organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Nitro­phen­yl)cinnamamide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, bHamdard Institute of Pharmaceutical Sciences, Hamdard University, Islamabad Campus, Pakistan, and cDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 22 July 2009; accepted 29 July 2009; online 8 August 2009)

In the mol­ecule of the title compound, C15H12N2O3, the dihedral angle between the rings is 3.04 (8)°. The central NOC3 fragment is planar [maximum deviation = 0.005 (3) Å] and is oriented at dihedral angles of 8.23 (8) and 7.29 (9)° with respect to the phenyl and nitro­phenyl rings, respectively. In the crystal structure, inter­molecular N—H⋯O and C—H⋯O inter­actions link the mol­ecules into a two-dimensional network. ππ contacts between rings [centroid–centroid distance = 3.719 (1) Å] may further stabilize the structure.

Related literature

For general background to N-substituted benzamides, see: Beccalli et al. (2005[Beccalli, E. M., Broggini, G., Paladinoa, G. & Zonia, C. (2005). Tetrahedron, 61, 61-68.]); Calderone et al. (2006[Calderone, V., Fiamingo, F. L., Giorgi, I., Leonardi, M., Livi, O., Martelli, A. & Martinotti, E. (2006). Eur. J. Med. Chem. 41, 761-767.]); Lindgren et al. (2001[Lindgren, H., Pero, R. W., Ivars, F. & Leanderson, T. (2001). Mol. Immunol. 38, 267-277.]); Olsson et al. (2002[Olsson, A. R., Lindgren, H., Pero, R. W. & Leanderson, T. (2002). Br. J. Cancer, 86, 971-978.]); Vega-Noverola et al. (1989[Vega-Noverola, A. P., Soto, J. M., Noguera, F. P., Mauri, J. M. & Spickett, G. W. R. (1989). US Patent No. 4 877 780.]); Zhichkin et al. (2007[Zhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett. 9, 1415-1418.]). For related structures, see: Nissa et al. (2002[Nissa, M. N., Velmurugan, D., Raj, S. S. S., Fun, H.-K., Kasinath, V. & Gopalakrishnan, G. (2002). Cryst. Res. Technol. 37, 125-133.], 2004[Nissa, M. N., Aravindan, P. G., Kasinath, V., Gopalakrishnan, G., Merazig, H. & Velmurugan, D. (2004). Cryst. Res. Technol. 39, 643-649.]); Peeters et al. (1986[Peeters, O. M., Blaton, N. M. & de Ranter, C. J. (1986). Acta Cryst. C42, 1233-1235.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12N2O3

  • Mr = 268.27

  • Monoclinic, P 21 /c

  • a = 5.903 (3) Å

  • b = 15.050 (9) Å

  • c = 14.388 (9) Å

  • β = 95.38 (3)°

  • V = 1272.6 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.980, Tmax = 0.984

  • 10408 measured reflections

  • 2886 independent reflections

  • 1994 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.117

  • S = 1.07

  • 2886 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.88 2.13 2.991 (2) 166
C5—H5⋯O2ii 0.95 2.58 3.519 (2) 168
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y+1, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

N-substituted benzamides, e.g., declopramideare, are well known anticancer compounds and the mechanism of benzamide-induced apoptosis has been studied, (Olsson et al., 2002). N-substituted benzamides inhibit the activity of nuclear factor-B and nuclear factor of activated T cells (Lindgren et al., 2001). Various N-substituted benzamides exhibit potent antiemetic activity (Vega-Noverola et al., 1989), while heterocyclic benzanilide are potassium channel activators (Calderone et al., 2006). N-Alkylated 2-nitrobenzamides are intermediates in the synthesis of dibenzo[b,e][1,4]diazepines (Zhichkin et al., 2007) and N-Acyl-2-nitrobenzamides are precursors of 2,3-disubstitued 3H-quinazoline-4-ones (Beccalli et al., 2005). As part of our work on the structure of benzanilides and related compounds, we report herein the crystal structure of the title compound.

A search of the Cambridge Crystallographic Database (CSD version 5.30; Allen, 2002) for a fragment containing the title compound without NO2 group revealed only four entries containg the basic skeleton of the title compound with refcodes: DIPHUF (Peeters et al., 1986), EHATUC and EHAVAK (Nissa et al., 2002) and FALQAL (Nissa et al., 2004).

In the molecule of the title compound (Fig. 1), rings A (C1-C6) and B (C10-C15) are, of course, planar and they are oriented at a dihedral angle of A/B = 3.04 (8)°. The (O1/N1/C7-C9) moiety is planar with a maximum deviation of -0.005 (3) Å for atom C8 and it is oriented with respect to rings A and B at dihedral angles of 8.23 (8) and 7.29 (9) °, respectively.

In the crystal structure, intermolecular N-H···O and C-H···O interactions (Table 1) link the molecules into a two dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure. The ππ contact between the phenyl rings, Cg1—Cg2i [symmetry code: (i) 1 - x, y - 1/2, 1/2 - z, where Cg1 and Cg2 are centroids of the rings A (C1-C6) and B (C10-C15), respectively] may further stabilize the structure, with centroid-centroid distance of 3.719 (1) Å.

Related literature top

For general background to N-substituted benzamides, see: Beccalli et al. (2005); Calderone et al. (2006); Lindgren et al. (2001); Olsson et al. (2002); Vega-Noverola et al. (1989); Zhichkin et al. (2007). For related structures, see: Nissa et al. (2002, 2004); Peeters et al. (1986). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

For the preparation of the title compound, cinnamic acid was converted into cinnamoyl chloride using the standard procedure. A stirred solution of cinnamoyl chloride (5.4 mmol) in CHCl3 was treated with p-nitroaniline (21.6 mmol) under a nitrogen atmosphere at reflux for 4 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with aq 1.0 M HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. Crystallization of the residue in MeOH afforded the title compound (yield; 81%) as colorless crystals: Anal. calcd. for C15H12N2O3: C, 67.16; H, 4.51; N, 10.44; found: C, 67.21; H, 4.59; N, 10.41.

Refinement top

H atoms were positioned geometrically with N-H = 0.88 Å (for NH) and C-H = 0.95 Å for aromatic H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level
[Figure 2] Fig. 2. A partial packing diagram. Hydrogen bonds are shown as dashed lines.
N-(4-Nitrophenyl)cinnamamide top
Crystal data top
C15H12N2O3F(000) = 560
Mr = 268.27Dx = 1.400 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10408 reflections
a = 5.903 (3) Åθ = 3.1–27.4°
b = 15.050 (9) ŵ = 0.10 mm1
c = 14.388 (9) ÅT = 173 K
β = 95.38 (3)°Block, colorless
V = 1272.6 (13) Å30.20 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2886 independent reflections
Radiation source: fine-focus sealed tube1994 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ϕ and ω scansθmax = 27.4°, θmin = 3.1°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 77
Tmin = 0.980, Tmax = 0.984k = 1819
10408 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.2254P]
where P = (Fo2 + 2Fc2)/3
2886 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C15H12N2O3V = 1272.6 (13) Å3
Mr = 268.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.903 (3) ŵ = 0.10 mm1
b = 15.050 (9) ÅT = 173 K
c = 14.388 (9) Å0.20 × 0.18 × 0.16 mm
β = 95.38 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2886 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
1994 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.984Rint = 0.051
10408 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.07Δρmax = 0.17 e Å3
2886 reflectionsΔρmin = 0.20 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.73930 (18)0.43225 (7)0.92756 (8)0.0419 (3)
O20.2344 (2)0.02701 (7)0.81198 (8)0.0477 (3)
O30.0962 (2)0.07667 (8)0.75877 (9)0.0534 (4)
N10.3863 (2)0.44089 (8)0.84727 (9)0.0327 (3)
H10.28500.47940.82330.039*
N20.1031 (2)0.08866 (8)0.79176 (9)0.0368 (3)
C10.7780 (2)0.71883 (10)0.93224 (10)0.0299 (3)
C20.9858 (3)0.75660 (11)0.96491 (10)0.0355 (4)
H21.10950.71910.98620.043*
C31.0150 (3)0.84803 (11)0.96685 (11)0.0416 (4)
H31.15800.87270.98920.050*
C40.8371 (3)0.90315 (11)0.93650 (11)0.0415 (4)
H40.85740.96580.93750.050*
C50.6279 (3)0.86698 (11)0.90433 (11)0.0401 (4)
H50.50470.90480.88350.048*
C60.5991 (3)0.77560 (10)0.90259 (10)0.0346 (4)
H60.45530.75130.88090.041*
C70.7580 (2)0.62167 (10)0.92964 (10)0.0316 (4)
H70.88270.58870.95840.038*
C80.5822 (2)0.57539 (10)0.89084 (10)0.0334 (4)
H80.45350.60610.86210.040*
C90.5825 (2)0.47700 (10)0.89143 (10)0.0316 (4)
C100.3266 (2)0.35165 (10)0.83539 (10)0.0282 (3)
C110.4746 (2)0.28151 (10)0.85797 (10)0.0316 (4)
H110.62610.29300.88340.038*
C120.4016 (3)0.19496 (10)0.84341 (10)0.0322 (4)
H120.50210.14670.85860.039*
C130.1807 (2)0.17939 (9)0.80651 (10)0.0300 (3)
C140.0315 (2)0.24827 (10)0.78241 (10)0.0323 (4)
H140.11910.23620.75620.039*
C150.1037 (2)0.33422 (10)0.79678 (10)0.0315 (3)
H150.00260.38210.78060.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0340 (6)0.0328 (6)0.0563 (7)0.0019 (5)0.0103 (5)0.0006 (5)
O20.0508 (7)0.0283 (6)0.0626 (8)0.0039 (6)0.0020 (6)0.0050 (5)
O30.0390 (7)0.0386 (7)0.0794 (9)0.0086 (5)0.0118 (6)0.0074 (6)
N10.0305 (7)0.0242 (7)0.0418 (7)0.0007 (5)0.0051 (5)0.0016 (6)
N20.0403 (8)0.0300 (7)0.0397 (8)0.0026 (6)0.0021 (6)0.0015 (6)
C10.0325 (8)0.0302 (8)0.0269 (7)0.0008 (6)0.0027 (6)0.0009 (6)
C20.0356 (8)0.0348 (9)0.0354 (8)0.0007 (7)0.0012 (6)0.0009 (7)
C30.0430 (10)0.0373 (9)0.0436 (10)0.0102 (8)0.0009 (7)0.0050 (7)
C40.0543 (10)0.0278 (9)0.0426 (10)0.0049 (8)0.0057 (8)0.0017 (7)
C50.0453 (10)0.0328 (9)0.0420 (9)0.0059 (8)0.0024 (7)0.0025 (7)
C60.0328 (8)0.0346 (9)0.0358 (8)0.0008 (7)0.0009 (6)0.0010 (7)
C70.0330 (8)0.0311 (8)0.0307 (8)0.0010 (7)0.0027 (6)0.0005 (6)
C80.0318 (8)0.0306 (8)0.0370 (8)0.0003 (7)0.0003 (6)0.0021 (7)
C90.0307 (8)0.0303 (8)0.0337 (8)0.0026 (7)0.0016 (6)0.0003 (6)
C100.0298 (8)0.0272 (8)0.0275 (7)0.0004 (6)0.0019 (6)0.0002 (6)
C110.0282 (8)0.0311 (8)0.0344 (8)0.0008 (6)0.0029 (6)0.0004 (6)
C120.0330 (8)0.0298 (8)0.0332 (8)0.0036 (7)0.0009 (6)0.0001 (6)
C130.0329 (8)0.0248 (7)0.0322 (8)0.0016 (6)0.0027 (6)0.0007 (6)
C140.0271 (7)0.0332 (8)0.0363 (8)0.0016 (7)0.0013 (6)0.0020 (7)
C150.0283 (7)0.0314 (8)0.0343 (8)0.0033 (6)0.0010 (6)0.0016 (7)
Geometric parameters (Å, º) top
O1—C91.2207 (18)C5—H50.9500
O2—N21.2264 (17)C6—H60.9500
O3—N21.2397 (17)C7—C81.329 (2)
N1—C91.3790 (19)C7—H70.9500
N1—C101.395 (2)C8—C91.481 (2)
N1—H10.8800C8—H80.9500
N2—C131.450 (2)C10—C111.389 (2)
C1—C21.393 (2)C10—C151.404 (2)
C1—C61.394 (2)C11—C121.382 (2)
C1—C71.467 (2)C11—H110.9500
C2—C31.387 (2)C12—C131.381 (2)
C2—H20.9500C12—H120.9500
C3—C41.377 (2)C13—C141.383 (2)
C3—H30.9500C14—C151.372 (2)
C4—C51.389 (2)C14—H140.9500
C4—H40.9500C15—H150.9500
C5—C61.386 (2)
C9—N1—C10128.87 (13)C1—C7—H7116.9
C9—N1—H1115.6C7—C8—C9121.43 (14)
C10—N1—H1115.6C7—C8—H8119.3
O2—N2—O3122.46 (13)C9—C8—H8119.3
O2—N2—C13119.59 (13)O1—C9—N1123.31 (14)
O3—N2—C13117.95 (13)O1—C9—C8123.67 (14)
C2—C1—C6118.10 (14)N1—C9—C8113.01 (13)
C2—C1—C7118.78 (14)C11—C10—N1123.82 (13)
C6—C1—C7123.12 (13)C11—C10—C15119.74 (14)
C3—C2—C1121.03 (15)N1—C10—C15116.44 (13)
C3—C2—H2119.5C12—C11—C10120.02 (14)
C1—C2—H2119.5C12—C11—H11120.0
C4—C3—C2120.12 (15)C10—C11—H11120.0
C4—C3—H3119.9C13—C12—C11119.22 (14)
C2—C3—H3119.9C13—C12—H12120.4
C3—C4—C5119.84 (15)C11—C12—H12120.4
C3—C4—H4120.1C12—C13—C14121.69 (14)
C5—C4—H4120.1C12—C13—N2119.36 (13)
C6—C5—C4119.92 (15)C14—C13—N2118.95 (14)
C6—C5—H5120.0C15—C14—C13119.18 (14)
C4—C5—H5120.0C15—C14—H14120.4
C5—C6—C1120.97 (15)C13—C14—H14120.4
C5—C6—H6119.5C14—C15—C10120.14 (14)
C1—C6—H6119.5C14—C15—H15119.9
C8—C7—C1126.22 (14)C10—C15—H15119.9
C8—C7—H7116.9
C6—C1—C2—C30.8 (2)C9—N1—C10—C15172.82 (14)
C7—C1—C2—C3178.57 (14)N1—C10—C11—C12179.62 (14)
C1—C2—C3—C40.2 (2)C15—C10—C11—C120.7 (2)
C2—C3—C4—C50.3 (2)C10—C11—C12—C130.1 (2)
C3—C4—C5—C60.2 (2)C11—C12—C13—C141.0 (2)
C4—C5—C6—C10.4 (2)C11—C12—C13—N2179.58 (14)
C2—C1—C6—C50.9 (2)O2—N2—C13—C120.2 (2)
C7—C1—C6—C5178.44 (14)O3—N2—C13—C12179.82 (14)
C2—C1—C7—C8171.67 (14)O2—N2—C13—C14179.28 (14)
C6—C1—C7—C87.6 (2)O3—N2—C13—C140.7 (2)
C1—C7—C8—C9179.17 (14)C12—C13—C14—C151.0 (2)
C10—N1—C9—O10.5 (2)N2—C13—C14—C15179.59 (13)
C10—N1—C9—C8179.20 (14)C13—C14—C15—C100.1 (2)
C7—C8—C9—O10.8 (2)C11—C10—C15—C140.8 (2)
C7—C8—C9—N1179.53 (14)N1—C10—C15—C14179.72 (13)
C9—N1—C10—C118.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.882.132.991 (2)166
C5—H5···O2ii0.952.583.519 (2)168
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H12N2O3
Mr268.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)5.903 (3), 15.050 (9), 14.388 (9)
β (°) 95.38 (3)
V3)1272.6 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.980, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
10408, 2886, 1994
Rint0.051
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.117, 1.07
No. of reflections2886
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.20

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.882.132.991 (2)166.4
C5—H5···O2ii0.952.583.519 (2)168.0
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y+1, z.
 

Acknowledgements

AS gratefully acknowledges a research grant from Quaid-i-Azam University Islamabad under the URF program.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBeccalli, E. M., Broggini, G., Paladinoa, G. & Zonia, C. (2005). Tetrahedron, 61, 61–68.  Web of Science CrossRef CAS Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCalderone, V., Fiamingo, F. L., Giorgi, I., Leonardi, M., Livi, O., Martelli, A. & Martinotti, E. (2006). Eur. J. Med. Chem. 41, 761–767.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLindgren, H., Pero, R. W., Ivars, F. & Leanderson, T. (2001). Mol. Immunol. 38, 267–277.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNissa, M. N., Aravindan, P. G., Kasinath, V., Gopalakrishnan, G., Merazig, H. & Velmurugan, D. (2004). Cryst. Res. Technol. 39, 643–649.  CAS Google Scholar
First citationNissa, M. N., Velmurugan, D., Raj, S. S. S., Fun, H.-K., Kasinath, V. & Gopalakrishnan, G. (2002). Cryst. Res. Technol. 37, 125–133.  CAS Google Scholar
First citationOlsson, A. R., Lindgren, H., Pero, R. W. & Leanderson, T. (2002). Br. J. Cancer, 86, 971–978.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPeeters, O. M., Blaton, N. M. & de Ranter, C. J. (1986). Acta Cryst. C42, 1233–1235.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVega-Noverola, A. P., Soto, J. M., Noguera, F. P., Mauri, J. M. & Spickett, G. W. R. (1989). US Patent No. 4 877 780.  Google Scholar
First citationZhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett. 9, 1415–1418.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds