metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{μ-trans-N,N′-Bis[(di­phenyl­phosphan­yl)meth­yl]benzene-1,4-di­amine-κ2P:P′}bis­­{(aceto­nitrile-κN)[dipyrido[3,2-a:2′,3′-c]phenazine-κ2N4,N5]copper(I)} bis­­(tetra­fluoridoborate)

aSchool of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China
*Correspondence e-mail: hth12389@yahoo.com.cn

(Received 24 June 2009; accepted 12 August 2009; online 19 August 2009)

In the centrosymmetric dinuclear title compound, [Cu2(C2H3N)2(C18H10N4)2(C32H30N2P2)](BF4)2, the CuI centre is coordinated by two N atoms from a dipyridophenazine ligand, one P atom from an N,N′-bis­[(diphenyl­phosphan­yl)meth­yl]benzene-1,4-diamine (bpbda) ligand, and one N atom from an acetonitrile mol­ecule in a distorted tetra­hedral geometry. The bpbda ligand, lying on an inversion center, bridges two CuI centres into a Z-shaped complex. Intra­molecular ππ inter­actions between the dipyridophenazine ligand and the benzene ring of the bpbda ligand are observed [centroid–centroid distance = 3.459 (3) Å]. The crystal structure also involves inter­molecular ππ inter­actions between the dipyridophenazine ligands [centroid–centroid distance = 3.506 (3) Å], which lead to a one-dimensional supra­molecular structure.

Related literature

For general background to ππ inter­actions in chemistry and biochemistry, see: Aucott et al. (2002[Aucott, S. M., Slawin, A. M. Z. & Woollins, J. D. (2002). Eur. J. Inorg. Chem. pp. 2408-2418.]); Chipot et al. (1996[Chipot, C., Jaffe, R., Maigret, B., Pearlman, D. A. & Kollman, P. A. (1996). J. Am. Chem. Soc. 118, 11217-11224.]); Saenger (1984[Saenger, W. (1984). Principles of Nucleic Acid Structure, pp. 132-140. New York: Springer-Verlag.]); Wang et al. (2008[Wang, X.-J., Gui, L.-C., Ni, Q.-L., Liao, Y.-F., Jiang, X.-F., Tang, L.-H., Zhang, Z. & Wu, Q. (2008). CrystEngComm, 10, 1003-1010.]); Waters (2002[Waters, M. L. (2002). Curr. Opin. Chem. Biol. 6, 736-741.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C2H3N)2(C18H10N4)2(C32H30N2P2)](BF4)2

  • Mr = 1451.93

  • Triclinic, [P \overline 1]

  • a = 12.1074 (3) Å

  • b = 12.3354 (2) Å

  • c = 12.6262 (3) Å

  • α = 84.905 (1)°

  • β = 68.250 (1)°

  • γ = 66.732 (1)°

  • V = 1605.35 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 293 K

  • 0.32 × 0.24 × 0.20 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.786, Tmax = 0.858

  • 15862 measured reflections

  • 7288 independent reflections

  • 6153 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.119

  • S = 1.08

  • 7288 reflections

  • 443 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N2 2.0828 (19)
Cu1—N3 2.0628 (18)
Cu1—N6 2.013 (2)
Cu1—P2 2.1883 (6)

Data collection: CrystalClear (Rigaku 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

ππ Stacking interactions between aromatic systems have been reported in many fields of chemistry and biochemistry (Aucott et al., 2002; Chipot et al., 1996). They play an important role in the structures of biological macromolecules (Saenger, 1984). For example, they are exploited for the intercalation of drugs into DNA (Waters, 2002). Information on the structures of copper(I) compouds with ππ stacking Interactions, which lead to infinite linear chain, continues to be reported (Wang et al., 2008). In the title binuclear copper(I) complex, the N,N'-bis[(diphenylphosphanyl)methyl]benzene-1,4-diamine ligand, lying on an inversion center, links two CuI atoms through the P atoms (Fig.1). The CuI atom has a distorted tetrahedral coordination geometry. The structure involves intra- and intermolecular ππ interactions with centroid–centroid distances of 3.459 (3) and 3.506 (3) Å, respectively. The intermolecular ππ interactions connect the complex molecules into a one-dimensional supramolecular structure.

Related literature top

For general background to ππ interactions in chemistry and biochemistry, see: Aucott et al. (2002); Chipot et al. (1996); Saenger (1984); Wang et al. (2008); Waters (2002).

Experimental top

CuBF4.4CH3CN (0.066 g, 0.2 mmol) was added with stirring to a solution of dipyrido[3,2 - a:2',3'-c]phenazine (0.056 g, 0.2 mmol) and N,N'-bis[(diphenylphosphanyl)methyl]benzene-1,4-diamine (0.050 g, 0.10 mmol) in DMF(10 ml). The resulting solution was allowed to stir for 2 h. Then by slow diffusion of diethyl ether into the solution, block red crystals were deposited in 6 d (yield: 60%).

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.97 (CH2), and 0.96 (CH3) Å and N—H = 0.86 Å, and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C,N).

Computing details top

Data collection: CrystalClear (Rigaku 2005); cell refinement: CrystalClear (Rigaku 2005); data reduction: CrystalClear (Rigaku 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) -x, 1 - y, -z.]
{µ-trans-N,N'-Bis[(diphenylphosphanyl)methyl]benzene- 1,4-diamine-κ2P:P'}bis{(acetonitrile-κN)[dipyrido[3,2- a:2',3'-c]phenazine-κ2N4,N5]copper(I)} bis(tetrafluoridoborate) top
Crystal data top
[Cu2(C2H3N)2(C18H10N4)2(C32H30N2P2)](BF4)2Z = 1
Mr = 1451.93F(000) = 742
Triclinic, P1Dx = 1.502 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.1074 (3) ÅCell parameters from 12749 reflections
b = 12.3354 (2) Åθ = 2.6–27.5°
c = 12.6262 (3) ŵ = 0.79 mm1
α = 84.905 (1)°T = 293 K
β = 68.250 (1)°Block, red
γ = 66.732 (1)°0.32 × 0.24 × 0.20 mm
V = 1605.35 (6) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
7288 independent reflections
Radiation source: fine-focus sealed tube6153 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1515
Tmin = 0.786, Tmax = 0.858k = 1416
15862 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0641P)2 + 1.098P]
where P = (Fo2 + 2Fc2)/3
7288 reflections(Δ/σ)max = 0.001
443 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Cu2(C2H3N)2(C18H10N4)2(C32H30N2P2)](BF4)2γ = 66.732 (1)°
Mr = 1451.93V = 1605.35 (6) Å3
Triclinic, P1Z = 1
a = 12.1074 (3) ÅMo Kα radiation
b = 12.3354 (2) ŵ = 0.79 mm1
c = 12.6262 (3) ÅT = 293 K
α = 84.905 (1)°0.32 × 0.24 × 0.20 mm
β = 68.250 (1)°
Data collection top
Rigaku Mercury CCD
diffractometer
7288 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
6153 reflections with I > 2σ(I)
Tmin = 0.786, Tmax = 0.858Rint = 0.020
15862 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.08Δρmax = 0.80 e Å3
7288 reflectionsΔρmin = 0.58 e Å3
443 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.10933 (3)0.22834 (2)0.22835 (2)0.02592 (10)
P20.08284 (5)0.22819 (5)0.26979 (4)0.02005 (12)
N10.17869 (19)0.45511 (16)0.19707 (16)0.0271 (4)
H1A0.22640.51130.24990.033*
N20.09991 (17)0.39591 (17)0.25741 (15)0.0243 (4)
N30.24317 (17)0.24169 (16)0.07427 (16)0.0235 (4)
N40.28443 (17)0.67402 (16)0.06715 (16)0.0235 (4)
N50.43829 (17)0.50979 (16)0.12465 (15)0.0229 (4)
N60.2192 (2)0.1156 (2)0.3096 (2)0.0385 (5)
C10.0878 (2)0.47431 (18)0.09971 (18)0.0217 (4)
C20.0740 (2)0.58216 (18)0.09225 (18)0.0236 (4)
H2A0.12310.63810.15390.028*
C30.0115 (2)0.60781 (18)0.00522 (19)0.0239 (4)
H3A0.01810.68070.00770.029*
C40.1965 (2)0.34561 (19)0.21331 (19)0.0252 (4)
H4A0.18720.31570.14070.030*
H4B0.28410.36140.26570.030*
C50.1659 (2)0.24715 (19)0.42484 (18)0.0233 (4)
C60.2826 (3)0.3388 (2)0.4826 (2)0.0369 (5)
H6A0.32460.39600.44200.044*
C70.3369 (3)0.3449 (3)0.6016 (2)0.0450 (7)
H7A0.41550.40600.63990.054*
C80.2757 (3)0.2619 (3)0.6627 (2)0.0456 (7)
H8A0.31240.26690.74210.055*
C90.1597 (3)0.1711 (3)0.6061 (2)0.0435 (6)
H9A0.11840.11410.64730.052*
C100.1044 (3)0.1641 (2)0.4884 (2)0.0346 (5)
H10A0.02520.10320.45110.042*
C110.1028 (2)0.09916 (18)0.23379 (18)0.0225 (4)
C120.0021 (2)0.0079 (2)0.1606 (2)0.0340 (5)
H12A0.08290.01210.13150.041*
C130.0124 (3)0.0894 (2)0.1304 (3)0.0458 (7)
H13A0.05840.15000.08080.055*
C140.1316 (3)0.0966 (2)0.1738 (3)0.0422 (6)
H14A0.14080.16290.15470.051*
C150.2375 (3)0.0056 (2)0.2456 (2)0.0394 (6)
H15A0.31820.01010.27370.047*
C160.2240 (2)0.0923 (2)0.2760 (2)0.0314 (5)
H16A0.29550.15350.32440.038*
C170.3083 (2)0.16616 (19)0.0179 (2)0.0285 (5)
H17A0.29940.09420.01340.034*
C180.3884 (2)0.1896 (2)0.1201 (2)0.0323 (5)
H18A0.43050.13510.18290.039*
C190.4051 (2)0.2946 (2)0.12743 (19)0.0266 (4)
H19A0.45840.31200.19540.032*
C200.3411 (2)0.37443 (18)0.03170 (18)0.0221 (4)
C210.25879 (19)0.34513 (18)0.06730 (17)0.0203 (4)
C220.35395 (19)0.48708 (18)0.03267 (17)0.0203 (4)
C230.4471 (2)0.61545 (19)0.12338 (18)0.0228 (4)
C240.5343 (2)0.6453 (2)0.2205 (2)0.0284 (5)
H24A0.58460.59250.28460.034*
C250.5442 (2)0.7513 (2)0.2196 (2)0.0319 (5)
H25A0.60070.77080.28360.038*
C260.4696 (2)0.8321 (2)0.1225 (2)0.0321 (5)
H26A0.47930.90330.12280.039*
C270.3836 (2)0.8074 (2)0.0283 (2)0.0293 (5)
H27A0.33440.86190.03460.035*
C280.3696 (2)0.69847 (19)0.02664 (19)0.0233 (4)
C290.27640 (19)0.57019 (18)0.06501 (17)0.0208 (4)
C300.1861 (2)0.54033 (19)0.16478 (17)0.0213 (4)
C310.1007 (2)0.6216 (2)0.25919 (19)0.0272 (4)
H31A0.10130.69660.26070.033*
C320.0160 (2)0.5884 (2)0.3496 (2)0.0321 (5)
H32A0.04280.64130.41220.039*
C330.0201 (2)0.4748 (2)0.34555 (19)0.0304 (5)
H33A0.03590.45260.40770.037*
C340.18047 (19)0.42966 (19)0.16690 (17)0.0214 (4)
C350.2723 (3)0.0633 (3)0.3657 (3)0.0412 (6)
C360.3417 (4)0.0034 (4)0.4389 (3)0.0687 (11)
H36A0.41980.00950.41990.103*
H36B0.36270.08620.42740.103*
H36C0.28820.02250.51740.103*
B10.3624 (3)0.2824 (3)0.5497 (3)0.0415 (7)
F10.3397 (4)0.3829 (3)0.5988 (3)0.1497 (16)
F20.2814 (2)0.2991 (4)0.4946 (2)0.1521 (18)
F30.3415 (4)0.2126 (3)0.6392 (3)0.1330 (13)
F40.4840 (2)0.2329 (3)0.47575 (19)0.0965 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02530 (15)0.03051 (16)0.02609 (16)0.01641 (12)0.00980 (11)0.01035 (11)
P20.0219 (3)0.0217 (3)0.0183 (3)0.0115 (2)0.0070 (2)0.00549 (19)
N10.0339 (10)0.0211 (8)0.0254 (10)0.0120 (8)0.0094 (8)0.0054 (7)
N20.0240 (9)0.0328 (10)0.0186 (9)0.0149 (8)0.0074 (7)0.0058 (7)
N30.0220 (8)0.0247 (9)0.0244 (9)0.0103 (7)0.0085 (7)0.0052 (7)
N40.0230 (9)0.0243 (9)0.0239 (9)0.0097 (7)0.0090 (7)0.0021 (7)
N50.0222 (8)0.0267 (9)0.0211 (9)0.0115 (7)0.0080 (7)0.0044 (7)
N60.0364 (11)0.0447 (12)0.0473 (13)0.0256 (10)0.0234 (10)0.0239 (10)
C10.0260 (10)0.0210 (9)0.0223 (10)0.0100 (8)0.0137 (8)0.0071 (8)
C20.0301 (11)0.0208 (10)0.0224 (10)0.0094 (9)0.0133 (9)0.0030 (8)
C30.0318 (11)0.0188 (9)0.0266 (11)0.0118 (9)0.0154 (9)0.0055 (8)
C40.0257 (10)0.0267 (10)0.0262 (11)0.0122 (9)0.0122 (9)0.0092 (8)
C50.0277 (10)0.0276 (10)0.0190 (10)0.0173 (9)0.0067 (8)0.0024 (8)
C60.0361 (13)0.0379 (13)0.0299 (13)0.0126 (11)0.0062 (10)0.0005 (10)
C70.0399 (14)0.0537 (17)0.0315 (14)0.0204 (13)0.0034 (11)0.0143 (12)
C80.0491 (16)0.079 (2)0.0187 (12)0.0401 (16)0.0059 (11)0.0017 (12)
C90.0506 (16)0.0622 (18)0.0270 (13)0.0295 (15)0.0184 (12)0.0127 (12)
C100.0368 (13)0.0413 (13)0.0247 (12)0.0149 (11)0.0114 (10)0.0063 (10)
C110.0289 (10)0.0214 (9)0.0192 (10)0.0110 (9)0.0102 (8)0.0037 (8)
C120.0303 (12)0.0300 (12)0.0368 (13)0.0082 (10)0.0103 (10)0.0012 (10)
C130.0467 (16)0.0277 (12)0.0545 (18)0.0031 (12)0.0192 (14)0.0102 (12)
C140.0585 (17)0.0266 (12)0.0513 (17)0.0180 (12)0.0291 (14)0.0012 (11)
C150.0446 (15)0.0397 (14)0.0466 (16)0.0259 (12)0.0208 (12)0.0062 (12)
C160.0318 (12)0.0314 (12)0.0311 (12)0.0154 (10)0.0076 (10)0.0011 (9)
C170.0316 (11)0.0220 (10)0.0310 (12)0.0119 (9)0.0087 (10)0.0003 (9)
C180.0355 (12)0.0278 (11)0.0280 (12)0.0121 (10)0.0047 (10)0.0041 (9)
C190.0264 (11)0.0287 (11)0.0206 (10)0.0119 (9)0.0026 (8)0.0002 (8)
C200.0210 (9)0.0235 (10)0.0215 (10)0.0083 (8)0.0084 (8)0.0032 (8)
C210.0205 (9)0.0220 (9)0.0205 (10)0.0097 (8)0.0089 (8)0.0039 (8)
C220.0193 (9)0.0231 (10)0.0194 (10)0.0091 (8)0.0076 (8)0.0035 (8)
C230.0208 (9)0.0272 (10)0.0229 (10)0.0115 (8)0.0095 (8)0.0059 (8)
C240.0257 (11)0.0339 (12)0.0255 (11)0.0146 (10)0.0070 (9)0.0060 (9)
C250.0296 (11)0.0371 (12)0.0339 (13)0.0198 (10)0.0120 (10)0.0128 (10)
C260.0317 (12)0.0269 (11)0.0421 (14)0.0159 (10)0.0151 (11)0.0095 (10)
C270.0288 (11)0.0241 (11)0.0352 (13)0.0105 (9)0.0122 (10)0.0029 (9)
C280.0213 (10)0.0242 (10)0.0268 (11)0.0097 (8)0.0113 (8)0.0058 (8)
C290.0200 (9)0.0235 (10)0.0198 (10)0.0084 (8)0.0085 (8)0.0026 (8)
C300.0210 (9)0.0258 (10)0.0185 (10)0.0104 (8)0.0079 (8)0.0029 (8)
C310.0275 (11)0.0306 (11)0.0230 (11)0.0125 (9)0.0068 (9)0.0012 (9)
C320.0319 (12)0.0409 (13)0.0201 (11)0.0161 (11)0.0028 (9)0.0030 (9)
C330.0289 (11)0.0440 (13)0.0176 (10)0.0184 (11)0.0035 (9)0.0031 (9)
C340.0189 (9)0.0291 (10)0.0180 (10)0.0101 (8)0.0085 (8)0.0049 (8)
C350.0403 (14)0.0471 (15)0.0474 (16)0.0264 (13)0.0222 (13)0.0224 (13)
C360.075 (2)0.082 (3)0.069 (2)0.035 (2)0.051 (2)0.041 (2)
B10.0398 (16)0.0427 (16)0.0314 (15)0.0105 (14)0.0062 (13)0.0043 (12)
F10.203 (4)0.0699 (18)0.118 (3)0.039 (2)0.001 (3)0.0445 (17)
F20.0429 (13)0.326 (5)0.0545 (15)0.038 (2)0.0104 (11)0.029 (2)
F30.194 (4)0.138 (3)0.089 (2)0.106 (3)0.043 (2)0.058 (2)
F40.0443 (11)0.151 (2)0.0487 (13)0.0050 (13)0.0107 (10)0.0139 (14)
Geometric parameters (Å, º) top
Cu1—N22.0828 (19)C13—H13A0.9300
Cu1—N32.0628 (18)C14—C151.382 (4)
Cu1—N62.013 (2)C14—H14A0.9300
Cu1—P22.1883 (6)C15—C161.385 (3)
P2—C111.820 (2)C15—H15A0.9300
P2—C51.826 (2)C16—H16A0.9300
P2—C41.862 (2)C17—C181.384 (3)
N1—C11.389 (3)C17—H17A0.9300
N1—C41.435 (3)C18—C191.378 (3)
N1—H1A0.8600C18—H18A0.9300
N2—C331.331 (3)C19—C201.395 (3)
N2—C341.357 (3)C19—H19A0.9300
N3—C171.333 (3)C20—C211.402 (3)
N3—C211.353 (3)C20—C221.457 (3)
N4—C291.326 (3)C21—C341.461 (3)
N4—C281.354 (3)C22—C291.435 (3)
N5—C221.326 (3)C23—C241.422 (3)
N5—C231.351 (3)C23—C281.426 (3)
N6—C351.123 (3)C24—C251.361 (3)
C1—C21.396 (3)C24—H24A0.9300
C1—C3i1.400 (3)C25—C261.413 (4)
C2—C31.390 (3)C25—H25A0.9300
C2—H2A0.9300C26—C271.363 (3)
C3—C1i1.400 (3)C26—H26A0.9300
C3—H3A0.9300C27—C281.417 (3)
C4—H4A0.9700C27—H27A0.9300
C4—H4B0.9700C29—C301.461 (3)
C5—C61.389 (3)C30—C341.391 (3)
C5—C101.394 (3)C30—C311.405 (3)
C6—C71.394 (4)C31—C321.380 (3)
C6—H6A0.9300C31—H31A0.9300
C7—C81.370 (5)C32—C331.388 (3)
C7—H7A0.9300C32—H32A0.9300
C8—C91.377 (4)C33—H33A0.9300
C8—H8A0.9300C35—C361.460 (4)
C9—C101.380 (4)C36—H36A0.9600
C9—H9A0.9300C36—H36B0.9600
C10—H10A0.9300C36—H36C0.9600
C11—C121.386 (3)B1—F11.317 (4)
C11—C161.398 (3)B1—F41.336 (4)
C12—C131.384 (4)B1—F21.345 (4)
C12—H12A0.9300B1—F31.368 (4)
C13—C141.378 (4)
N6—Cu1—N3103.38 (8)C16—C15—H15A119.9
N6—Cu1—N2106.93 (8)C15—C16—C11119.9 (2)
N3—Cu1—N280.51 (7)C15—C16—H16A120.1
N6—Cu1—P2116.55 (6)C11—C16—H16A120.1
N3—Cu1—P2130.67 (5)N3—C17—C18123.2 (2)
N2—Cu1—P2111.75 (5)N3—C17—H17A118.4
C11—P2—C5102.19 (9)C18—C17—H17A118.4
C11—P2—C499.92 (10)C19—C18—C17119.2 (2)
C5—P2—C4104.86 (10)C19—C18—H18A120.4
C11—P2—Cu1121.19 (7)C17—C18—H18A120.4
C5—P2—Cu1108.62 (7)C18—C19—C20119.2 (2)
C4—P2—Cu1117.95 (7)C18—C19—H19A120.4
C1—N1—C4122.88 (19)C20—C19—H19A120.4
C1—N1—H1A118.6C19—C20—C21117.91 (19)
C4—N1—H1A118.6C19—C20—C22122.42 (19)
C33—N2—C34117.71 (19)C21—C20—C22119.64 (18)
C33—N2—Cu1129.25 (15)N3—C21—C20122.67 (19)
C34—N2—Cu1112.74 (14)N3—C21—C34116.87 (18)
C17—N3—C21117.82 (18)C20—C21—C34120.39 (18)
C17—N3—Cu1128.72 (15)N5—C22—C29121.64 (18)
C21—N3—Cu1113.35 (14)N5—C22—C20118.60 (18)
C29—N4—C28117.24 (18)C29—C22—C20119.75 (18)
C22—N5—C23117.20 (18)N5—C23—C24119.6 (2)
C35—N6—Cu1171.4 (3)N5—C23—C28121.26 (19)
N1—C1—C2119.23 (19)C24—C23—C28119.15 (19)
N1—C1—C3i123.28 (19)C25—C24—C23119.9 (2)
C2—C1—C3i117.44 (19)C25—C24—H24A120.0
C3—C2—C1121.5 (2)C23—C24—H24A120.0
C3—C2—H2A119.2C24—C25—C26120.8 (2)
C1—C2—H2A119.2C24—C25—H25A119.6
C2—C3—C1i121.04 (19)C26—C25—H25A119.6
C2—C3—H3A119.5C27—C26—C25121.1 (2)
C1i—C3—H3A119.5C27—C26—H26A119.5
N1—C4—P2115.05 (15)C25—C26—H26A119.5
N1—C4—H4A108.5C26—C27—C28119.7 (2)
P2—C4—H4A108.5C26—C27—H27A120.1
N1—C4—H4B108.5C28—C27—H27A120.1
P2—C4—H4B108.5N4—C28—C27119.6 (2)
H4A—C4—H4B107.5N4—C28—C23121.04 (19)
C6—C5—C10118.6 (2)C27—C28—C23119.3 (2)
C6—C5—P2124.84 (18)N4—C29—C22121.61 (19)
C10—C5—P2116.59 (18)N4—C29—C30118.87 (18)
C5—C6—C7119.9 (3)C22—C29—C30119.51 (18)
C5—C6—H6A120.0C34—C30—C31118.03 (19)
C7—C6—H6A120.0C34—C30—C29119.96 (18)
C8—C7—C6120.8 (3)C31—C30—C29121.99 (19)
C8—C7—H7A119.6C32—C31—C30119.0 (2)
C6—C7—H7A119.6C32—C31—H31A120.5
C7—C8—C9119.7 (2)C30—C31—H31A120.5
C7—C8—H8A120.2C31—C32—C33118.9 (2)
C9—C8—H8A120.2C31—C32—H32A120.6
C8—C9—C10120.3 (3)C33—C32—H32A120.6
C8—C9—H9A119.9N2—C33—C32123.5 (2)
C10—C9—H9A119.9N2—C33—H33A118.3
C9—C10—C5120.8 (3)C32—C33—H33A118.3
C9—C10—H10A119.6N2—C34—C30122.87 (19)
C5—C10—H10A119.6N2—C34—C21116.53 (18)
C12—C11—C16119.2 (2)C30—C34—C21120.54 (18)
C12—C11—P2119.89 (17)N6—C35—C36179.3 (3)
C16—C11—P2120.85 (17)C35—C36—H36A109.5
C13—C12—C11120.5 (2)C35—C36—H36B109.5
C13—C12—H12A119.8H36A—C36—H36B109.5
C11—C12—H12A119.8C35—C36—H36C109.5
C14—C13—C12120.1 (3)H36A—C36—H36C109.5
C14—C13—H13A119.9H36B—C36—H36C109.5
C12—C13—H13A119.9F1—B1—F4111.9 (3)
C13—C14—C15120.1 (2)F1—B1—F2110.7 (4)
C13—C14—H14A120.0F4—B1—F2108.9 (3)
C15—C14—H14A120.0F1—B1—F3103.6 (3)
C14—C15—C16120.2 (2)F4—B1—F3110.1 (3)
C14—C15—H15A119.9F2—B1—F3111.5 (3)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu2(C2H3N)2(C18H10N4)2(C32H30N2P2)](BF4)2
Mr1451.93
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)12.1074 (3), 12.3354 (2), 12.6262 (3)
α, β, γ (°)84.905 (1), 68.250 (1), 66.732 (1)
V3)1605.35 (6)
Z1
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.32 × 0.24 × 0.20
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.786, 0.858
No. of measured, independent and
observed [I > 2σ(I)] reflections
15862, 7288, 6153
Rint0.020
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.119, 1.08
No. of reflections7288
No. of parameters443
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.58

Computer programs: CrystalClear (Rigaku 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N22.0828 (19)Cu1—N62.013 (2)
Cu1—N32.0628 (18)Cu1—P22.1883 (6)
 

Acknowledgements

This work was supported by the Natural Science Foundation of Guangxi Province (grant No. 0832100) and the Program for Excellent Talents in Guangxi Higher Education Institutions.

References

First citationAucott, S. M., Slawin, A. M. Z. & Woollins, J. D. (2002). Eur. J. Inorg. Chem. pp. 2408–2418.  CrossRef Google Scholar
First citationChipot, C., Jaffe, R., Maigret, B., Pearlman, D. A. & Kollman, P. A. (1996). J. Am. Chem. Soc. 118, 11217–11224.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSaenger, W. (1984). Principles of Nucleic Acid Structure, pp. 132–140. New York: Springer-Verlag.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-J., Gui, L.-C., Ni, Q.-L., Liao, Y.-F., Jiang, X.-F., Tang, L.-H., Zhang, Z. & Wu, Q. (2008). CrystEngComm, 10, 1003–1010.  Web of Science CSD CrossRef CAS Google Scholar
First citationWaters, M. L. (2002). Curr. Opin. Chem. Biol. 6, 736–741.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds