organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-(4-Nitro­benz­yl­oxy)quinoline

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: liyh@seu.edu.cn

(Received 18 August 2009; accepted 20 August 2009; online 29 August 2009)

In the title compound, C16H12N2O3, the planar quinoline ring system [maximum deviation = 0.025 (3) Å] is oriented at a dihedral angle of 61.76 (7)° with respect to the benzene ring. In the crystal structure, inter­molecular C—H⋯O inter­actions link the mol­ecules into chains parallel to the b axis. ππ contacts between the quinoline rings [centroid–centroid distance = 3.623 (1) Å] may further stabilize the structure.

Related literature

For related structures, see: Fu & Zhao (2007[Fu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, o3206.]); Li & Chen (2008[Li, M. & Chen, X. (2008). Acta Cryst. E64, o2291.]); Zhao (2008[Zhao, Y.-Y. (2008). Acta Cryst. E64, o761.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12N2O3

  • Mr = 280.28

  • Monoclinic, P n

  • a = 4.176 (3) Å

  • b = 7.395 (3) Å

  • c = 21.513 (18) Å

  • β = 94.08 (3)°

  • V = 662.7 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 294 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear, Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.])Tmin = 0.789, Tmax = 0.980

  • 5732 measured reflections

  • 2566 independent reflections

  • 2134 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.086

  • S = 1.01

  • 2566 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O2i 0.97 2.60 3.538 (3) 164
Symmetry code: (i) x+1, y+1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL/PC and PLATON.

Supporting information


Comment top

Recently, we have reported the syntheses and crystal structures of some benzonitrile compounds (Fu & Zhao, 2007; Li & Chen, 2008; Zhao, 2008). As an extension of our work on the structural characterizations of benzonitrile derivatives, we report herein the synthesis and crystal structure of the title compound.

In the molecule of the title compound, (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The quinoline ring system is planar with a maximum deviation of 0.025 (3) Å for atom C6, and it is oriented with respect to the benzene ring at a dihedral angle of 61.76 (7)°.

In the crystal structure, intermolecular C-H···O interactions (Table 1) link the molecules into chains paralel to the b axis (Fig. 2), in which they may be effective in the stabilization of the structure. The ππ contact between the quinoline rings, Cg1—Cg2i [symmetry code: (i) 1 + x, y, z, where Cg1 and Cg2 are centroids of the rings (N1/C1-C4/C9) and (C4-C9), respectively] may further stabilize the structure, with centroid-centroid distance of 3.623 (1) Å.

Related literature top

For related structures, see: Fu & Zhao (2007); Li & Chen (2008); Zhao (2008). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, quinolin-8-ol (1 g, 0.0069 mol) was added to a solution of sodium hydroxide (0.276 g, 0.0069 mol) in methanol (15 ml) and stirred for 3 h. Then, 1-(bromomethyl)-4-nitrobenzene (1.5318 g, 0.0069 mol) was added. The mixture was stirred at room temperature for 2 d. The title compound was isolated using column chromatography (petroleum ether: ethyl acetate, 1:1). Crystals suitable for X-ray analysis were obtained from slow evaporation of an ethyl acetate and tetrahydrofuran solution.

Refinement top

H atoms were positioned geometrically with C-H = 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The absolute structure could not be determined reliably, and 1267 Friedel pairs were averaged before the last cycle of refinement.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
8-(4-Nitrobenzyloxy)quinoline top
Crystal data top
C16H12N2O3F(000) = 292
Mr = 280.28Dx = 1.405 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yacCell parameters from 1688 reflections
a = 4.176 (3) Åθ = 2.8–27.5°
b = 7.395 (3) ŵ = 0.10 mm1
c = 21.513 (18) ÅT = 294 K
β = 94.08 (3)°Block, pale yellow
V = 662.7 (8) Å30.20 × 0.20 × 0.20 mm
Z = 2
Data collection top
Rigaku SCXmini
diffractometer
2566 independent reflections
Radiation source: fine-focus sealed tube2134 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
CCD_Profile_fitting scansθmax = 26.0°, θmin = 2.9°
Absorption correction: multi-scan
(CrystalClear, Rigaku, 2005)
h = 55
Tmin = 0.789, Tmax = 0.980k = 99
5732 measured reflectionsl = 2626
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0196P)2 + 0.15P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.086(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.17 e Å3
2566 reflectionsΔρmin = 0.16 e Å3
191 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.036 (3)
Secondary atom site location: difference Fourier map
Crystal data top
C16H12N2O3V = 662.7 (8) Å3
Mr = 280.28Z = 2
Monoclinic, PnMo Kα radiation
a = 4.176 (3) ŵ = 0.10 mm1
b = 7.395 (3) ÅT = 294 K
c = 21.513 (18) Å0.20 × 0.20 × 0.20 mm
β = 94.08 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2566 independent reflections
Absorption correction: multi-scan
(CrystalClear, Rigaku, 2005)
2134 reflections with I > 2σ(I)
Tmin = 0.789, Tmax = 0.980Rint = 0.028
5732 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042191 parameters
wR(F2) = 0.086H-atom parameters constrained
S = 1.01Δρmax = 0.17 e Å3
2566 reflectionsΔρmin = 0.16 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8658 (4)0.5082 (2)0.23916 (8)0.0539 (4)
O20.1576 (6)0.2236 (3)0.08570 (10)0.1024 (8)
O30.3470 (9)0.1172 (4)0.00328 (11)0.1334 (11)
N11.2733 (5)0.4283 (2)0.33661 (9)0.0531 (5)
N20.2926 (6)0.1057 (3)0.05809 (11)0.0727 (7)
C11.4711 (6)0.3933 (4)0.38541 (12)0.0609 (7)
H1A1.54510.27520.39030.073*
C21.5794 (6)0.5201 (4)0.43068 (12)0.0654 (7)
H2A1.71600.48580.46470.078*
C31.4798 (6)0.6939 (4)0.42365 (11)0.0612 (7)
H3A1.55180.78090.45260.073*
C41.2677 (5)0.7427 (3)0.37262 (11)0.0525 (6)
C51.1593 (7)0.9231 (4)0.36205 (14)0.0649 (7)
H5A1.22251.01400.39020.078*
C60.9646 (6)0.9620 (4)0.31112 (14)0.0665 (8)
H6A0.89821.08070.30400.080*
C70.8594 (6)0.8260 (3)0.26827 (12)0.0584 (7)
H7A0.72380.85550.23360.070*
C80.9567 (5)0.6509 (3)0.27772 (11)0.0482 (6)
C91.1702 (5)0.6040 (3)0.33024 (11)0.0464 (5)
C100.6534 (6)0.5515 (3)0.18613 (12)0.0561 (6)
H10A0.75770.63280.15850.067*
H10B0.46140.61000.19920.067*
C110.5679 (5)0.3764 (3)0.15321 (11)0.0497 (6)
C120.6351 (5)0.3513 (4)0.09144 (11)0.0582 (6)
H12A0.74040.44170.07080.070*
C130.5469 (6)0.1932 (3)0.06027 (12)0.0598 (6)
H13A0.59180.17690.01890.072*
C140.3921 (6)0.0609 (3)0.09139 (11)0.0518 (6)
C150.3210 (6)0.0814 (3)0.15294 (11)0.0548 (6)
H15A0.21550.00960.17330.066*
C160.4104 (5)0.2402 (3)0.18354 (10)0.0537 (6)
H16A0.36460.25600.22490.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0583 (10)0.0516 (9)0.0505 (9)0.0015 (8)0.0043 (7)0.0077 (7)
O20.149 (2)0.0699 (13)0.0880 (17)0.0360 (14)0.0046 (15)0.0007 (13)
O30.228 (3)0.1087 (19)0.0649 (14)0.057 (2)0.0222 (17)0.0289 (14)
N10.0568 (12)0.0473 (11)0.0548 (11)0.0060 (9)0.0017 (10)0.0030 (10)
N20.0905 (18)0.0683 (16)0.0572 (14)0.0059 (13)0.0099 (13)0.0036 (12)
C10.0636 (17)0.0560 (15)0.0618 (16)0.0086 (13)0.0033 (13)0.0008 (13)
C20.0620 (17)0.080 (2)0.0534 (15)0.0124 (15)0.0033 (13)0.0022 (14)
C30.0614 (16)0.0704 (19)0.0524 (15)0.0220 (14)0.0078 (12)0.0170 (13)
C40.0507 (13)0.0567 (15)0.0520 (13)0.0156 (12)0.0157 (11)0.0109 (12)
C50.0697 (18)0.0510 (15)0.0759 (18)0.0157 (13)0.0195 (15)0.0188 (14)
C60.0714 (19)0.0420 (15)0.088 (2)0.0021 (12)0.0233 (16)0.0033 (14)
C70.0585 (15)0.0511 (16)0.0665 (16)0.0000 (12)0.0101 (12)0.0025 (13)
C80.0479 (13)0.0472 (14)0.0510 (13)0.0057 (11)0.0133 (10)0.0037 (11)
C90.0484 (14)0.0470 (13)0.0449 (12)0.0104 (10)0.0103 (10)0.0073 (10)
C100.0511 (15)0.0613 (16)0.0549 (15)0.0019 (12)0.0036 (12)0.0012 (12)
C110.0415 (12)0.0599 (16)0.0467 (13)0.0017 (11)0.0030 (10)0.0009 (11)
C120.0556 (14)0.0696 (16)0.0495 (14)0.0104 (12)0.0040 (11)0.0031 (13)
C130.0619 (15)0.0740 (18)0.0432 (13)0.0028 (14)0.0021 (11)0.0003 (13)
C140.0559 (14)0.0521 (14)0.0464 (13)0.0021 (11)0.0046 (11)0.0017 (11)
C150.0614 (16)0.0559 (15)0.0470 (13)0.0009 (12)0.0041 (11)0.0102 (11)
C160.0545 (14)0.0630 (16)0.0438 (12)0.0039 (11)0.0043 (10)0.0038 (11)
Geometric parameters (Å, º) top
O1—C81.379 (3)C8—C71.367 (3)
O1—C101.431 (3)C9—N11.372 (3)
N1—C11.315 (3)C9—C41.413 (3)
N2—O21.216 (3)C9—C81.431 (3)
N2—O31.220 (3)C10—C111.507 (3)
N2—C141.470 (3)C10—H10A0.9700
C1—C21.403 (3)C10—H10B0.9700
C1—H1A0.9300C11—C161.391 (3)
C2—H2A0.9300C12—C111.390 (3)
C3—C21.356 (4)C12—C131.385 (3)
C3—H3A0.9300C12—H12A0.9300
C4—C31.408 (3)C13—C141.373 (3)
C4—C51.422 (3)C13—H13A0.9300
C5—C61.348 (4)C15—C141.386 (3)
C5—H5A0.9300C15—C161.385 (3)
C6—H6A0.9300C15—H15A0.9300
C7—C61.413 (4)C16—H16A0.9300
C7—H7A0.9300
C8—O1—C10115.90 (19)C7—C8—C9120.6 (2)
C1—N1—C9116.2 (2)N1—C9—C4123.3 (2)
O2—N2—C14119.2 (2)N1—C9—C8118.80 (18)
O3—N2—O2123.2 (3)C4—C9—C8117.9 (2)
O3—N2—C14117.7 (3)O1—C10—C11107.2 (2)
N1—C1—C2125.2 (3)O1—C10—H10A110.3
N1—C1—H1A117.4O1—C10—H10B110.3
C2—C1—H1A117.4C11—C10—H10A110.3
C1—C2—H2A120.8C11—C10—H10B110.3
C3—C2—C1118.3 (3)H10A—C10—H10B108.5
C3—C2—H2A120.8C12—C11—C10120.5 (2)
C2—C3—C4120.1 (2)C12—C11—C16119.1 (2)
C2—C3—H3A120.0C16—C11—C10120.4 (2)
C4—C3—H3A120.0C11—C12—H12A119.6
C3—C4—C9117.0 (2)C13—C12—C11120.7 (2)
C3—C4—C5122.7 (2)C13—C12—H12A119.6
C9—C4—C5120.3 (2)C12—C13—H13A120.5
C4—C5—H5A120.1C14—C13—C12118.9 (2)
C6—C5—C4119.8 (2)C14—C13—H13A120.5
C6—C5—H5A120.1C13—C14—N2119.1 (2)
C5—C6—C7121.3 (3)C13—C14—C15121.9 (2)
C5—C6—H6A119.3C15—C14—N2119.0 (2)
C7—C6—H6A119.3C14—C15—H15A120.7
C6—C7—H7A120.0C16—C15—C14118.6 (2)
C8—C7—C6120.1 (2)C16—C15—H15A120.7
C8—C7—H7A120.0C11—C16—H16A119.6
O1—C8—C9114.75 (19)C15—C16—C11120.8 (2)
C7—C8—O1124.7 (2)C15—C16—H16A119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O2i0.972.603.538 (3)164
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H12N2O3
Mr280.28
Crystal system, space groupMonoclinic, Pn
Temperature (K)294
a, b, c (Å)4.176 (3), 7.395 (3), 21.513 (18)
β (°) 94.08 (3)
V3)662.7 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear, Rigaku, 2005)
Tmin, Tmax0.789, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
5732, 2566, 2134
Rint0.028
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.086, 1.01
No. of reflections2566
No. of parameters191
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O2i0.972.603.538 (3)164
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

This work was supported by a start-up grant (No. 4007041028) and a Science Technology grant (No. KJ2009375) from Southeast University to Professor Yong-Hua Li.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, o3206.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, M. & Chen, X. (2008). Acta Cryst. E64, o2291.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, Y.-Y. (2008). Acta Cryst. E64, o761.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds