metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­(2-methyl­benzimidazolium-1,3-di­acetato-κO)zinc(II) tetra­hydrate

aSchool of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China
*Correspondence e-mail: lianhengchi@yahoo.com.cn

(Received 30 June 2009; accepted 12 August 2009; online 19 August 2009)

The asymmetric unit of the title compound, [Zn(C12H11N2O4)2(H2O)4]·4H2O, contains one-half of the complex mol­ecule and two uncoordin­ated water mol­ecules. The four water O atoms in the equatorial plane around the ZnII centre ([\overline 1] symmetry) form a distorted square-planar arrangement, while the distorted octa­hedral coordination geometry is completed by the O atoms of the zwitterionic 2-methyl­benzimidazolium-1,3-diacetate ligands in the axial positions. The benzimidazole ring system is planar, with a maximum deviation of 0.041 (3) Å. Intra­molecular O—H⋯O hydrogen bonding results in the formation of a non-planar six-membered ring. In the crystal structure, strong intra- and inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network. ππ contacts between benzimidazole rings [centroid–centroid distance = 3.899 (1) Å] may further stabilize the structure.

Related literature

For general background to metal-organic frameworks, see: Robson et al. (2000[Robson, R. (2000). J. Chem. Soc. Dalton Trans. pp. 3735-3744.]); Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]). For a related structure, see: Ni et al. (2007[Ni, Q.-L., Li, F.-S., Jin, L.-L., He, P.-X. & Wang, X.-J. (2007). Chem. Res. Appl. (Chin. J.), 19, 1181-1184.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C12H11N2O4)2(H2O)4]·4H2O

  • Mr = 703.95

  • Monoclinic, P 21 /n

  • a = 7.2749 (9) Å

  • b = 21.265 (3) Å

  • c = 9.7794 (12) Å

  • β = 104.467 (2)°

  • V = 1464.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 294 K

  • 0.32 × 0.21 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.757, Tmax = 0.874

  • 7436 measured reflections

  • 3202 independent reflections

  • 2582 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.097

  • S = 1.10

  • 3202 reflections

  • 237 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.98 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—O5 2.1023 (17)
Zn1—O6 2.1128 (16)
Zn1—O4 2.1303 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5B⋯O8 0.80 (4) 1.92 (4) 2.716 (3) 170 (3)
O6—H6A⋯O3 0.92 (4) 1.70 (4) 2.610 (2) 170 (3)
O6—H6B⋯O2ii 0.75 (3) 2.08 (3) 2.811 (2) 164 (3)
O7—H7A⋯O1iii 0.78 (4) 2.11 (4) 2.864 (3) 165 (4)
O7—H7B⋯O2iv 0.78 (4) 2.03 (4) 2.792 (2) 167 (3)
O8—H8A⋯O4iv 0.75 (3) 2.10 (3) 2.846 (2) 177 (3)
O8—H8B⋯O7v 0.79 (3) 2.00 (3) 2.786 (3) 168 (3)
Symmetry codes: (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x-1, -y+1, -z; (iv) x-1, y, z; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The quest to rational design and construct metal-organic frameworks (MOF) is highly topical, for their intriguing topologies and potential applications as functional materials in many areas such as catalysis, molecular adsorption, magnetism properties, non-linear optics and molecular sensing (Robson, 2000; Kitagawa et al., 2004). In order to explore further the influence of novel polycarboxylate ligand which is a good candidate as building block on MOFs, we developed a flexible ligand 1-acetoxy-2-methylbenzimidazole-3-acetate acid [HL] (Ni et al., 2007), to prepare the title mononuclear complex. We report herein its crystal structure.

The asymmetric unit of the title compound, (Fig. 1), contains one-half molecule, two coordinated and two uncoordinated water molecules. The Zn atom is surrounded by two 2-methylbenzimidazolium-1,3-diacetate and four water molecules. The four O atoms (O5, O6, O5A and O6A atoms) in the equatorial plane around the Zn atom form a distorted square-planar arrangement, while the distorted octahedral coordination is completed by the O atoms of the 2-methylbenzimidazolium-1,3-diacetate ligands (O4 and O4A) in the axial positions [symmetry code: (A) -x, -y, -z] (Table 1). The benzimidazole ring system is planar with a maximum deviation of 0.041 (3) Å for atom C7. Intramolecular O-H···O hydrogen bond results in the formation of a six-membered ring (Zn1/O3/O4/C6/C10/H6A) having twisted conformation.

In the crystal structure, strong intra- and intermolecular O-H···O hydrogen bonds (Table 2) link the molecules into a three-dimensional network, in which they may be effective in the stabilization of the structure. The ππ contact between the benzimidazole rings, Cg1—Cg2i [symmetry code: (i) 1/2 + x, 1/2 - y, 1/2 + z, where Cg1 and Cg2 are centroids of the rings A (N1/N2/C1/C6/C7) and B (C1-C6), respectively] may further stabilize the structure, with centroid-centroid distance of 3.899 (1) Å.

Related literature top

For general background to metal-organic frameworks, see: Robson et al. (2000); Kitagawa et al.(2004). For a related structure, see: Ni et al. (2007).

Experimental top

After the pH of a mixture containing ZnCl2.2H2O (0.0408 g, 0.3 mmol) and ligand HL (0.0498 g, 0.2 mmol) was adjusted by ammonia to 7, the resulting solution was sealed in a Teflon-lined steel liner (25 ml) and then heated at 423 K for 3 d. Colorless block crystals were collected (yield; 28%).

Refinement top

H atoms of water molecules were located in difference Fourier maps and refined isotropically. The remaining H atoms were positioned geometrically with C-H = 0.93, 0.97 and 0.96 Å, for aromatic, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry code: (A) -x, -y, -z].
[Figure 2] Fig. 2. A partial packing diagram. Hydrogen bonds are shown as dashed lines.
Tetraaquabis(2-methylbenzimidazolium-1,3-diacetato-κO)zinc(II) tetrahydrate top
Crystal data top
[Zn(C12H11N2O4)2(H2O)4]·4H2OF(000) = 736
Mr = 703.95Dx = 1.596 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3729 reflections
a = 7.2749 (9) Åθ = 2.4–27.0°
b = 21.265 (3) ŵ = 0.92 mm1
c = 9.7794 (12) ÅT = 294 K
β = 104.467 (2)°Block, colorless
V = 1464.9 (3) Å30.32 × 0.21 × 0.15 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3202 independent reflections
Radiation source: fine-focus sealed tube2582 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 27.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 89
Tmin = 0.757, Tmax = 0.874k = 1427
7436 measured reflectionsl = 1012
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.4211P]
where P = (Fo2 + 2Fc2)/3
3202 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 0.98 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Zn(C12H11N2O4)2(H2O)4]·4H2OV = 1464.9 (3) Å3
Mr = 703.95Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.2749 (9) ŵ = 0.92 mm1
b = 21.265 (3) ÅT = 294 K
c = 9.7794 (12) Å0.32 × 0.21 × 0.15 mm
β = 104.467 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3202 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2582 reflections with I > 2σ(I)
Tmin = 0.757, Tmax = 0.874Rint = 0.022
7436 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.98 e Å3
3202 reflectionsΔρmin = 0.51 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.00000.00000.01544 (12)
O10.1738 (2)0.37790 (7)0.04309 (16)0.0235 (4)
O20.3049 (2)0.44774 (7)0.12371 (16)0.0225 (4)
O30.1638 (2)0.13757 (7)0.05157 (16)0.0203 (3)
O40.2586 (2)0.05044 (7)0.07499 (16)0.0190 (3)
O50.0725 (3)0.01888 (8)0.19098 (18)0.0210 (4)
H5A0.012 (5)0.0003 (15)0.242 (4)0.042 (11)*
H5B0.180 (5)0.0100 (13)0.190 (3)0.030 (8)*
O60.1608 (2)0.07925 (7)0.08958 (19)0.0201 (3)
H6A0.054 (5)0.1041 (17)0.080 (4)0.065 (11)*
H6B0.191 (4)0.0718 (15)0.167 (3)0.038 (9)*
O70.8479 (3)0.55949 (9)0.00644 (19)0.0270 (4)
H7A0.940 (6)0.5704 (19)0.012 (3)0.060 (12)*
H7B0.814 (5)0.5299 (17)0.040 (3)0.041 (9)*
O80.4182 (3)0.02154 (9)0.2126 (2)0.0255 (4)
H8A0.505 (5)0.0026 (12)0.179 (3)0.021 (7)*
H8B0.409 (4)0.0284 (15)0.294 (3)0.036 (9)*
N10.4887 (2)0.29835 (8)0.03733 (19)0.0149 (4)
N20.4950 (2)0.19548 (8)0.03276 (18)0.0145 (4)
C10.4865 (3)0.28122 (10)0.1007 (2)0.0157 (4)
C20.4759 (3)0.31727 (10)0.2218 (2)0.0197 (5)
H2A0.47530.36100.21990.024*
C30.4664 (3)0.28382 (11)0.3447 (2)0.0230 (5)
H3A0.45990.30590.42790.028*
C40.4661 (3)0.21788 (11)0.3484 (2)0.0225 (5)
H4A0.45670.19760.43410.027*
C50.4795 (3)0.18208 (10)0.2272 (2)0.0194 (5)
H5C0.48110.13840.22860.023*
C60.4903 (3)0.21592 (10)0.1039 (2)0.0152 (4)
C70.4906 (3)0.24587 (9)0.1143 (2)0.0147 (4)
C80.4841 (3)0.24357 (10)0.2639 (2)0.0198 (5)
H8C0.48160.28560.29920.030*
H8D0.59440.22210.31810.030*
H8E0.37200.22150.27180.030*
C90.4878 (3)0.12953 (9)0.0736 (2)0.0158 (4)
H9A0.53420.12570.17520.019*
H9B0.56970.10480.03010.019*
C100.2853 (3)0.10399 (9)0.0281 (2)0.0148 (4)
C110.4965 (3)0.36335 (9)0.0885 (2)0.0177 (4)
H11A0.58670.38660.04980.021*
H11B0.54410.36310.19050.021*
C120.3065 (3)0.39821 (9)0.0510 (2)0.0161 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01524 (18)0.01194 (17)0.01867 (19)0.00014 (13)0.00336 (13)0.00262 (13)
O10.0199 (8)0.0220 (8)0.0262 (9)0.0010 (6)0.0010 (7)0.0064 (7)
O20.0242 (8)0.0161 (7)0.0239 (8)0.0047 (6)0.0003 (6)0.0044 (6)
O30.0157 (7)0.0157 (7)0.0272 (8)0.0005 (6)0.0012 (6)0.0060 (6)
O40.0188 (8)0.0136 (7)0.0232 (8)0.0020 (6)0.0026 (6)0.0051 (6)
O50.0179 (9)0.0242 (8)0.0203 (8)0.0002 (7)0.0038 (7)0.0043 (7)
O60.0195 (8)0.0168 (8)0.0228 (9)0.0008 (6)0.0029 (7)0.0020 (7)
O70.0241 (10)0.0240 (9)0.0343 (10)0.0040 (7)0.0100 (8)0.0077 (8)
O80.0202 (9)0.0270 (9)0.0290 (10)0.0038 (8)0.0056 (8)0.0048 (8)
N10.0157 (8)0.0103 (8)0.0185 (9)0.0002 (7)0.0041 (7)0.0001 (7)
N20.0150 (8)0.0112 (8)0.0166 (9)0.0021 (7)0.0025 (7)0.0012 (7)
C10.0128 (10)0.0168 (10)0.0173 (10)0.0001 (8)0.0033 (8)0.0002 (8)
C20.0187 (10)0.0161 (10)0.0243 (12)0.0007 (8)0.0053 (9)0.0055 (9)
C30.0211 (11)0.0289 (12)0.0203 (11)0.0016 (9)0.0080 (9)0.0073 (9)
C40.0219 (11)0.0276 (12)0.0192 (11)0.0013 (9)0.0073 (9)0.0015 (9)
C50.0191 (11)0.0176 (11)0.0223 (11)0.0001 (8)0.0065 (9)0.0015 (9)
C60.0131 (10)0.0157 (10)0.0170 (10)0.0001 (8)0.0040 (8)0.0014 (8)
C70.0110 (9)0.0132 (10)0.0184 (10)0.0004 (8)0.0011 (8)0.0005 (8)
C80.0212 (11)0.0194 (11)0.0178 (11)0.0007 (9)0.0033 (9)0.0012 (8)
C90.0172 (10)0.0095 (9)0.0202 (11)0.0005 (8)0.0036 (8)0.0018 (8)
C100.0173 (10)0.0141 (10)0.0136 (10)0.0007 (8)0.0048 (8)0.0023 (8)
C110.0190 (11)0.0119 (9)0.0217 (11)0.0002 (8)0.0038 (8)0.0032 (8)
C120.0175 (10)0.0131 (10)0.0181 (10)0.0003 (8)0.0052 (8)0.0017 (8)
Geometric parameters (Å, º) top
Zn1—O52.1023 (17)N2—C61.398 (3)
Zn1—O5i2.1023 (17)N2—C91.463 (2)
Zn1—O6i2.1128 (16)C1—C61.390 (3)
Zn1—O62.1128 (16)C1—C21.396 (3)
Zn1—O42.1303 (14)C2—C31.384 (3)
Zn1—O4i2.1303 (14)C2—H2A0.9300
O1—C121.233 (3)C3—C41.402 (3)
O2—C121.273 (2)C3—H3A0.9300
O3—C101.247 (2)C4—C51.392 (3)
O4—C101.261 (2)C4—H4A0.9300
O5—H5A0.71 (3)C5—C61.389 (3)
O5—H5B0.80 (4)C5—H5C0.9300
O6—H6A0.92 (4)C7—C81.476 (3)
O6—H6B0.75 (3)C8—H8C0.9600
O7—H7A0.78 (4)C8—H8D0.9600
O7—H7B0.78 (4)C8—H8E0.9600
O8—H8A0.75 (3)C9—C101.528 (3)
O8—H8B0.79 (3)C9—H9A0.9700
N1—C71.345 (3)C9—H9B0.9700
N1—C11.394 (3)C11—C121.531 (3)
N1—C111.466 (3)C11—H11A0.9700
N2—C71.341 (3)C11—H11B0.9700
O5—Zn1—O5i180.00 (14)C4—C3—H3A118.8
O5—Zn1—O6i91.13 (7)C5—C4—C3121.7 (2)
O5i—Zn1—O6i88.87 (7)C5—C4—H4A119.2
O5—Zn1—O688.87 (7)C3—C4—H4A119.2
O5i—Zn1—O691.13 (7)C6—C5—C4115.6 (2)
O6i—Zn1—O6180.00 (9)C6—C5—H5C122.2
O5—Zn1—O489.65 (7)C4—C5—H5C122.2
O5i—Zn1—O490.35 (7)C5—C6—C1122.7 (2)
O6i—Zn1—O484.78 (6)C5—C6—N2130.64 (19)
O6—Zn1—O495.22 (6)C1—C6—N2106.58 (18)
O5—Zn1—O4i90.35 (7)N2—C7—N1109.18 (18)
O5i—Zn1—O4i89.65 (7)N2—C7—C8125.07 (19)
O6i—Zn1—O4i95.22 (6)N1—C7—C8125.74 (19)
O6—Zn1—O4i84.78 (6)C7—C8—H8C109.5
O4—Zn1—O4i180.00 (12)C7—C8—H8D109.5
C10—O4—Zn1122.18 (13)H8C—C8—H8D109.5
Zn1—O5—H5A106 (3)C7—C8—H8E109.5
Zn1—O5—H5B114 (2)H8C—C8—H8E109.5
H5A—O5—H5B108 (4)H8D—C8—H8E109.5
Zn1—O6—H6A93 (2)N2—C9—C10111.03 (16)
Zn1—O6—H6B104 (2)N2—C9—H9A109.4
H6A—O6—H6B104 (3)C10—C9—H9A109.4
H7A—O7—H7B106 (4)N2—C9—H9B109.4
H8A—O8—H8B113 (3)C10—C9—H9B109.4
C7—N1—C1108.75 (17)H9A—C9—H9B108.0
C7—N1—C11126.66 (18)O3—C10—O4126.52 (19)
C1—N1—C11124.53 (17)O3—C10—C9117.38 (18)
C7—N2—C6108.77 (17)O4—C10—C9116.09 (17)
C7—N2—C9126.57 (17)N1—C11—C12114.77 (17)
C6—N2—C9124.43 (17)N1—C11—H11A108.6
C6—C1—N1106.69 (18)C12—C11—H11A108.6
C6—C1—C2121.8 (2)N1—C11—H11B108.6
N1—C1—C2131.5 (2)C12—C11—H11B108.6
C3—C2—C1115.8 (2)H11A—C11—H11B107.6
C3—C2—H2A122.1O1—C12—O2126.3 (2)
C1—C2—H2A122.1O1—C12—C11120.08 (18)
C2—C3—C4122.4 (2)O2—C12—C11113.60 (18)
C2—C3—H3A118.8
O5—Zn1—O4—C10107.15 (16)C7—N2—C6—C11.1 (2)
O5i—Zn1—O4—C1072.85 (16)C9—N2—C6—C1175.92 (17)
O6i—Zn1—O4—C10161.69 (16)C6—N2—C7—N11.8 (2)
O6—Zn1—O4—C1018.31 (16)C9—N2—C7—N1176.41 (17)
C7—N1—C1—C61.0 (2)C6—N2—C7—C8176.87 (19)
C11—N1—C1—C6176.50 (17)C9—N2—C7—C82.2 (3)
C7—N1—C1—C2176.8 (2)C1—N1—C7—N21.7 (2)
C11—N1—C1—C25.7 (3)C11—N1—C7—N2175.70 (17)
C6—C1—C2—C31.0 (3)C1—N1—C7—C8176.92 (19)
N1—C1—C2—C3176.5 (2)C11—N1—C7—C85.7 (3)
C1—C2—C3—C40.4 (3)C7—N2—C9—C1096.0 (2)
C2—C3—C4—C51.4 (3)C6—N2—C9—C1077.8 (2)
C3—C4—C5—C60.9 (3)Zn1—O4—C10—O39.4 (3)
C4—C5—C6—C10.5 (3)Zn1—O4—C10—C9170.20 (13)
C4—C5—C6—N2176.3 (2)N2—C9—C10—O39.8 (3)
N1—C1—C6—C5176.56 (18)N2—C9—C10—O4170.54 (17)
C2—C1—C6—C51.5 (3)C7—N1—C11—C12103.4 (2)
N1—C1—C6—N20.1 (2)C1—N1—C11—C1279.6 (2)
C2—C1—C6—N2178.15 (18)N1—C11—C12—O117.0 (3)
C7—N2—C6—C5175.2 (2)N1—C11—C12—O2163.61 (18)
C9—N2—C6—C50.4 (3)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O80.80 (4)1.92 (4)2.716 (3)170 (3)
O6—H6A···O30.92 (4)1.70 (4)2.610 (2)170 (3)
O6—H6B···O2ii0.75 (3)2.08 (3)2.811 (2)164 (3)
O7—H7A···O1iii0.78 (4)2.11 (4)2.864 (3)165 (4)
O7—H7B···O2iv0.78 (4)2.03 (4)2.792 (2)167 (3)
O8—H8A···O4iv0.75 (3)2.10 (3)2.846 (2)177 (3)
O8—H8B···O7v0.79 (3)2.00 (3)2.786 (3)168 (3)
Symmetry codes: (ii) x1/2, y+1/2, z1/2; (iii) x1, y+1, z; (iv) x1, y, z; (v) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C12H11N2O4)2(H2O)4]·4H2O
Mr703.95
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)7.2749 (9), 21.265 (3), 9.7794 (12)
β (°) 104.467 (2)
V3)1464.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.32 × 0.21 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.757, 0.874
No. of measured, independent and
observed [I > 2σ(I)] reflections
7436, 3202, 2582
Rint0.022
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.10
No. of reflections3202
No. of parameters237
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.98, 0.51

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—O52.1023 (17)Zn1—O42.1303 (14)
Zn1—O62.1128 (16)
O5—Zn1—O6i91.13 (7)O6i—Zn1—O484.78 (6)
O5—Zn1—O688.87 (7)O6—Zn1—O495.22 (6)
O5—Zn1—O489.65 (7)O5—Zn1—O4i90.35 (7)
O5i—Zn1—O490.35 (7)O5i—Zn1—O4i89.65 (7)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O80.80 (4)1.92 (4)2.716 (3)170 (3)
O6—H6A···O30.92 (4)1.70 (4)2.610 (2)170 (3)
O6—H6B···O2ii0.75 (3)2.08 (3)2.811 (2)164 (3)
O7—H7A···O1iii0.78 (4)2.11 (4)2.864 (3)165 (4)
O7—H7B···O2iv0.78 (4)2.03 (4)2.792 (2)167 (3)
O8—H8A···O4iv0.75 (3)2.10 (3)2.846 (2)177 (3)
O8—H8B···O7v0.79 (3)2.00 (3)2.786 (3)168 (3)
Symmetry codes: (ii) x1/2, y+1/2, z1/2; (iii) x1, y+1, z; (iv) x1, y, z; (v) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Guangxi Province (grant No. 0832100) and the Programme for Excellent Talents in Guangxi Higher Education Institutions.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationNi, Q.-L., Li, F.-S., Jin, L.-L., He, P.-X. & Wang, X.-J. (2007). Chem. Res. Appl. (Chin. J.), 19, 1181–1184.  CAS Google Scholar
First citationRobson, R. (2000). J. Chem. Soc. Dalton Trans. pp. 3735–3744.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds