organic compounds
N-(4-Nitrophenyl)cinnamamide
aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, bHamdard Institute of Pharmaceutical Sciences, Hamdard University, Islamabad Campus, Pakistan, and cDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: aamersaeed@yahoo.com
In the molecule of the title compound, C15H12N2O3, the dihedral angle between the rings is 3.04 (8)°. The central NOC3 fragment is planar [maximum deviation = 0.005 (3) Å] and is oriented at dihedral angles of 8.23 (8) and 7.29 (9)° with respect to the phenyl and nitrophenyl rings, respectively. In the intermolecular N—H⋯O and C—H⋯O interactions link the molecules into a two-dimensional network. π–π contacts between rings [centroid–centroid distance = 3.719 (1) Å] may further stabilize the structure.
Related literature
For general background to N-substituted benzamides, see: Beccalli et al. (2005); Calderone et al. (2006); Lindgren et al. (2001); Olsson et al. (2002); Vega-Noverola et al. (1989); Zhichkin et al. (2007). For related structures, see: Nissa et al. (2002, 2004); Peeters et al. (1986). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Hooft, 1998); cell DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809030049/hk2746sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809030049/hk2746Isup2.hkl
For the preparation of the title compound, cinnamic acid was converted into cinnamoyl chloride using the standard procedure. A stirred solution of cinnamoyl chloride (5.4 mmol) in CHCl3 was treated with p-nitroaniline (21.6 mmol) under a nitrogen atmosphere at reflux for 4 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with aq 1.0 M HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. Crystallization of the residue in MeOH afforded the title compound (yield; 81%) as colorless crystals: Anal. calcd. for C15H12N2O3: C, 67.16; H, 4.51; N, 10.44; found: C, 67.21; H, 4.59; N, 10.41.
H atoms were positioned geometrically with N-H = 0.88 Å (for NH) and C-H = 0.95 Å for aromatic H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).
Data collection: COLLECT (Hooft, 1998); cell
DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C15H12N2O3 | F(000) = 560 |
Mr = 268.27 | Dx = 1.400 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 10408 reflections |
a = 5.903 (3) Å | θ = 3.1–27.4° |
b = 15.050 (9) Å | µ = 0.10 mm−1 |
c = 14.388 (9) Å | T = 173 K |
β = 95.38 (3)° | Block, colorless |
V = 1272.6 (13) Å3 | 0.20 × 0.18 × 0.16 mm |
Z = 4 |
Bruker APEXII CCD area-detector diffractometer | 2886 independent reflections |
Radiation source: fine-focus sealed tube | 1994 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
ϕ and ω scans | θmax = 27.4°, θmin = 3.1° |
Absorption correction: multi-scan (SORTAV; Blessing, 1997) | h = −7→7 |
Tmin = 0.980, Tmax = 0.984 | k = −18→19 |
10408 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0545P)2 + 0.2254P] where P = (Fo2 + 2Fc2)/3 |
2886 reflections | (Δ/σ)max < 0.001 |
181 parameters | Δρmax = 0.17 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C15H12N2O3 | V = 1272.6 (13) Å3 |
Mr = 268.27 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 5.903 (3) Å | µ = 0.10 mm−1 |
b = 15.050 (9) Å | T = 173 K |
c = 14.388 (9) Å | 0.20 × 0.18 × 0.16 mm |
β = 95.38 (3)° |
Bruker APEXII CCD area-detector diffractometer | 2886 independent reflections |
Absorption correction: multi-scan (SORTAV; Blessing, 1997) | 1994 reflections with I > 2σ(I) |
Tmin = 0.980, Tmax = 0.984 | Rint = 0.051 |
10408 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.17 e Å−3 |
2886 reflections | Δρmin = −0.20 e Å−3 |
181 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.73930 (18) | 0.43225 (7) | 0.92756 (8) | 0.0419 (3) | |
O2 | 0.2344 (2) | 0.02701 (7) | 0.81198 (8) | 0.0477 (3) | |
O3 | −0.0962 (2) | 0.07667 (8) | 0.75877 (9) | 0.0534 (4) | |
N1 | 0.3863 (2) | 0.44089 (8) | 0.84727 (9) | 0.0327 (3) | |
H1 | 0.2850 | 0.4794 | 0.8233 | 0.039* | |
N2 | 0.1031 (2) | 0.08866 (8) | 0.79176 (9) | 0.0368 (3) | |
C1 | 0.7780 (2) | 0.71883 (10) | 0.93224 (10) | 0.0299 (3) | |
C2 | 0.9858 (3) | 0.75660 (11) | 0.96491 (10) | 0.0355 (4) | |
H2 | 1.1095 | 0.7191 | 0.9862 | 0.043* | |
C3 | 1.0150 (3) | 0.84803 (11) | 0.96685 (11) | 0.0416 (4) | |
H3 | 1.1580 | 0.8727 | 0.9892 | 0.050* | |
C4 | 0.8371 (3) | 0.90315 (11) | 0.93650 (11) | 0.0415 (4) | |
H4 | 0.8574 | 0.9658 | 0.9375 | 0.050* | |
C5 | 0.6279 (3) | 0.86698 (11) | 0.90433 (11) | 0.0401 (4) | |
H5 | 0.5047 | 0.9048 | 0.8835 | 0.048* | |
C6 | 0.5991 (3) | 0.77560 (10) | 0.90259 (10) | 0.0346 (4) | |
H6 | 0.4553 | 0.7513 | 0.8809 | 0.041* | |
C7 | 0.7580 (2) | 0.62167 (10) | 0.92964 (10) | 0.0316 (4) | |
H7 | 0.8827 | 0.5887 | 0.9584 | 0.038* | |
C8 | 0.5822 (2) | 0.57539 (10) | 0.89084 (10) | 0.0334 (4) | |
H8 | 0.4535 | 0.6061 | 0.8621 | 0.040* | |
C9 | 0.5825 (2) | 0.47700 (10) | 0.89143 (10) | 0.0316 (4) | |
C10 | 0.3266 (2) | 0.35165 (10) | 0.83539 (10) | 0.0282 (3) | |
C11 | 0.4746 (2) | 0.28151 (10) | 0.85797 (10) | 0.0316 (4) | |
H11 | 0.6261 | 0.2930 | 0.8834 | 0.038* | |
C12 | 0.4016 (3) | 0.19496 (10) | 0.84341 (10) | 0.0322 (4) | |
H12 | 0.5021 | 0.1467 | 0.8586 | 0.039* | |
C13 | 0.1807 (2) | 0.17939 (9) | 0.80651 (10) | 0.0300 (3) | |
C14 | 0.0315 (2) | 0.24827 (10) | 0.78241 (10) | 0.0323 (4) | |
H14 | −0.1191 | 0.2362 | 0.7562 | 0.039* | |
C15 | 0.1037 (2) | 0.33422 (10) | 0.79678 (10) | 0.0315 (3) | |
H15 | 0.0026 | 0.3821 | 0.7806 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0340 (6) | 0.0328 (6) | 0.0563 (7) | 0.0019 (5) | −0.0103 (5) | −0.0006 (5) |
O2 | 0.0508 (7) | 0.0283 (6) | 0.0626 (8) | 0.0039 (6) | −0.0020 (6) | 0.0050 (5) |
O3 | 0.0390 (7) | 0.0386 (7) | 0.0794 (9) | −0.0086 (5) | −0.0118 (6) | −0.0074 (6) |
N1 | 0.0305 (7) | 0.0242 (7) | 0.0418 (7) | 0.0007 (5) | −0.0051 (5) | 0.0016 (6) |
N2 | 0.0403 (8) | 0.0300 (7) | 0.0397 (8) | −0.0026 (6) | 0.0021 (6) | −0.0015 (6) |
C1 | 0.0325 (8) | 0.0302 (8) | 0.0269 (7) | −0.0008 (6) | 0.0027 (6) | −0.0009 (6) |
C2 | 0.0356 (8) | 0.0348 (9) | 0.0354 (8) | −0.0007 (7) | −0.0012 (6) | −0.0009 (7) |
C3 | 0.0430 (10) | 0.0373 (9) | 0.0436 (10) | −0.0102 (8) | −0.0009 (7) | −0.0050 (7) |
C4 | 0.0543 (10) | 0.0278 (9) | 0.0426 (10) | −0.0049 (8) | 0.0057 (8) | −0.0017 (7) |
C5 | 0.0453 (10) | 0.0328 (9) | 0.0420 (9) | 0.0059 (8) | 0.0024 (7) | 0.0025 (7) |
C6 | 0.0328 (8) | 0.0346 (9) | 0.0358 (8) | −0.0008 (7) | 0.0009 (6) | −0.0010 (7) |
C7 | 0.0330 (8) | 0.0311 (8) | 0.0307 (8) | 0.0010 (7) | 0.0027 (6) | 0.0005 (6) |
C8 | 0.0318 (8) | 0.0306 (8) | 0.0370 (8) | −0.0003 (7) | −0.0003 (6) | 0.0021 (7) |
C9 | 0.0307 (8) | 0.0303 (8) | 0.0337 (8) | −0.0026 (7) | 0.0016 (6) | 0.0003 (6) |
C10 | 0.0298 (8) | 0.0272 (8) | 0.0275 (7) | 0.0004 (6) | 0.0019 (6) | −0.0002 (6) |
C11 | 0.0282 (8) | 0.0311 (8) | 0.0344 (8) | 0.0008 (6) | −0.0029 (6) | −0.0004 (6) |
C12 | 0.0330 (8) | 0.0298 (8) | 0.0332 (8) | 0.0036 (7) | −0.0009 (6) | 0.0001 (6) |
C13 | 0.0329 (8) | 0.0248 (7) | 0.0322 (8) | −0.0016 (6) | 0.0027 (6) | −0.0007 (6) |
C14 | 0.0271 (7) | 0.0332 (8) | 0.0363 (8) | −0.0016 (7) | 0.0013 (6) | −0.0020 (7) |
C15 | 0.0283 (7) | 0.0314 (8) | 0.0343 (8) | 0.0033 (6) | 0.0010 (6) | 0.0016 (7) |
O1—C9 | 1.2207 (18) | C5—H5 | 0.9500 |
O2—N2 | 1.2264 (17) | C6—H6 | 0.9500 |
O3—N2 | 1.2397 (17) | C7—C8 | 1.329 (2) |
N1—C9 | 1.3790 (19) | C7—H7 | 0.9500 |
N1—C10 | 1.395 (2) | C8—C9 | 1.481 (2) |
N1—H1 | 0.8800 | C8—H8 | 0.9500 |
N2—C13 | 1.450 (2) | C10—C11 | 1.389 (2) |
C1—C2 | 1.393 (2) | C10—C15 | 1.404 (2) |
C1—C6 | 1.394 (2) | C11—C12 | 1.382 (2) |
C1—C7 | 1.467 (2) | C11—H11 | 0.9500 |
C2—C3 | 1.387 (2) | C12—C13 | 1.381 (2) |
C2—H2 | 0.9500 | C12—H12 | 0.9500 |
C3—C4 | 1.377 (2) | C13—C14 | 1.383 (2) |
C3—H3 | 0.9500 | C14—C15 | 1.372 (2) |
C4—C5 | 1.389 (2) | C14—H14 | 0.9500 |
C4—H4 | 0.9500 | C15—H15 | 0.9500 |
C5—C6 | 1.386 (2) | ||
C9—N1—C10 | 128.87 (13) | C1—C7—H7 | 116.9 |
C9—N1—H1 | 115.6 | C7—C8—C9 | 121.43 (14) |
C10—N1—H1 | 115.6 | C7—C8—H8 | 119.3 |
O2—N2—O3 | 122.46 (13) | C9—C8—H8 | 119.3 |
O2—N2—C13 | 119.59 (13) | O1—C9—N1 | 123.31 (14) |
O3—N2—C13 | 117.95 (13) | O1—C9—C8 | 123.67 (14) |
C2—C1—C6 | 118.10 (14) | N1—C9—C8 | 113.01 (13) |
C2—C1—C7 | 118.78 (14) | C11—C10—N1 | 123.82 (13) |
C6—C1—C7 | 123.12 (13) | C11—C10—C15 | 119.74 (14) |
C3—C2—C1 | 121.03 (15) | N1—C10—C15 | 116.44 (13) |
C3—C2—H2 | 119.5 | C12—C11—C10 | 120.02 (14) |
C1—C2—H2 | 119.5 | C12—C11—H11 | 120.0 |
C4—C3—C2 | 120.12 (15) | C10—C11—H11 | 120.0 |
C4—C3—H3 | 119.9 | C13—C12—C11 | 119.22 (14) |
C2—C3—H3 | 119.9 | C13—C12—H12 | 120.4 |
C3—C4—C5 | 119.84 (15) | C11—C12—H12 | 120.4 |
C3—C4—H4 | 120.1 | C12—C13—C14 | 121.69 (14) |
C5—C4—H4 | 120.1 | C12—C13—N2 | 119.36 (13) |
C6—C5—C4 | 119.92 (15) | C14—C13—N2 | 118.95 (14) |
C6—C5—H5 | 120.0 | C15—C14—C13 | 119.18 (14) |
C4—C5—H5 | 120.0 | C15—C14—H14 | 120.4 |
C5—C6—C1 | 120.97 (15) | C13—C14—H14 | 120.4 |
C5—C6—H6 | 119.5 | C14—C15—C10 | 120.14 (14) |
C1—C6—H6 | 119.5 | C14—C15—H15 | 119.9 |
C8—C7—C1 | 126.22 (14) | C10—C15—H15 | 119.9 |
C8—C7—H7 | 116.9 | ||
C6—C1—C2—C3 | −0.8 (2) | C9—N1—C10—C15 | 172.82 (14) |
C7—C1—C2—C3 | 178.57 (14) | N1—C10—C11—C12 | −179.62 (14) |
C1—C2—C3—C4 | 0.2 (2) | C15—C10—C11—C12 | −0.7 (2) |
C2—C3—C4—C5 | 0.3 (2) | C10—C11—C12—C13 | −0.1 (2) |
C3—C4—C5—C6 | −0.2 (2) | C11—C12—C13—C14 | 1.0 (2) |
C4—C5—C6—C1 | −0.4 (2) | C11—C12—C13—N2 | −179.58 (14) |
C2—C1—C6—C5 | 0.9 (2) | O2—N2—C13—C12 | −0.2 (2) |
C7—C1—C6—C5 | −178.44 (14) | O3—N2—C13—C12 | 179.82 (14) |
C2—C1—C7—C8 | −171.67 (14) | O2—N2—C13—C14 | 179.28 (14) |
C6—C1—C7—C8 | 7.6 (2) | O3—N2—C13—C14 | −0.7 (2) |
C1—C7—C8—C9 | 179.17 (14) | C12—C13—C14—C15 | −1.0 (2) |
C10—N1—C9—O1 | 0.5 (2) | N2—C13—C14—C15 | 179.59 (13) |
C10—N1—C9—C8 | −179.20 (14) | C13—C14—C15—C10 | 0.1 (2) |
C7—C8—C9—O1 | 0.8 (2) | C11—C10—C15—C14 | 0.8 (2) |
C7—C8—C9—N1 | −179.53 (14) | N1—C10—C15—C14 | 179.72 (13) |
C9—N1—C10—C11 | −8.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3i | 0.88 | 2.13 | 2.991 (2) | 166 |
C5—H5···O2ii | 0.95 | 2.58 | 3.519 (2) | 168 |
Symmetry codes: (i) −x, y+1/2, −z+3/2; (ii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C15H12N2O3 |
Mr | 268.27 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 5.903 (3), 15.050 (9), 14.388 (9) |
β (°) | 95.38 (3) |
V (Å3) | 1272.6 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.20 × 0.18 × 0.16 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SORTAV; Blessing, 1997) |
Tmin, Tmax | 0.980, 0.984 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10408, 2886, 1994 |
Rint | 0.051 |
(sin θ/λ)max (Å−1) | 0.647 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.117, 1.07 |
No. of reflections | 2886 |
No. of parameters | 181 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.17, −0.20 |
Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3i | 0.88 | 2.13 | 2.991 (2) | 166.4 |
C5—H5···O2ii | 0.95 | 2.58 | 3.519 (2) | 168.0 |
Symmetry codes: (i) −x, y+1/2, −z+3/2; (ii) x, y+1, z. |
Acknowledgements
AS gratefully acknowledges a research grant from Quaid-i-Azam University Islamabad under the URF program.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Beccalli, E. M., Broggini, G., Paladinoa, G. & Zonia, C. (2005). Tetrahedron, 61, 61–68. Web of Science CrossRef CAS Google Scholar
Blessing, R. H. (1997). J. Appl. Cryst. 30, 421–426. CrossRef CAS Web of Science IUCr Journals Google Scholar
Calderone, V., Fiamingo, F. L., Giorgi, I., Leonardi, M., Livi, O., Martelli, A. & Martinotti, E. (2006). Eur. J. Med. Chem. 41, 761–767. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Lindgren, H., Pero, R. W., Ivars, F. & Leanderson, T. (2001). Mol. Immunol. 38, 267–277. Web of Science CrossRef PubMed CAS Google Scholar
Nissa, M. N., Aravindan, P. G., Kasinath, V., Gopalakrishnan, G., Merazig, H. & Velmurugan, D. (2004). Cryst. Res. Technol. 39, 643–649. CAS Google Scholar
Nissa, M. N., Velmurugan, D., Raj, S. S. S., Fun, H.-K., Kasinath, V. & Gopalakrishnan, G. (2002). Cryst. Res. Technol. 37, 125–133. CAS Google Scholar
Olsson, A. R., Lindgren, H., Pero, R. W. & Leanderson, T. (2002). Br. J. Cancer, 86, 971–978. Web of Science CrossRef PubMed CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Peeters, O. M., Blaton, N. M. & de Ranter, C. J. (1986). Acta Cryst. C42, 1233–1235. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vega-Noverola, A. P., Soto, J. M., Noguera, F. P., Mauri, J. M. & Spickett, G. W. R. (1989). US Patent No. 4 877 780. Google Scholar
Zhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett. 9, 1415–1418. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
N-substituted benzamides, e.g., declopramideare, are well known anticancer compounds and the mechanism of benzamide-induced apoptosis has been studied, (Olsson et al., 2002). N-substituted benzamides inhibit the activity of nuclear factor-B and nuclear factor of activated T cells (Lindgren et al., 2001). Various N-substituted benzamides exhibit potent antiemetic activity (Vega-Noverola et al., 1989), while heterocyclic benzanilide are potassium channel activators (Calderone et al., 2006). N-Alkylated 2-nitrobenzamides are intermediates in the synthesis of dibenzo[b,e][1,4]diazepines (Zhichkin et al., 2007) and N-Acyl-2-nitrobenzamides are precursors of 2,3-disubstitued 3H-quinazoline-4-ones (Beccalli et al., 2005). As part of our work on the structure of benzanilides and related compounds, we report herein the crystal structure of the title compound.
A search of the Cambridge Crystallographic Database (CSD version 5.30; Allen, 2002) for a fragment containing the title compound without NO2 group revealed only four entries containg the basic skeleton of the title compound with refcodes: DIPHUF (Peeters et al., 1986), EHATUC and EHAVAK (Nissa et al., 2002) and FALQAL (Nissa et al., 2004).
In the molecule of the title compound (Fig. 1), rings A (C1-C6) and B (C10-C15) are, of course, planar and they are oriented at a dihedral angle of A/B = 3.04 (8)°. The (O1/N1/C7-C9) moiety is planar with a maximum deviation of -0.005 (3) Å for atom C8 and it is oriented with respect to rings A and B at dihedral angles of 8.23 (8) and 7.29 (9) °, respectively.
In the crystal structure, intermolecular N-H···O and C-H···O interactions (Table 1) link the molecules into a two dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure. The π–π contact between the phenyl rings, Cg1—Cg2i [symmetry code: (i) 1 - x, y - 1/2, 1/2 - z, where Cg1 and Cg2 are centroids of the rings A (C1-C6) and B (C10-C15), respectively] may further stabilize the structure, with centroid-centroid distance of 3.719 (1) Å.