metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[1-(2-naphthyl­imino­meth­yl)-2-naphtholato-κ2N,O]copper(II)

aSchool of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China, and bResearch Center of Medical Chemistry and Chemical Biology, Chongqing Technology and Business University, Chongqing 400067, People's Republic of China
*Correspondence e-mail: lilianzhi1963@yahoo.com.cn

(Received 10 July 2009; accepted 2 August 2009; online 8 August 2009)

In the title complex, [Cu(C21H14NO)2], the CuII atom, lying on an inversion center, is coordinated by two bidentate 1-(2-naphthyl­imino­meth­yl)-2-naphtholate ligands in a trans arrangement, forming a slightly distorted square-planar coordination geometry. The mean planes of two naphthyl systems of the ligand make a dihedral angle of 40.32 (11)°.

Related literature

For general background to Schiff base complexes, see: Gamovski et al. (1993[Gamovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Tarafder et al. (2002[Tarafder, M. T. H., Khoo, T.-J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2691-2698.]); Yang et al. (2000[Yang, Z.-Y., Yang, R.-D., Li, F.-S. & Yu, K.-B. (2000). Polyhedron, 19, 2599-2604.]). For related structures, see: Unver et al. (2003[Unver, H., Mehmet, Z. D. & Nuri, D. T. (2003). J. Chem. Crystallogr. 33, 253-256.]); Wang et al. (2007[Wang, L., Dong, J.-F., Li, L.-Z., Li, L.-W. & Wang, D.-Q. (2007). Acta Cryst. E63, m1059-m1060.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C21H14NO)2]

  • Mr = 656.20

  • Monoclinic, P 21 /n

  • a = 5.648 (3) Å

  • b = 18.578 (8) Å

  • c = 14.796 (6) Å

  • β = 93.635 (5)°

  • V = 1549.4 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 298 K

  • 0.35 × 0.10 × 0.04 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.780, Tmax = 0.971

  • 7695 measured reflections

  • 2721 independent reflections

  • 1869 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.121

  • S = 1.10

  • 2721 reflections

  • 214 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.874 (3)
Cu1—N1 2.011 (3)

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base complexes play an important role in the stereochemical models of transition metal coordination chemistry, with their easy preparation, diversity and structural variation (Gamovski et al., 1993). They aslo have been intensively investigated owing to their strong coordination capability and diverse biological activities, such as antibacterial, and antitumor activities (Tarafder et al., 2002; Yang et al., 2000). As part of a series of the studies (Wang et al., 2007), we report here the synthesis and structure of the title compound, a new copper(II) complex with a bidentate Schiff base ligand derived from the condensation of 2-hydroxy-1-naphthyldehyde and 2-naphthylamine.

The molecular structure of the title complex is shown in Fig. 1. The CuII atom, lying on an inversion center, is coordinated by two bidentate ligands in a trans arrangement, forming a CuN2O2 square-planar configuration (Table 1), with the typical values of Cu—O and Cu—N bond lengths (Unver et al., 2003). The mean planes of the chelate ring N1, C1, C2, C3, O1, Cu1 (A), bicycles C2—C11 (B) and C12—C21 (C) make the following dihedral angles: A/B 18.92 (19), A/C 58.14 (12) and B/C 40.32 (11)°. Additionally, the relatively short intermolecular distance H12···C7i (symmetry code: (i) x + 1, y, z) of 2.90Å indicates the possible prescence of C—H···π interaction, which forms a one-dimensional chain structure (Fig. 2).

Related literature top

For general background to Schiff base complexes, see: Gamovski et al. (1993); Tarafder et al. (2002); Yang et al. (2000). For related structures, see: Unver et al. (2003); Wang et al. (2007).

Experimental top

2-Naphthylamine(0.143 g, 1 mmol) was dissolved in hot methanol (10 ml) and added dropwise to a methanol solution (3 ml) of 2-hydroxy-1-naphthyldehyde (0.172 g, 1 mmol). The mixture was then stirred at 323 K for 2 h. Subsequently, an aqueous solution (2 ml) of cupric acetate hydrate (0.200 g, 1 mmol) was added dropwise and stirred for another 5 h. The solution was held at room temperature for 15 d, whereupon green needle crystals suitable for X-ray diffraction were obtained.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) -x + 1, -y + 1, -z + 1].
[Figure 2] Fig. 2. One-dimensional chain structure of the title compound, connected by weak C—H···π interactions (dashed lines).
Bis[1-(2-naphthyliminomethyl)-2-naphtholato-κ2N,O]copper(II) top
Crystal data top
[Cu(C21H14NO)2]F(000) = 678
Mr = 656.20Dx = 1.407 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2286 reflections
a = 5.648 (3) Åθ = 2.2–25.2°
b = 18.578 (8) ŵ = 0.75 mm1
c = 14.796 (6) ÅT = 298 K
β = 93.635 (5)°Needle, green
V = 1549.4 (12) Å30.35 × 0.10 × 0.04 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD
diffractometer
2721 independent reflections
Radiation source: fine-focus sealed tube1869 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.780, Tmax = 0.971k = 2221
7695 measured reflectionsl = 1517
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.P)2 + 3.3732P]
where P = (Fo2 + 2Fc2)/3
2721 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
[Cu(C21H14NO)2]V = 1549.4 (12) Å3
Mr = 656.20Z = 2
Monoclinic, P21/nMo Kα radiation
a = 5.648 (3) ŵ = 0.75 mm1
b = 18.578 (8) ÅT = 298 K
c = 14.796 (6) Å0.35 × 0.10 × 0.04 mm
β = 93.635 (5)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2721 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1869 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.971Rint = 0.062
7695 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.10Δρmax = 0.47 e Å3
2721 reflectionsΔρmin = 0.75 e Å3
214 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.0330 (2)
N10.4680 (6)0.58180 (17)0.5874 (2)0.0309 (9)
O10.2210 (5)0.45773 (16)0.5372 (2)0.0411 (8)
C10.3354 (8)0.5772 (2)0.6562 (3)0.0341 (11)
H10.34870.61480.69770.041*
C20.1725 (7)0.5215 (2)0.6753 (3)0.0297 (10)
C30.1107 (8)0.4686 (2)0.6098 (3)0.0340 (10)
C40.0904 (8)0.4233 (2)0.6237 (3)0.0364 (11)
H40.13360.38840.58070.044*
C50.2175 (8)0.4301 (2)0.6970 (3)0.0410 (12)
H50.35070.40130.70220.049*
C60.1527 (8)0.4806 (2)0.7671 (3)0.0372 (11)
C70.0473 (8)0.5251 (2)0.7577 (3)0.0327 (10)
C80.1156 (9)0.5708 (3)0.8321 (3)0.0448 (12)
H80.25120.59900.82980.054*
C90.0143 (10)0.5740 (3)0.9069 (3)0.0552 (14)
H90.03240.60500.95410.066*
C100.2161 (10)0.5315 (3)0.9131 (4)0.0588 (15)
H100.30520.53480.96370.071*
C110.2825 (9)0.4848 (3)0.8445 (3)0.0500 (13)
H110.41490.45560.84940.060*
C120.7489 (8)0.6684 (2)0.6569 (3)0.0355 (11)
H120.73660.64580.71250.043*
C130.6125 (7)0.6447 (2)0.5833 (3)0.0295 (10)
C140.6260 (9)0.6813 (2)0.4998 (3)0.0398 (11)
H140.52920.66690.44990.048*
C150.7776 (9)0.7369 (2)0.4917 (3)0.0432 (12)
H150.78290.76020.43620.052*
C160.9284 (8)0.7605 (2)0.5658 (3)0.0418 (12)
C170.9088 (8)0.7268 (2)0.6506 (3)0.0362 (11)
C181.0563 (9)0.7503 (3)0.7259 (3)0.0492 (13)
H181.04040.73000.78270.059*
C191.2210 (10)0.8026 (3)0.7154 (4)0.0671 (17)
H191.31910.81690.76500.081*
C201.2455 (10)0.8353 (3)0.6308 (5)0.0677 (17)
H201.35910.87090.62440.081*
C211.1009 (10)0.8144 (3)0.5583 (4)0.0580 (15)
H211.11670.83630.50250.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0312 (4)0.0303 (4)0.0371 (4)0.0027 (4)0.0018 (3)0.0056 (4)
N10.031 (2)0.0240 (19)0.037 (2)0.0042 (16)0.0053 (18)0.0032 (16)
O10.0391 (19)0.0390 (18)0.0447 (19)0.0039 (15)0.0004 (16)0.0144 (15)
C10.030 (3)0.034 (2)0.037 (3)0.001 (2)0.005 (2)0.005 (2)
C20.024 (2)0.029 (2)0.035 (2)0.0015 (18)0.0035 (19)0.0003 (18)
C30.030 (3)0.031 (2)0.040 (3)0.000 (2)0.009 (2)0.001 (2)
C40.025 (2)0.035 (3)0.049 (3)0.003 (2)0.005 (2)0.002 (2)
C50.027 (3)0.041 (3)0.055 (3)0.006 (2)0.004 (2)0.009 (2)
C60.035 (3)0.038 (3)0.039 (3)0.008 (2)0.001 (2)0.012 (2)
C70.030 (3)0.032 (2)0.035 (2)0.0029 (19)0.004 (2)0.0051 (19)
C80.043 (3)0.054 (3)0.037 (3)0.007 (2)0.001 (2)0.005 (2)
C90.071 (4)0.058 (3)0.036 (3)0.002 (3)0.004 (3)0.002 (2)
C100.062 (4)0.068 (4)0.049 (3)0.005 (3)0.020 (3)0.009 (3)
C110.045 (3)0.047 (3)0.059 (3)0.000 (2)0.007 (3)0.009 (3)
C120.043 (3)0.036 (2)0.027 (2)0.003 (2)0.003 (2)0.002 (2)
C130.027 (2)0.027 (2)0.033 (3)0.0024 (19)0.001 (2)0.0038 (19)
C140.047 (3)0.038 (3)0.034 (3)0.007 (2)0.006 (2)0.002 (2)
C150.054 (3)0.042 (3)0.033 (3)0.003 (2)0.000 (2)0.002 (2)
C160.040 (3)0.034 (3)0.052 (3)0.003 (2)0.006 (2)0.005 (2)
C170.030 (3)0.033 (3)0.046 (3)0.001 (2)0.003 (2)0.012 (2)
C180.053 (3)0.042 (3)0.050 (3)0.002 (3)0.016 (3)0.009 (2)
C190.057 (4)0.061 (4)0.081 (5)0.011 (3)0.013 (3)0.027 (3)
C200.050 (4)0.058 (4)0.094 (5)0.018 (3)0.002 (3)0.016 (4)
C210.059 (4)0.045 (3)0.070 (4)0.014 (3)0.008 (3)0.001 (3)
Geometric parameters (Å, º) top
Cu1—O11.874 (3)C9—H90.9300
Cu1—O1i1.874 (3)C10—C111.369 (7)
Cu1—N1i2.011 (3)C10—H100.9300
Cu1—N12.011 (3)C11—H110.9300
N1—C11.304 (5)C12—C131.367 (6)
N1—C131.428 (5)C12—C171.417 (6)
O1—C31.292 (5)C12—H120.9300
C1—C21.424 (6)C13—C141.416 (6)
C1—H10.9300C14—C151.352 (6)
C2—C31.409 (6)C14—H140.9300
C2—C71.449 (6)C15—C161.414 (6)
C3—C41.439 (6)C15—H150.9300
C4—C51.344 (6)C16—C211.406 (6)
C4—H40.9300C16—C171.413 (6)
C5—C61.429 (6)C17—C181.418 (6)
C5—H50.9300C18—C191.361 (7)
C6—C111.401 (6)C18—H180.9300
C6—C71.413 (6)C19—C201.406 (8)
C7—C81.425 (6)C19—H190.9300
C8—C91.367 (7)C20—C211.363 (7)
C8—H80.9300C20—H200.9300
C9—C101.395 (7)C21—H210.9300
O1—Cu1—O1i180.00 (16)C11—C10—C9119.7 (5)
O1—Cu1—N1i89.07 (13)C11—C10—H10120.1
O1i—Cu1—N1i90.93 (13)C9—C10—H10120.1
O1—Cu1—N190.93 (13)C10—C11—C6120.6 (5)
O1i—Cu1—N189.07 (13)C10—C11—H11119.7
N1i—Cu1—N1180.00 (15)C6—C11—H11119.7
C1—N1—C13116.4 (3)C13—C12—C17121.6 (4)
C1—N1—Cu1122.1 (3)C13—C12—H12119.2
C13—N1—Cu1121.0 (3)C17—C12—H12119.2
C3—O1—Cu1129.6 (3)C12—C13—C14118.7 (4)
N1—C1—C2127.8 (4)C12—C13—N1121.6 (4)
N1—C1—H1116.1C14—C13—N1119.6 (4)
C2—C1—H1116.1C15—C14—C13121.0 (4)
C3—C2—C1120.4 (4)C15—C14—H14119.5
C3—C2—C7119.8 (4)C13—C14—H14119.5
C1—C2—C7119.3 (4)C14—C15—C16121.4 (4)
O1—C3—C2124.7 (4)C14—C15—H15119.3
O1—C3—C4117.0 (4)C16—C15—H15119.3
C2—C3—C4118.3 (4)C21—C16—C17118.6 (5)
C5—C4—C3121.8 (4)C21—C16—C15123.1 (5)
C5—C4—H4119.1C17—C16—C15118.3 (4)
C3—C4—H4119.1C16—C17—C12119.0 (4)
C4—C5—C6121.5 (4)C16—C17—C18119.1 (4)
C4—C5—H5119.3C12—C17—C18121.9 (4)
C6—C5—H5119.3C19—C18—C17120.2 (5)
C11—C6—C7120.7 (4)C19—C18—H18119.9
C11—C6—C5120.5 (4)C17—C18—H18119.9
C7—C6—C5118.8 (4)C18—C19—C20121.2 (5)
C6—C7—C8116.8 (4)C18—C19—H19119.4
C6—C7—C2119.5 (4)C20—C19—H19119.4
C8—C7—C2123.7 (4)C21—C20—C19119.3 (5)
C9—C8—C7121.3 (5)C21—C20—H20120.4
C9—C8—H8119.4C19—C20—H20120.4
C7—C8—H8119.4C20—C21—C16121.7 (5)
C8—C9—C10120.8 (5)C20—C21—H21119.1
C8—C9—H9119.6C16—C21—H21119.1
C10—C9—H9119.6
O1—Cu1—N1—C119.0 (3)C2—C7—C8—C9177.5 (4)
O1i—Cu1—N1—C1161.0 (3)C7—C8—C9—C101.2 (8)
O1—Cu1—N1—C13168.7 (3)C8—C9—C10—C111.3 (8)
O1i—Cu1—N1—C1311.3 (3)C9—C10—C11—C61.5 (8)
N1i—Cu1—O1—C3161.7 (4)C7—C6—C11—C100.9 (7)
N1—Cu1—O1—C318.3 (4)C5—C6—C11—C10177.9 (4)
C13—N1—C1—C2178.5 (4)C17—C12—C13—C142.4 (6)
Cu1—N1—C1—C28.8 (6)C17—C12—C13—N1174.0 (4)
N1—C1—C2—C310.4 (7)C1—N1—C13—C1247.9 (6)
N1—C1—C2—C7177.7 (4)Cu1—N1—C13—C12124.9 (4)
Cu1—O1—C3—C25.6 (6)C1—N1—C13—C14135.7 (4)
Cu1—O1—C3—C4174.8 (3)Cu1—N1—C13—C1451.6 (5)
C1—C2—C3—O113.0 (6)C12—C13—C14—C152.7 (7)
C7—C2—C3—O1175.1 (4)N1—C13—C14—C15173.8 (4)
C1—C2—C3—C4166.6 (4)C13—C14—C15—C160.1 (7)
C7—C2—C3—C45.3 (6)C14—C15—C16—C21175.0 (5)
O1—C3—C4—C5180.0 (4)C14—C15—C16—C173.1 (7)
C2—C3—C4—C50.4 (6)C21—C16—C17—C12174.9 (4)
C3—C4—C5—C62.9 (7)C15—C16—C17—C123.3 (7)
C4—C5—C6—C11177.5 (4)C21—C16—C17—C182.6 (7)
C4—C5—C6—C71.2 (6)C15—C16—C17—C18179.2 (4)
C11—C6—C7—C83.2 (6)C13—C12—C17—C160.6 (7)
C5—C6—C7—C8175.5 (4)C13—C12—C17—C18178.0 (4)
C11—C6—C7—C2177.6 (4)C16—C17—C18—C192.8 (7)
C5—C6—C7—C23.7 (6)C12—C17—C18—C19174.6 (5)
C3—C2—C7—C66.9 (6)C17—C18—C19—C201.4 (8)
C1—C2—C7—C6165.0 (4)C18—C19—C20—C210.2 (9)
C3—C2—C7—C8172.2 (4)C19—C20—C21—C160.4 (9)
C1—C2—C7—C815.9 (6)C17—C16—C21—C201.1 (8)
C6—C7—C8—C93.4 (7)C15—C16—C21—C20179.2 (5)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C21H14NO)2]
Mr656.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)5.648 (3), 18.578 (8), 14.796 (6)
β (°) 93.635 (5)
V3)1549.4 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.35 × 0.10 × 0.04
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.780, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
7695, 2721, 1869
Rint0.062
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.121, 1.10
No. of reflections2721
No. of parameters214
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.75

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O11.874 (3)Cu1—N12.011 (3)
 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province (No. Y2004B02) for a research grant.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGamovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Khoo, T.-J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2691–2698.  Web of Science CSD CrossRef CAS Google Scholar
First citationUnver, H., Mehmet, Z. D. & Nuri, D. T. (2003). J. Chem. Crystallogr. 33, 253–256.  Web of Science CSD CrossRef Google Scholar
First citationWang, L., Dong, J.-F., Li, L.-Z., Li, L.-W. & Wang, D.-Q. (2007). Acta Cryst. E63, m1059–m1060.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, Z.-Y., Yang, R.-D., Li, F.-S. & Yu, K.-B. (2000). Polyhedron, 19, 2599–2604.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds