organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2-Chloro­benzyl­­idene)-4-hy­droxy­benzohydrazide

aDepartment of Chemistry, Baicheng Normal University, Baicheng 137000, People's Republic of China
*Correspondence e-mail: jyxygzb@163.com

(Received 1 August 2009; accepted 3 August 2009; online 8 August 2009)

In the mol­ecule of the title compound, C14H11ClN2O2, the dihedral angle between the benzene rings is 30.53 (4)°. In the crystal structure, inter­molecular O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules into a two-dimensional network. ππ contacts between benzene rings [centroid–centroid distance = 3.619 (1) Å] may further stabilize the structure. The crystal studied was found to be an inversion twin.

Related literature

For general background, see: Ali et al. (2008[Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718-m719.]); Dao et al. (2000[Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805-813.]); Kargar et al. (2009[Kargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403-m404.]); Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]); Sriram et al. (2006[Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127-2129.]); Yeap et al. (2009[Yeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570-m571.]). For related structures, see: Eltayeb et al. (2008[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, o576-o577.]); Fun et al. (2009[Fun, H.-K., Kia, R., Vijesh, A. M. & Isloor, A. M. (2009). Acta Cryst. E65, o349-o350.]); Hao (2009[Hao, Y.-M. (2009). Acta Cryst. E65, o1400.]); Nadeem et al. (2009[Nadeem, S., Shah, M. R. & VanDerveer, D. (2009). Acta Cryst. E65, o897.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11ClN2O2

  • Mr = 274.70

  • Orthorhombic, P 21 21 21

  • a = 7.2851 (17) Å

  • b = 11.716 (3) Å

  • c = 14.978 (3) Å

  • V = 1278.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.943, Tmax = 0.948

  • 6989 measured reflections

  • 2360 independent reflections

  • 1617 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.105

  • S = 1.02

  • 2360 reflections

  • 176 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 963 Friedel pairs

  • Flack parameter: 0.45 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.84 2.657 (3) 179
N2—H2A⋯O2ii 0.90 (3) 2.106 (17) 2.951 (3) 157 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+2, z-{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff base compounds are a class of important materials used in pharmaceutical and medicinal fields (Dao et al., 2000; Sriram et al., 2006; Karthikeyan et al., 2006). Schiff bases have also been used as versatile ligands in coordination chemistry (Ali et al., 2008; Kargar et al., 2009; Yeap et al., 2009). Recently, the crystal structures of a large number of Schiff base compounds have been reported (Fun et al., 2009; Nadeem et al., 2009; Eltayeb et al., 2008). As a part of our ongoing investigation (Hao, 2009), we report herein the crystal structure of the title new Schiff base compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6) and B (C9-C14) are, of course, planar and the dihedral angle between them is A/B = 30.53 (4)°.

In the crystal structure, intermolecular O-H···O and N-H···O hydrogen bonds (Table 1) link the molecules into a two-dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure. The ππ contact between the benzene rings, Cg1—Cg2i [symmetry code: (i) 1/2 + x, 1/2 - y, 1 - z, where Cg1 and Cg2 are centroids of the rings A (C1-C6) and B (C9-C14), respectively] may further stabilize the structure, with centroid-centroid distance of 3.619 (1) Å.

Related literature top

For general background, see: Ali et al. (2008); Dao et al. (2000); Kargar et al. (2009); Karthikeyan et al. (2006); Sriram et al. (2006); Yeap et al. (2009). For related structures, see: Eltayeb et al. (2008); Fun et al. (2009); Hao (2009); Nadeem et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, 2-chlorobenzaldehyde (0.1 mmol, 14.1 mg) and 4-hydroxybenzohydrazide (0.1 mmol, 15.2 mg) were refluxed in a methanol solution (30 ml) for 30 min to give a clear orange solution. Yellow block-shaped single crystals of the compound were formed by slow evaporation of the solvent over several days at room temperature.

Refinement top

Atom H2A (for NH) was located in a difference Fourier map and refined as riding in as-found relative position, Uiso(H) = 1.82Ueq(N). The remaining H atoms were positioned geometrically with O-H = 0.82 Å (for OH) and C-H = 0.93 for aromatic H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O), where x = 1.5 for OH H and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level
[Figure 2] Fig. 2. A partial packing diagram. Hydrogen bonds are shown as dashed lines.
N'-(2-Chlorobenzylidene)-4-hydroxybenzohydrazide top
Crystal data top
C14H11ClN2O2F(000) = 568
Mr = 274.70Dx = 1.427 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1016 reflections
a = 7.2851 (17) Åθ = 2.4–24.5°
b = 11.716 (3) ŵ = 0.30 mm1
c = 14.978 (3) ÅT = 298 K
V = 1278.4 (5) Å3Block, yellow
Z = 40.20 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2360 independent reflections
Radiation source: fine-focus sealed tube1617 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.943, Tmax = 0.948k = 1413
6989 measured reflectionsl = 1618
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.0042P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2360 reflectionsΔρmax = 0.15 e Å3
176 parametersΔρmin = 0.26 e Å3
1 restraintAbsolute structure: Flack (1983), 963 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.45 (12)
Crystal data top
C14H11ClN2O2V = 1278.4 (5) Å3
Mr = 274.70Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.2851 (17) ŵ = 0.30 mm1
b = 11.716 (3) ÅT = 298 K
c = 14.978 (3) Å0.20 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2360 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1617 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.948Rint = 0.045
6989 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105Δρmax = 0.15 e Å3
S = 1.02Δρmin = 0.26 e Å3
2360 reflectionsAbsolute structure: Flack (1983), 963 Friedel pairs
176 parametersAbsolute structure parameter: 0.45 (12)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.01997 (17)0.34021 (7)1.00869 (6)0.0874 (4)
O10.1624 (4)0.92529 (17)1.04651 (12)0.0549 (6)
O20.1212 (3)1.16180 (18)0.67205 (12)0.0510 (6)
H20.18811.13580.63300.077*
N10.1278 (4)0.69987 (19)1.04360 (14)0.0437 (7)
N20.1146 (4)0.7642 (2)0.96676 (14)0.0440 (7)
C10.1105 (4)0.5194 (2)1.11448 (19)0.0410 (7)
C20.0682 (4)0.4040 (3)1.1104 (2)0.0512 (9)
C30.0627 (4)0.3368 (3)1.1861 (3)0.0616 (10)
H30.03350.25971.18170.074*
C40.1006 (5)0.3842 (3)1.2681 (2)0.0640 (10)
H40.09490.33941.31920.077*
C50.1472 (5)0.4985 (3)1.2746 (2)0.0588 (10)
H50.17490.53031.32980.071*
C60.1523 (4)0.5648 (3)1.19849 (19)0.0473 (8)
H60.18410.64151.20320.057*
C70.1054 (4)0.5933 (2)1.03614 (19)0.0439 (8)
H70.08550.56170.98000.053*
C80.1310 (4)0.8794 (2)0.97441 (17)0.0377 (7)
C90.1139 (4)0.9470 (2)0.89145 (17)0.0352 (7)
C100.1551 (4)0.9036 (2)0.80756 (17)0.0394 (7)
H100.18140.82630.80120.047*
C110.1576 (4)0.9737 (2)0.73349 (18)0.0416 (8)
H110.18760.94430.67770.050*
C120.1154 (4)1.0875 (2)0.74280 (16)0.0364 (7)
C130.0671 (4)1.1313 (2)0.82502 (17)0.0412 (7)
H130.03351.20750.83060.049*
C140.0692 (4)1.0614 (2)0.89873 (18)0.0409 (8)
H140.04011.09150.95440.049*
H2A0.074 (5)0.729 (3)0.9172 (14)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1341 (10)0.0427 (5)0.0854 (7)0.0074 (6)0.0095 (7)0.0113 (5)
O10.0965 (19)0.0376 (12)0.0307 (11)0.0005 (12)0.0119 (12)0.0021 (10)
O20.0687 (16)0.0474 (13)0.0370 (11)0.0128 (13)0.0090 (11)0.0133 (10)
N10.0627 (18)0.0340 (15)0.0344 (13)0.0020 (13)0.0077 (14)0.0041 (11)
N20.067 (2)0.0337 (14)0.0308 (13)0.0053 (13)0.0059 (15)0.0026 (11)
C10.0396 (19)0.0398 (18)0.0435 (17)0.0050 (15)0.0051 (16)0.0050 (14)
C20.054 (2)0.0396 (19)0.0604 (19)0.0031 (15)0.0022 (18)0.0074 (16)
C30.052 (2)0.043 (2)0.089 (3)0.0012 (18)0.008 (2)0.026 (2)
C40.057 (2)0.068 (3)0.067 (2)0.0149 (19)0.011 (2)0.0335 (19)
C50.064 (2)0.065 (3)0.048 (2)0.011 (2)0.0036 (19)0.0125 (18)
C60.049 (2)0.049 (2)0.0434 (18)0.0043 (16)0.0009 (17)0.0087 (16)
C70.056 (2)0.0378 (18)0.0378 (16)0.0035 (16)0.0009 (17)0.0018 (14)
C80.0477 (19)0.0360 (16)0.0294 (15)0.0026 (14)0.0012 (15)0.0003 (12)
C90.0418 (18)0.0320 (16)0.0317 (14)0.0026 (13)0.0054 (15)0.0005 (12)
C100.052 (2)0.0340 (17)0.0325 (15)0.0014 (15)0.0012 (15)0.0014 (13)
C110.052 (2)0.0432 (19)0.0297 (16)0.0042 (16)0.0012 (15)0.0009 (13)
C120.0416 (18)0.0381 (17)0.0295 (15)0.0000 (15)0.0015 (15)0.0083 (13)
C130.055 (2)0.0309 (16)0.0377 (16)0.0052 (14)0.0017 (15)0.0004 (13)
C140.057 (2)0.0345 (17)0.0316 (15)0.0006 (14)0.0032 (15)0.0025 (13)
Geometric parameters (Å, º) top
Cl1—C21.732 (3)C5—C61.380 (4)
O1—C81.228 (3)C5—H50.9300
O2—C121.372 (3)C6—H60.9300
O2—H20.8200C7—H70.9300
N1—N21.379 (3)C8—C91.479 (4)
N1—C71.264 (3)C9—C141.383 (4)
N2—C81.360 (3)C9—C101.388 (4)
N2—H2A0.90 (3)C10—C111.381 (4)
C1—C21.388 (4)C10—H100.9300
C1—C61.400 (4)C11—C121.375 (4)
C1—C71.459 (4)C11—H110.9300
C2—C31.381 (4)C12—C131.380 (4)
C3—C41.376 (5)C13—C141.375 (4)
C3—H30.9300C13—H130.9300
C4—C51.384 (5)C14—H140.9300
C4—H40.9300
C12—O2—H2109.5N1—C7—H7119.6
C7—N1—N2117.2 (2)C1—C7—H7119.6
N1—N2—H2A118 (2)O1—C8—N2121.7 (2)
C8—N2—N1117.8 (2)O1—C8—C9121.4 (2)
C8—N2—H2A123 (2)N2—C8—C9117.0 (2)
C2—C1—C6117.3 (3)C14—C9—C10118.5 (2)
C2—C1—C7122.5 (3)C14—C9—C8118.2 (2)
C6—C1—C7120.2 (3)C10—C9—C8123.1 (3)
C3—C2—C1121.7 (3)C11—C10—C9120.8 (3)
C3—C2—Cl1118.0 (3)C11—C10—H10119.6
C1—C2—Cl1120.3 (2)C9—C10—H10119.6
C4—C3—C2119.8 (3)C12—C11—C10119.5 (2)
C4—C3—H3120.1C12—C11—H11120.2
C2—C3—H3120.1C10—C11—H11120.2
C3—C4—C5120.2 (3)O2—C12—C11122.0 (2)
C3—C4—H4119.9O2—C12—C13117.5 (2)
C5—C4—H4119.9C11—C12—C13120.5 (2)
C6—C5—C4119.6 (3)C14—C13—C12119.5 (3)
C6—C5—H5120.2C14—C13—H13120.2
C4—C5—H5120.2C12—C13—H13120.2
C5—C6—C1121.5 (3)C13—C14—C9121.1 (3)
C5—C6—H6119.2C13—C14—H14119.5
C1—C6—H6119.2C9—C14—H14119.5
N1—C7—C1120.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.842.657 (3)179
N2—H2A···O2ii0.90 (3)2.11 (2)2.951 (3)157 (3)
Symmetry codes: (i) x+1/2, y+2, z1/2; (ii) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H11ClN2O2
Mr274.70
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)7.2851 (17), 11.716 (3), 14.978 (3)
V3)1278.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.943, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
6989, 2360, 1617
Rint0.045
(sin θ/λ)max1)0.607
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.105, 1.02
No. of reflections2360
No. of parameters176
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.26
Absolute structureFlack (1983), 963 Friedel pairs
Absolute structure parameter0.45 (12)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.842.657 (3)178.9
N2—H2A···O2ii0.90 (3)2.106 (17)2.951 (3)157 (3)
Symmetry codes: (i) x+1/2, y+2, z1/2; (ii) x, y1/2, z+3/2.
 

References

First citationAli, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718–m719.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805–813.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, o576–o577.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R., Vijesh, A. M. & Isloor, A. M. (2009). Acta Cryst. E65, o349–o350.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHao, Y.-M. (2009). Acta Cryst. E65, o1400.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403–m404.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNadeem, S., Shah, M. R. & VanDerveer, D. (2009). Acta Cryst. E65, o897.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570–m571.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds