Kim, G., Gam, J. S., Cho, Y. B., Kim, H. T., Tai, J. H., Kim, K. H., Hong, W. S. & Park, J. G. (1994). J. Med. Chem. 37, 1471-1485.]); Pandey et al. (1997[Pandey, G., Hajra, S., Ghorai, M. K. & Kumar, K. R. (1997). J. Org. Chem. 62, 5966-5973.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14N2O5

  • Mr = 266.25

  • Orthorhombic, P 21 21 21

  • a = 9.2340 (18) Å

  • b = 9.852 (2) Å

  • c = 14.266 (3) Å

  • V = 1297.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 294 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.971, Tmax = 0.979

  • 2599 measured reflections

  • 1378 independent reflections

  • 1157 reflections with I > 2σ(I)

  • Rint = 0.027

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.132

  • S = 1.33

  • 1378 reflections

  • 170 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O5i 0.86 2.33 3.076 (4) 145
N2—H2A⋯O4i 0.86 2.13 2.926 (4) 153
N1—H1B⋯O2ii 0.86 2.31 3.045 (4) 143
N1—H1A⋯O5iii 0.86 2.20 2.952 (4) 146
C9—H9ACg1iv 0.98 2.82 3.640 (4) 141
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (iii) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]. Cg1 is the centroid of the C2–C7 ring.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Antitumor platinum drug is one kind of the most effective anticancer agents currently available. (2S,3S)-Diethyl 2,3-O-alkyltartrate analogues are the starting materials for the syntheses of platinum complexes with antitumor activity (Kim et al., 1994) and are also important intermediates in organic syntheses (Pandey et al., 1997). As part of our studies on the syntheses and characterizations of these compounds, we report herein the crystal structure of the title compound.

In the molecule of the title compound, (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C2-C7) is, of course, planar, while ring B (O2/O3/C8-C10) adopts envelope conformation with atom O2 displaced by 0.456 (3) Å from the plane of the other ring atoms.

In the crystal structure, intermolecular N-H···O interactions (Table 1) link the molecules into a three-dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure. A weak C—H···π interaction (Table 1) is also found.

Related literature top

For general background, see: Kim et al. (1994); Pandey et al. (1997). For bond-length data, see: Allen et al. (1987). Cg1 is the centroid of the C2–C7 ring.

Experimental top

For the preparation of the title compound, a mixture of (2S,3S)-diethyl- tartrate (500 mg, 2.43 mmol), 3-methoxybenzaldehyde (331 mg, 2.43 mmol), anhydrous copper(II) sulfate (776 mg, 2.86 mmol) and one drop of methanesulfonic acid in anhydrous toluene (8 ml) was stirred at room temperature for 8 h. Anhydrous magnesium sulfate (30 mg) was added to the reaction mixture, which was then stirred for 20 min. Then, the resulting colorless precipitate was obtained by evaporation and dried in the vacuo (yield; 83%). The obtained colorless product (654 mg, 2 mmol) was dissolved in anhydrous ethanol (40 ml), and a current of dry ammonia, dried by calcium cholride was passed into the reaction mixture at room temperature for 4 h. Then, the reaction mixture was filtered and the resulting product was evaporated to dryness. Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution after four weeks.

Refinement top

H atoms were positioned geometrically with N-H = 0.86 Å (for NH2) and C-H = 0.93, 0.98 and 0.96 Å for aromatic, methine and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms. The absolute structure could not be determined reliably, and 986 Friedel pairs were averaged before the last cycle of refinement.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level
[Figure 2] Fig. 2. A partial packing diagram. Hydrogen bonds are shown as dashed lines.
(4S,5S)-2-(3-Methoxyphenyl)-1,3-dioxolane-4,5-dicarboxamide top
Crystal data top
C12H14N2O5F(000) = 560
Mr = 266.25Dx = 1.363 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 9.2340 (18) Åθ = 9–13°
b = 9.852 (2) ŵ = 0.11 mm1
c = 14.266 (3) ÅT = 294 K
V = 1297.8 (5) Å3Block, colorless
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1157 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 25.3°, θmin = 2.5°
ω/2θ scansh = 110
Absorption correction: ψ scan
(North et al., 1968)
k = 1111
Tmin = 0.971, Tmax = 0.979l = 170
2599 measured reflections3 standard reflections every 120 min
1378 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.33 w = 1/[σ2(Fo2) + (0.0632P)2 + 0.0799P]
where P = (Fo2 + 2Fc2)/3
1378 reflections(Δ/σ)max < 0.001
170 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C12H14N2O5V = 1297.8 (5) Å3
Mr = 266.25Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.2340 (18) ŵ = 0.11 mm1
b = 9.852 (2) ÅT = 294 K
c = 14.266 (3) Å0.30 × 0.20 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1157 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.027
Tmin = 0.971, Tmax = 0.9793 standard reflections every 120 min
2599 measured reflections intensity decay: 1%
1378 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.33Δρmax = 0.31 e Å3
1378 reflectionsΔρmin = 0.40 e Å3
170 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6259 (4)0.9009 (4)0.2515 (2)0.085 (2)
O20.5311 (3)0.7583 (2)0.08959 (15)0.0374 (6)
O30.7763 (3)0.7304 (2)0.10000 (19)0.0431 (6)
O40.6719 (5)0.3876 (3)0.0578 (3)0.0835 (13)
O50.5534 (3)0.5637 (2)0.30153 (17)0.0495 (7)
N10.8069 (4)0.5351 (3)0.0253 (2)0.0600 (11)
H1A0.82240.47860.07010.072*
H1B0.84290.61550.02790.072*
N20.4593 (4)0.7713 (3)0.2737 (2)0.0461 (8)
H2A0.43890.78540.33170.055*
H2B0.43950.83220.23240.055*
C10.5709 (6)0.7727 (7)0.2635 (3)0.093 (12)
H1C0.54410.76020.32800.140*
H1D0.48710.76130.22450.140*
H1E0.64290.70690.24660.140*
C20.6605 (5)0.9407 (5)0.1622 (3)0.0582 (12)
C30.7152 (6)1.0709 (5)0.1530 (3)0.0679 (15)
H3A0.72531.12520.20590.081*
C40.7541 (8)1.1201 (4)0.0684 (4)0.0788 (18)
H4A0.79321.20680.06380.095*
C50.7366 (6)1.0431 (4)0.0109 (3)0.0581 (12)
H5A0.76141.07820.06920.070*
C60.6820 (4)0.9131 (3)0.0036 (2)0.0380 (8)
C70.6436 (4)0.8611 (4)0.0833 (2)0.0444 (9)
H7A0.60690.77350.08830.053*
C80.6654 (4)0.8314 (3)0.0910 (2)0.0355 (8)
H8A0.66760.89180.14560.043*
C90.5521 (4)0.6389 (3)0.1436 (2)0.0334 (8)
H9A0.49040.56650.11860.040*
C100.7109 (4)0.6039 (3)0.1246 (3)0.0385 (8)
H10A0.75530.56950.18230.046*
C110.7276 (5)0.4985 (4)0.0474 (3)0.0469 (10)
C120.5210 (4)0.6565 (3)0.2480 (3)0.0349 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.076 (2)0.142 (3)0.0376 (13)0.018 (2)0.0052 (15)0.0087 (18)
O20.0403 (13)0.0370 (12)0.0349 (12)0.0019 (11)0.0030 (12)0.0073 (11)
O30.0365 (13)0.0359 (12)0.0569 (16)0.0001 (11)0.0015 (12)0.0047 (12)
O40.128 (3)0.0379 (16)0.084 (2)0.0130 (19)0.065 (2)0.0087 (16)
O50.0698 (18)0.0423 (13)0.0363 (13)0.0070 (14)0.0056 (14)0.0088 (11)
N10.084 (3)0.0436 (18)0.053 (2)0.0035 (19)0.038 (2)0.0072 (16)
N20.0574 (19)0.0420 (16)0.0390 (17)0.0054 (17)0.0148 (15)0.0005 (13)
C10.065 (3)0.165 (7)0.049 (2)0.063 (4)0.031 (2)0.035 (4)
C20.047 (2)0.093 (3)0.0348 (19)0.010 (3)0.0024 (18)0.009 (2)
C30.091 (4)0.053 (3)0.060 (3)0.021 (3)0.029 (3)0.023 (2)
C40.136 (5)0.034 (2)0.066 (3)0.001 (3)0.046 (3)0.008 (2)
C50.088 (3)0.036 (2)0.050 (2)0.003 (2)0.017 (2)0.0037 (18)
C60.044 (2)0.0334 (17)0.0366 (18)0.0001 (15)0.0056 (16)0.0035 (15)
C70.043 (2)0.052 (2)0.0388 (19)0.0026 (18)0.0046 (18)0.0007 (18)
C80.0388 (18)0.0318 (16)0.0360 (17)0.0027 (14)0.0012 (17)0.0020 (15)
C90.0400 (19)0.0285 (16)0.0318 (17)0.0028 (15)0.0019 (16)0.0024 (13)
C100.044 (2)0.0333 (17)0.0381 (18)0.0026 (16)0.0075 (16)0.0042 (15)
C110.059 (3)0.0342 (18)0.048 (2)0.0034 (18)0.023 (2)0.0064 (16)
C120.0405 (19)0.0309 (16)0.0332 (15)0.0022 (15)0.0019 (16)0.0011 (15)
Geometric parameters (Å, º) top
O1—C11.372 (7)C2—C71.380 (5)
O1—C21.371 (5)C2—C31.385 (7)
O2—C81.434 (4)C3—C41.350 (8)
O2—C91.419 (4)C3—H3A0.9300
O3—C81.434 (4)C4—C51.371 (6)
O3—C101.429 (4)C4—H4A0.9300
O4—C111.217 (5)C5—C61.380 (5)
O5—C121.228 (4)C5—H5A0.9300
N1—C111.320 (5)C6—C71.387 (5)
N1—H1A0.8600C6—C81.492 (5)
N1—H1B0.8600C7—H7A0.9300
N2—C121.318 (4)C8—H8A0.9800
N2—H2A0.8600C9—C121.527 (5)
N2—H2B0.8600C9—C101.531 (5)
C1—H1C0.9600C9—H9A0.9800
C1—H1D0.9600C10—C111.521 (5)
C1—H1E0.9600C10—H10A0.9800
C2—O1—C1117.8 (4)C7—C6—C8121.4 (3)
C9—O2—C8106.9 (2)C2—C7—C6119.3 (4)
C10—O3—C8109.0 (3)C2—C7—H7A120.3
C11—N1—H1A120.0C6—C7—H7A120.3
C11—N1—H1B120.0O2—C8—O3105.6 (2)
H1A—N1—H1B120.0O2—C8—C6110.4 (3)
C12—N2—H2A120.0O3—C8—C6112.1 (3)
C12—N2—H2B120.0O2—C8—H8A109.6
H2A—N2—H2B120.0O3—C8—H8A109.6
O1—C1—H1C109.5C6—C8—H8A109.6
O1—C1—H1D109.5O2—C9—C12114.2 (3)
H1C—C1—H1D109.5O2—C9—C10102.8 (3)
O1—C1—H1E109.5C12—C9—C10112.2 (3)
H1C—C1—H1E109.5O2—C9—H9A109.1
H1D—C1—H1E109.5C12—C9—H9A109.1
O1—C2—C7124.7 (5)C10—C9—H9A109.1
O1—C2—C3115.9 (4)O3—C10—C11112.0 (3)
C7—C2—C3119.4 (4)O3—C10—C9104.6 (3)
C4—C3—C2120.9 (4)C11—C10—C9112.3 (3)
C4—C3—H3A119.5O3—C10—H10A109.3
C2—C3—H3A119.5C11—C10—H10A109.3
C3—C4—C5120.5 (4)C9—C10—H10A109.3
C3—C4—H4A119.7O4—C11—N1125.1 (4)
C5—C4—H4A119.7O4—C11—C10118.8 (3)
C4—C5—C6119.6 (4)N1—C11—C10116.0 (3)
C4—C5—H5A120.2O5—C12—N2124.9 (3)
C6—C5—H5A120.2O5—C12—C9118.4 (3)
C5—C6—C7120.2 (3)N2—C12—C9116.7 (3)
C5—C6—C8118.4 (3)
C1—O1—C2—C70.1 (7)C5—C6—C8—O3104.0 (4)
C1—O1—C2—C3179.8 (5)C7—C6—C8—O376.1 (4)
O1—C2—C3—C4179.3 (5)C8—O2—C9—C1288.2 (3)
C7—C2—C3—C41.0 (8)C8—O2—C9—C1033.7 (3)
C2—C3—C4—C51.7 (9)C8—O3—C10—C11114.2 (3)
C3—C4—C5—C61.6 (8)C8—O3—C10—C97.6 (4)
C4—C5—C6—C70.7 (7)O2—C9—C10—O325.2 (3)
C4—C5—C6—C8179.5 (5)C12—C9—C10—O398.0 (3)
O1—C2—C7—C6179.7 (4)O2—C9—C10—C1196.5 (3)
C3—C2—C7—C60.1 (6)C12—C9—C10—C11140.3 (3)
C5—C6—C7—C20.1 (6)O3—C10—C11—O4177.2 (4)
C8—C6—C7—C2179.8 (4)C9—C10—C11—O459.9 (5)
C9—O2—C8—O329.8 (3)O3—C10—C11—N14.8 (5)
C9—O2—C8—C6151.1 (3)C9—C10—C11—N1122.1 (4)
C10—O3—C8—O212.7 (3)O2—C9—C12—O5171.1 (3)
C10—O3—C8—C6132.9 (3)C10—C9—C12—O554.6 (4)
C5—C6—C8—O2138.5 (4)O2—C9—C12—N29.5 (5)
C7—C6—C8—O241.3 (4)C10—C9—C12—N2126.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O5i0.862.333.076 (4)145
N2—H2A···O4i0.862.132.926 (4)153
N1—H1B···O2ii0.862.313.045 (4)143
N1—H1A···O5iii0.862.202.952 (4)146
C9—H9A···Cg1iv0.982.823.640 (4)141
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1/2, y+3/2, z; (iii) x+3/2, y+1, z1/2; (iv) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC12H14N2O5
Mr266.25
Crystal system, space groupOrthorhombic, P212121
Temperature (K)294
a, b, c (Å)9.2340 (18), 9.852 (2), 14.266 (3)
V3)1297.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.971, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
2599, 1378, 1157
Rint0.027
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.132, 1.33
No. of reflections1378
No. of parameters170
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.40

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O5i0.862.333.076 (4)145
N2—H2A···O4i0.862.132.926 (4)153
N1—H1B···O2ii0.862.313.045 (4)143
N1—H1A···O5iii0.862.202.952 (4)146
C9—H9A···Cg1iv0.982.823.640 (4)141
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1/2, y+3/2, z; (iii) x+3/2, y+1, z1/2; (iv) x, y+1/2, z+3/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKim, D. K., Kim, G., Gam, J. S., Cho, Y. B., Kim, H. T., Tai, J. H., Kim, K. H., Hong, W. S. & Park, J. G. (1994). J. Med. Chem. 37, 1471–1485.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPandey, G., Hajra, S., Ghorai, M. K. & Kumar, K. R. (1997). J. Org. Chem. 62, 5966–5973.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds