metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1106-m1107

Bis(4-amino-3,5-di-2-pyridyl-1,2,4-triazole-κ2N1,N5)di­aqua­zinc(II) dinitrate

aState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: huajia@jlu.edu.cn

(Received 17 July 2009; accepted 13 August 2009; online 22 August 2009)

The asymmetric unit of the title compound, [Zn(C12H10N6)2(H2O)2](NO3)2, contains one-half of the complex molecule and one NO3 anion. The ZnII ion displays a distorted tetra­gonal-pyramidal geometry with four N atoms from two chelating 4-amino-3,5-di-2-pyridyl-1,2,4-triazole (2-bpt) lig­ands in the basal plane and one water mol­ecule occupying the apical site. Another water mol­ecule at the opposite of the apical site has a weak inter­action with the ZnII ion [Zn—O = 2.852 (5) Å]. The ZnII ion and the two water mol­ecules lie on a twofold rotation axis. An extensive system of hydrogen bonds involving the NH2 groups of the 2-bpt ligands, water mol­ecules and nitrate anions links all residues into a three-dimensional network.

Related literature

For transition metal complexes of 4-amino-3,5-di-2-pyridyl-1,2,4-triazole (2-bpt), see: Shao & Geng (2009[Shao, C.-F. & Geng, L.-C. (2009). Acta Cryst. E65, m511-m512.]); Hartmann & Vahrenkamp (1995[Hartmann, U. & Vahrenkamp, H. (1995). Inorg. Chim. Acta, 239, 13-17.]); Keij et al. (1984[Keij, F. S., Graaff, R. A. G., Haasnoot, J. G. & Reedijk, J. (1984). J. Chem. Soc. Dalton Trans. pp. 2093-2097.]); Kitchen et al. (2008[Kitchen, J. A., Noble, A., Brandt, C. D., Moubaraki, B., Murray, K. S. & Brooker, S. (2008). Inorg. Chem. 47, 9450-9458.]); Koningsbruggen et al. (1998[Koningsbruggen, P. J., Goubitz, K., Haasnoot, J. G. & Reedijk, J. (1998). Inorg. Chim. Acta, 268, 37-42.]); Tong et al. (2007[Tong, M. L., Hong, C. G., Zheng, L. L., Peng, M. X., Gaita-Arino, A. & Juan, J. M. C. (2007). Eur. J. Inorg. Chem. pp. 3710-3717.]). For rare earth metal complexes of 2-bpt, see: Garcia et al. (1986[Garcia, M. P., Manero, J. A., Oro, L. A., Apreda, M. C., Cano, F. H., Foces, C. F., Haasnot, J. G., Prins, R. & Reedijk, J. (1986). Inorg. Chim. Acta, 122, 235-241.]); Rheingold et al. (1993[Rheingold, A. L., Saisuwan, P. & Thomas, N. C. (1993). Inorg. Chim. Acta, 214, 41-45.]). For hydrogen-bonding inter­actions involving 2-bpt in organic compounds, see: Mernari et al. (1998[Mernari, B., El Azhar, M., El Attari, H., Lagrenée, M. & Pierrot, M. (1998). Acta Cryst. C54, 1983-1986.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C12H10N6)2(H2O)2](NO3)2

  • Mr = 701.94

  • Monoclinic, C 2/c

  • a = 14.856 (3) Å

  • b = 9.4185 (19) Å

  • c = 20.230 (4) Å

  • β = 91.99 (3)°

  • V = 2829 (1) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 298 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.797, Tmax = 0.828

  • 13550 measured reflections

  • 3210 independent reflections

  • 2424 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.101

  • S = 1.03

  • 3210 reflections

  • 228 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1W 2.008 (3)
Zn1—O2W 2.852 (5)
Zn1—N1 2.078 (2)
Zn1—N5 2.141 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O2i 0.94 (4) 2.25 (4) 3.100 (3) 149 (3)
N4—H4A⋯O2 0.94 (4) 2.55 (4) 3.192 (4) 126 (3)
N4—H4B⋯N6 0.89 (4) 2.13 (4) 2.875 (3) 141 (3)
N4—H4B⋯O3 0.89 (4) 2.43 (4) 3.005 (3) 122 (3)
O1W—H1W⋯O3ii 0.79 (3) 1.93 (3) 2.714 (3) 170 (3)
O2W—H2W⋯O1iii 0.92 (5) 2.02 (5) 2.900 (4) 161 (5)
Symmetry codes: (i) -x, -y+1, -z+2; (ii) [x, -y, z-{\script{1\over 2}}]; (iii) [x, -y+1, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, 4-amino-3,5-di-2-pyridyl-1,2,4-triazole (2-bpt) has been used as ligand because it has potential ability of multi-coordination modes, generating hydrogen-bonding and/or aromatic stacking interactions. The zinc(II) complex of 2-bpt has been reported previously. Hartmann & Vahrenkamp (1995) prepared the complexes based on 2-bpt with Zn(ClO4)2, ZnCl2, Zn(NO3)2 and Zn(BF4)2. But they just obtained the single-crystal structure of Zn(ClO4)2 complex, in which ZnII atom adopts octahedral geometry. Herein, we reported the crystal structure of the title compound obtained by reacting 2-bpt with Zn(NO3)2, in which 2-bpt acts as a chelating ligand and hydrogen-bonding interactions play an important role in stabilizing the solid-state structure.

The structure analysis reveals that the asymmetric unit of the title compund contains half a ZnII atom, one 2-bpt molecule, two half water molecules and one NO3- anion. As depicted in Fig. 1, the distorted tetragonal pyramidal ZnII atom is located on an inversion center. The basal plane is defined by four N atoms from two 2-bpt ligands with a chelating mode, and the apical site is occupied by one water molecule (O1W) with a Zn—O distance of 2.008 (3)Å (Table 1). Another water molecule (O2W) has a weak interaction with the Zn atom [Zn1—O2W = 2.852 (5) Å], which makes the crystal structure differ from the recently reported nickel complex (Shao & Geng, 2009) because of Jahn-Teller effect. The 2-bpt molecule exhibits trans-conformation. The two 2-bpt molecules are not coplanar, with a dihedral angle of 48.54 (5)°. N—H···O, N—H···N and O—H···O hydrogen bonds are observed in the crystal structure (Table 2; Fig. 2).

Related literature top

For transition metal complexes of 4-amino-3,5-di-2-pyridyl-1,2,4-triazole (2-bpt), see: Shao & Geng (2009); Hartmann & Vahrenkamp (1995); Keij et al. (1984); Kitchen et al. (2008); Koningsbruggen et al. (1998); Tong et al. (2007). For rare earth metal complexes of 2-bpt, see: Garcia et al. (1986); Rheingold et al. (1993). For hydrogen-bonding interactions involving 2-bpt in organic compounds, see: Mernari et al. (1998).

Experimental top

To an ethanol solution (20 ml) of 2-bpt (0.012 g, 0.05 mmol) was added an aqueous solution (5 ml) of Zn(NO3)2.6H2O (0.018 g, 0.05 mmol) with stirring. After vigorous stirring for ca 40 min, the resultant solution was filtered and left to stand at room temperature. Colorless block crystals suitable for X-ray analysis were produced by slow evaporation of the solvent for two weeks.

Refinement top

C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). H atoms attached to N atom were found in a difference Fourier map. Their coordinates were refined and Uiso factors were fixed. H atoms of water molecules were found in a difference Fourier map and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) -x, y, 3/2 - z.]
[Figure 2] Fig. 2. The crystal packing of the title compound. Dashed lines denote hydrogen bonds.
Bis(4-amino-3,5-di-2-pyridyl-1,2,4-triazole- κ2N1,N5)diaquazinc(II) dinitrate top
Crystal data top
[Zn(C12H10N6)2(H2O)2](NO3)2F(000) = 1440
Mr = 701.94Dx = 1.648 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3210 reflections
a = 14.856 (3) Åθ = 3.2–27.4°
b = 9.4185 (19) ŵ = 0.95 mm1
c = 20.230 (4) ÅT = 298 K
β = 91.99 (3)°Block, colorless
V = 2829 (1) Å30.25 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
3210 independent reflections
Radiation source: sealed tube2424 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ϕ and ω scansθmax = 27.4°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.797, Tmax = 0.828k = 1212
13550 measured reflectionsl = 2226
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0336P)2 + 4.1918P]
where P = (Fo2 + 2Fc2)/3
3210 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Zn(C12H10N6)2(H2O)2](NO3)2V = 2829 (1) Å3
Mr = 701.94Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.856 (3) ŵ = 0.95 mm1
b = 9.4185 (19) ÅT = 298 K
c = 20.230 (4) Å0.25 × 0.20 × 0.20 mm
β = 91.99 (3)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3210 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2424 reflections with I > 2σ(I)
Tmin = 0.797, Tmax = 0.828Rint = 0.067
13550 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.32 e Å3
3210 reflectionsΔρmin = 0.64 e Å3
228 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.04107 (5)0.75000.03188 (15)
O1W0.00000.1721 (3)0.75000.0441 (8)
O2W0.00000.3439 (5)0.75000.1050 (19)
O10.09893 (16)0.4526 (3)1.17312 (12)0.0646 (7)
O20.03688 (16)0.4946 (2)1.07668 (12)0.0586 (6)
O30.01516 (15)0.3294 (2)1.13778 (10)0.0511 (6)
N10.03975 (14)0.0690 (2)0.84865 (10)0.0298 (5)
N20.11637 (14)0.0466 (2)0.88711 (10)0.0304 (5)
N30.01446 (13)0.1534 (2)0.94627 (9)0.0250 (4)
N40.03229 (16)0.2187 (3)0.99862 (11)0.0345 (5)
N50.12105 (14)0.1149 (2)0.79303 (10)0.0305 (5)
N60.13761 (15)0.1407 (2)1.06063 (10)0.0335 (5)
N70.04037 (16)0.4274 (2)1.12933 (12)0.0371 (5)
C10.02138 (16)0.1310 (3)0.88464 (11)0.0251 (5)
C20.11171 (16)0.1616 (3)0.85638 (12)0.0267 (5)
C30.18075 (18)0.2271 (3)0.88886 (14)0.0349 (6)
H30.17200.25990.93200.080*
C40.26341 (18)0.2426 (3)0.85559 (15)0.0409 (7)
H40.31120.28590.87620.080*
C50.27402 (18)0.1930 (3)0.79131 (15)0.0428 (7)
H50.32910.20140.76840.080*
C60.20152 (18)0.1311 (3)0.76189 (13)0.0378 (7)
H60.20870.09900.71850.080*
C70.10017 (17)0.0992 (3)0.94616 (12)0.0268 (5)
C80.16653 (17)0.0977 (3)1.00174 (12)0.0282 (5)
C90.25491 (18)0.0556 (3)0.99173 (13)0.0331 (6)
H90.27260.02560.95030.080*
C100.31574 (18)0.0597 (3)1.04516 (15)0.0393 (7)
H100.37500.03061.04040.080*
C110.2877 (2)0.1073 (3)1.10541 (15)0.0416 (7)
H110.32790.11311.14150.080*
C120.1988 (2)0.1460 (3)1.11125 (13)0.0381 (6)
H120.18020.17741.15220.080*
H4A0.026 (3)0.317 (4)0.9919 (19)0.080*
H4B0.004 (3)0.204 (4)1.034 (2)0.080*
H1W0.001 (2)0.214 (3)0.7165 (14)0.046 (10)*
H2W0.040 (3)0.410 (5)0.734 (3)0.13 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0277 (2)0.0478 (3)0.0200 (2)0.0000.00160 (16)0.000
O1W0.066 (2)0.0431 (18)0.0229 (16)0.0000.0029 (15)0.000
O2W0.151 (5)0.057 (3)0.111 (4)0.0000.071 (4)0.000
O10.0634 (15)0.0664 (16)0.0616 (16)0.0025 (13)0.0322 (13)0.0026 (13)
O20.0622 (15)0.0615 (15)0.0514 (14)0.0047 (12)0.0083 (12)0.0277 (12)
O30.0537 (13)0.0614 (15)0.0383 (12)0.0128 (12)0.0016 (10)0.0083 (10)
N10.0270 (11)0.0368 (13)0.0253 (11)0.0028 (9)0.0030 (9)0.0018 (9)
N20.0271 (11)0.0375 (12)0.0261 (11)0.0024 (10)0.0054 (9)0.0002 (10)
N30.0267 (10)0.0266 (11)0.0215 (10)0.0003 (9)0.0009 (8)0.0023 (8)
N40.0344 (12)0.0418 (13)0.0273 (12)0.0038 (11)0.0018 (10)0.0097 (10)
N50.0278 (11)0.0394 (13)0.0242 (11)0.0010 (10)0.0028 (9)0.0017 (9)
N60.0422 (13)0.0328 (12)0.0250 (11)0.0006 (10)0.0047 (10)0.0003 (9)
N70.0366 (13)0.0393 (14)0.0350 (13)0.0044 (11)0.0049 (10)0.0015 (11)
C10.0262 (12)0.0264 (12)0.0225 (12)0.0008 (10)0.0026 (10)0.0001 (10)
C20.0278 (12)0.0245 (12)0.0275 (13)0.0000 (10)0.0022 (10)0.0012 (10)
C30.0326 (14)0.0338 (14)0.0380 (15)0.0030 (12)0.0006 (12)0.0029 (12)
C40.0293 (14)0.0428 (16)0.0505 (18)0.0073 (12)0.0015 (13)0.0043 (14)
C50.0302 (14)0.0546 (19)0.0430 (17)0.0058 (13)0.0079 (13)0.0075 (14)
C60.0300 (14)0.0540 (18)0.0288 (14)0.0012 (13)0.0068 (11)0.0038 (13)
C70.0278 (12)0.0265 (12)0.0261 (13)0.0003 (10)0.0014 (10)0.0010 (10)
C80.0328 (13)0.0265 (13)0.0252 (12)0.0028 (11)0.0027 (11)0.0017 (10)
C90.0317 (13)0.0338 (14)0.0334 (14)0.0006 (12)0.0040 (11)0.0006 (12)
C100.0320 (14)0.0390 (16)0.0463 (17)0.0017 (12)0.0092 (13)0.0050 (13)
C110.0438 (17)0.0413 (16)0.0384 (16)0.0059 (13)0.0173 (13)0.0066 (13)
C120.0479 (17)0.0404 (16)0.0251 (13)0.0030 (13)0.0097 (12)0.0019 (12)
Geometric parameters (Å, º) top
Zn1—O1W2.008 (3)N6—C121.346 (3)
Zn1—O2W2.852 (5)C1—C21.469 (3)
Zn1—N12.078 (2)C2—C31.382 (4)
Zn1—N52.141 (2)C3—C41.387 (4)
O1W—H1W0.79 (3)C3—H30.9300
O2W—H2W0.92 (5)C4—C51.386 (4)
O1—N71.243 (3)C4—H40.9300
O2—N71.238 (3)C5—C61.378 (4)
O3—N71.253 (3)C5—H50.9300
N1—C11.319 (3)C6—H60.9300
N1—N21.373 (3)C7—C81.469 (3)
N2—C71.323 (3)C8—C91.393 (4)
N3—C11.355 (3)C9—C101.385 (4)
N3—C71.372 (3)C9—H90.9300
N3—N41.426 (3)C10—C111.377 (4)
N4—H4A0.94 (4)C10—H100.9300
N4—H4B0.89 (4)C11—C121.379 (4)
N5—C61.340 (3)C11—H110.9300
N5—C21.358 (3)C12—H120.9300
N6—C81.343 (3)
O1W—Zn1—N197.28 (6)N5—C2—C3122.7 (2)
O1W—Zn1—N1i97.28 (6)N5—C2—C1111.5 (2)
N1—Zn1—N1i165.44 (12)C3—C2—C1125.9 (2)
O1W—Zn1—N5i108.96 (6)C2—C3—C4118.4 (3)
N1—Zn1—N5i97.73 (8)C2—C3—H3120.8
N1i—Zn1—N5i77.47 (8)C4—C3—H3120.8
O1W—Zn1—N5108.96 (6)C5—C4—C3119.3 (3)
N1—Zn1—N577.47 (8)C5—C4—H4120.3
N1i—Zn1—N597.73 (8)C3—C4—H4120.3
N5i—Zn1—N5142.09 (12)C6—C5—C4118.9 (3)
O2W—Zn1—N182.73 (5)C6—C5—H5120.6
O2W—Zn1—N571.05 (5)C4—C5—H5120.6
Zn1—O1W—H1W120 (2)N5—C6—C5122.9 (3)
C1—N1—N2109.2 (2)N5—C6—H6118.6
C1—N1—Zn1114.07 (16)C5—C6—H6118.6
N2—N1—Zn1136.65 (16)N2—C7—N3109.8 (2)
C7—N2—N1106.3 (2)N2—C7—C8123.3 (2)
C1—N3—C7106.0 (2)N3—C7—C8126.9 (2)
C1—N3—N4124.4 (2)N6—C8—C9123.1 (2)
C7—N3—N4129.6 (2)N6—C8—C7116.7 (2)
N3—N4—H4A105 (2)C9—C8—C7120.2 (2)
N3—N4—H4B104 (2)C10—C9—C8118.1 (3)
H4A—N4—H4B102 (3)C10—C9—H9120.9
C6—N5—C2117.9 (2)C8—C9—H9120.9
C6—N5—Zn1126.42 (18)C11—C10—C9119.4 (3)
C2—N5—Zn1115.42 (16)C11—C10—H10120.3
C8—N6—C12117.3 (2)C9—C10—H10120.3
O2—N7—O1121.5 (3)C10—C11—C12118.8 (3)
O2—N7—O3119.0 (2)C10—C11—H11120.6
O1—N7—O3119.4 (2)C12—C11—H11120.6
N1—C1—N3108.7 (2)N6—C12—C11123.2 (3)
N1—C1—C2120.6 (2)N6—C12—H12118.4
N3—C1—C2130.7 (2)C11—C12—H12118.4
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O2ii0.94 (4)2.25 (4)3.100 (3)149 (3)
N4—H4A···O20.94 (4)2.55 (4)3.192 (4)126 (3)
N4—H4B···N60.89 (4)2.13 (4)2.875 (3)141 (3)
N4—H4B···O30.89 (4)2.43 (4)3.005 (3)122 (3)
O1W—H1W···O3iii0.79 (3)1.93 (3)2.714 (3)170 (3)
O2W—H2W···O1iv0.92 (5)2.02 (5)2.900 (4)161 (5)
Symmetry codes: (ii) x, y+1, z+2; (iii) x, y, z1/2; (iv) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Zn(C12H10N6)2(H2O)2](NO3)2
Mr701.94
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)14.856 (3), 9.4185 (19), 20.230 (4)
β (°) 91.99 (3)
V3)2829 (1)
Z4
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.797, 0.828
No. of measured, independent and
observed [I > 2σ(I)] reflections
13550, 3210, 2424
Rint0.067
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.101, 1.03
No. of reflections3210
No. of parameters228
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.64

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999) and SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—O1W2.008 (3)Zn1—N12.078 (2)
Zn1—O2W2.852 (5)Zn1—N52.141 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O2i0.94 (4)2.25 (4)3.100 (3)149 (3)
N4—H4A···O20.94 (4)2.55 (4)3.192 (4)126 (3)
N4—H4B···N60.89 (4)2.13 (4)2.875 (3)141 (3)
N4—H4B···O30.89 (4)2.43 (4)3.005 (3)122 (3)
O1W—H1W···O3ii0.79 (3)1.93 (3)2.714 (3)170 (3)
O2W—H2W···O1iii0.92 (5)2.02 (5)2.900 (4)161 (5)
Symmetry codes: (i) x, y+1, z+2; (ii) x, y, z1/2; (iii) x, y+1, z1/2.
 

Acknowledgements

We thank the National Natural Science Foundation of China for supporting this work.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGarcia, M. P., Manero, J. A., Oro, L. A., Apreda, M. C., Cano, F. H., Foces, C. F., Haasnot, J. G., Prins, R. & Reedijk, J. (1986). Inorg. Chim. Acta, 122, 235–241.  CSD CrossRef CAS Web of Science Google Scholar
First citationHartmann, U. & Vahrenkamp, H. (1995). Inorg. Chim. Acta, 239, 13–17.  CSD CrossRef CAS Web of Science Google Scholar
First citationKeij, F. S., Graaff, R. A. G., Haasnoot, J. G. & Reedijk, J. (1984). J. Chem. Soc. Dalton Trans. pp. 2093–2097.  CSD CrossRef Web of Science Google Scholar
First citationKitchen, J. A., Noble, A., Brandt, C. D., Moubaraki, B., Murray, K. S. & Brooker, S. (2008). Inorg. Chem. 47, 9450–9458.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKoningsbruggen, P. J., Goubitz, K., Haasnoot, J. G. & Reedijk, J. (1998). Inorg. Chim. Acta, 268, 37–42.  Google Scholar
First citationMernari, B., El Azhar, M., El Attari, H., Lagrenée, M. & Pierrot, M. (1998). Acta Cryst. C54, 1983–1986.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRheingold, A. L., Saisuwan, P. & Thomas, N. C. (1993). Inorg. Chim. Acta, 214, 41–45.  CSD CrossRef CAS Web of Science Google Scholar
First citationShao, C.-F. & Geng, L.-C. (2009). Acta Cryst. E65, m511–m512.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTong, M. L., Hong, C. G., Zheng, L. L., Peng, M. X., Gaita-Arino, A. & Juan, J. M. C. (2007). Eur. J. Inorg. Chem. pp. 3710–3717.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1106-m1107
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds