metal-organic compounds
Poly[bis[μ4-N-(2-hydroxyiminopropionyl)-N′-(2-oxidoiminopropionyl)propane-1,3-diaminato]dimethanolcalciumdicopper(II)]
aDepartment of General Chemistry, O. O. Bohomolets National Medical University, Shevchenko Blvd. 13, 01601 Kiev, Ukraine, bDepartment of Chemistry, Kiev National Taras Shevchenko University, Volodymyrska Street 64, 01033 Kiev, Ukraine, cDepartment of Chemistry, Karakalpakian University, Universitet Keshesi 1, 742012 Nukus, Uzbekistan, and dDepartment of Chemistry, University of Joensuu, PO Box 111, 80101, Joensuu, Finland
*Correspondence e-mail: kalibabchuk@ukr.net
In the title compound, [CaCu2(C9H13N4O4)2(CH3OH)2]n, the CaII atom lies on an inversion center and is situated in a moderately distorted octahedral environment. The CuII atom is in a distorted square-pyramidal geometry, defined by four N atoms belonging to the amide and oxime groups of the triply deprotonated residue of N,N′-bis(2-hydroxyiminopropanoyl)propane-1,3-diamine (H4pap) and one oxime O atom from a neighboring Hpap ligand at the apical site, forming a dimeric [Cu2(Hpap)2]2− unit. Each dimeric unit connects four Ca atoms and each Ca atom links four [Cu2(Hpap)2]2− units through Ca—O(amide) bonds, leading to a three-dimensional framework. The involves intra- and intermolecular O—H⋯O hydrogen bonds.
Related literature
For the coordination chemistry of tetradentate oxime-and-amide open-chain ligands, see: Duda et al. (1997); Fritsky et al. (1999). For as efficient metal chelators, see: Gumienna-Kontecka et al. (2000); Onindo et al. (1995); Sliva et al. (1997a,b). For the use of in stabilizing high oxidation states of metal ions, see: Fritsky et al. (1998, 2006). For related structures, see: Kanderal et al. (2005); Fritsky (1999); Fritsky et al. (2000); Mokhir et al. (2002); Moroz et al. (2008); Wörl et al. (2005).
Experimental
Crystal data
|
Refinement
|
|
Data collection: COLLECT (Nonius, 1998); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809033467/hy2216sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809033467/hy2216Isup2.hkl
A solution of N,N'-bis(2-hydroxyiminopropanoyl)propane-1,3-diamine (0.244 g, 1 mmol) in 10 ml of methanol was heated to 323 K and added with stirring to a solution of copper(II) chloride dihydrate (0.170 g, 1 mmol) in water (5 ml). Then an aqueous solution of calcium hydrocarbonate (4 ml, 1 M) was added. The obtained mixture was stirred at 323 K for 10 min and then filtered. The filtrate was cooled, filtered and set aside for crystallization at room temperature. The resulting dark-red crystals formed within 12 h were separated by filtration, washed with water and air-dried (yield 78%). N,N'-bis(2-hydroxyiminopropanoyl)propane-1,3-diamine was prepared according to the reported procedure (Duda et al., 1997).
O-bonded H atoms were located from a difference Fourier map and refined as riding atoms, with Uiso = 1.5Ueq(O). H atoms of methyl and methylene groups were positioned geometrically and refined as riding atoms, with C—H = 0.99 (methylene) and 0.98 (methyl) Å, and Uiso = 1.2(1.5 for methyl)Ueq(C).
Data collection: COLLECT (Nonius, 1998); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[CaCu2(C9H13N4O4)2(CH4O)2] | F(000) = 736 |
Mr = 713.71 | Dx = 1.755 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3254 reflections |
a = 10.0554 (4) Å | θ = 1.0–27.5° |
b = 8.7794 (3) Å | µ = 1.83 mm−1 |
c = 15.4465 (7) Å | T = 120 K |
β = 97.882 (2)° | Block, dark red |
V = 1350.74 (9) Å3 | 0.28 × 0.24 × 0.13 mm |
Z = 2 |
Nonius KappaCCD diffractometer | 3074 independent reflections |
Radiation source: fine-focus sealed tube | 2573 reflections with I > 2σ(I) |
Horizontally mounted graphite crystal monochromator | Rint = 0.035 |
Detector resolution: 9 pixels mm-1 | θmax = 27.5°, θmin = 2.6° |
ϕ and ω scans with κ offset | h = −11→13 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −11→10 |
Tmin = 0.622, Tmax = 0.796 | l = −20→19 |
8392 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.079 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0351P)2 + 1.0009P] where P = (Fo2 + 2Fc2)/3 |
3074 reflections | (Δ/σ)max = 0.002 |
192 parameters | Δρmax = 1.11 e Å−3 |
0 restraints | Δρmin = −0.56 e Å−3 |
[CaCu2(C9H13N4O4)2(CH4O)2] | V = 1350.74 (9) Å3 |
Mr = 713.71 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.0554 (4) Å | µ = 1.83 mm−1 |
b = 8.7794 (3) Å | T = 120 K |
c = 15.4465 (7) Å | 0.28 × 0.24 × 0.13 mm |
β = 97.882 (2)° |
Nonius KappaCCD diffractometer | 3074 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2573 reflections with I > 2σ(I) |
Tmin = 0.622, Tmax = 0.796 | Rint = 0.035 |
8392 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.079 | H-atom parameters constrained |
S = 1.04 | Δρmax = 1.11 e Å−3 |
3074 reflections | Δρmin = −0.56 e Å−3 |
192 parameters |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.07005 (3) | 0.90813 (3) | 0.122024 (17) | 0.01389 (10) | |
Ca1 | 0.0000 | 1.0000 | 0.5000 | 0.01418 (14) | |
O1 | −0.02176 (17) | 1.23359 (18) | 0.11376 (10) | 0.0201 (4) | |
H1O | 0.0287 | 1.2169 | 0.0643 | 0.030* | |
O2 | 0.11916 (16) | 1.14306 (18) | −0.00651 (10) | 0.0171 (3) | |
O3 | −0.05881 (17) | 0.92919 (19) | 0.35557 (10) | 0.0213 (4) | |
O4 | 0.38614 (16) | 0.70750 (19) | 0.04006 (11) | 0.0210 (4) | |
O5 | −0.21320 (16) | 1.12267 (19) | 0.48180 (11) | 0.0219 (4) | |
H5O | −0.2529 | 1.2181 | 0.4868 | 0.033* | |
N1 | −0.01214 (18) | 1.0977 (2) | 0.15866 (12) | 0.0146 (4) | |
N2 | 0.01537 (19) | 0.8358 (2) | 0.23095 (12) | 0.0173 (4) | |
N3 | 0.1956 (2) | 0.7474 (2) | 0.10597 (12) | 0.0180 (4) | |
N4 | 0.15835 (18) | 1.0068 (2) | 0.03093 (12) | 0.0144 (4) | |
C1 | −0.1226 (3) | 1.2240 (3) | 0.27158 (17) | 0.0288 (6) | |
H1A | −0.0570 | 1.3063 | 0.2843 | 0.043* | |
H1B | −0.1542 | 1.1913 | 0.3259 | 0.043* | |
H1C | −0.1989 | 1.2607 | 0.2305 | 0.043* | |
C2 | −0.0587 (2) | 1.0934 (3) | 0.23219 (15) | 0.0169 (5) | |
C3 | −0.0343 (2) | 0.9408 (3) | 0.27836 (15) | 0.0168 (5) | |
C4 | 0.0562 (3) | 0.6895 (3) | 0.27209 (15) | 0.0225 (5) | |
H4A | −0.0109 | 0.6109 | 0.2505 | 0.027* | |
H4B | 0.0575 | 0.6985 | 0.3361 | 0.027* | |
C5 | 0.1924 (3) | 0.6394 (3) | 0.25333 (17) | 0.0294 (6) | |
H5A | 0.2165 | 0.5452 | 0.2872 | 0.035* | |
H5B | 0.2581 | 0.7185 | 0.2762 | 0.035* | |
C6 | 0.2103 (3) | 0.6087 (3) | 0.15904 (17) | 0.0251 (5) | |
H6A | 0.3006 | 0.5648 | 0.1570 | 0.030* | |
H6B | 0.1429 | 0.5329 | 0.1340 | 0.030* | |
C7 | 0.2839 (2) | 0.7824 (3) | 0.05361 (14) | 0.0163 (5) | |
C8 | 0.2556 (2) | 0.9315 (3) | 0.00510 (14) | 0.0158 (4) | |
C9 | 0.3318 (2) | 0.9800 (3) | −0.06579 (15) | 0.0219 (5) | |
H9A | 0.2709 | 1.0303 | −0.1120 | 0.033* | |
H9B | 0.3720 | 0.8905 | −0.0899 | 0.033* | |
H9C | 0.4028 | 1.0511 | −0.0423 | 0.033* | |
C10 | −0.3241 (2) | 1.0385 (3) | 0.43680 (17) | 0.0251 (5) | |
H10A | −0.2903 | 0.9503 | 0.4076 | 0.038* | |
H10B | −0.3758 | 1.1041 | 0.3931 | 0.038* | |
H10C | −0.3821 | 1.0035 | 0.4789 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01633 (15) | 0.01304 (15) | 0.01304 (14) | 0.00299 (10) | 0.00462 (10) | 0.00150 (10) |
Ca1 | 0.0144 (3) | 0.0150 (3) | 0.0135 (3) | −0.0026 (2) | 0.0032 (2) | −0.0004 (2) |
O1 | 0.0261 (9) | 0.0151 (8) | 0.0197 (8) | 0.0043 (7) | 0.0050 (7) | 0.0032 (7) |
O2 | 0.0183 (8) | 0.0135 (7) | 0.0195 (8) | 0.0018 (6) | 0.0021 (6) | 0.0054 (6) |
O3 | 0.0271 (9) | 0.0250 (9) | 0.0130 (8) | −0.0030 (7) | 0.0071 (7) | −0.0015 (7) |
O4 | 0.0192 (8) | 0.0214 (8) | 0.0231 (8) | 0.0078 (7) | 0.0053 (7) | −0.0014 (7) |
O5 | 0.0176 (9) | 0.0183 (8) | 0.0293 (9) | 0.0011 (6) | 0.0012 (7) | −0.0042 (7) |
N1 | 0.0148 (9) | 0.0136 (9) | 0.0153 (9) | 0.0007 (7) | 0.0015 (7) | 0.0017 (7) |
N2 | 0.0221 (10) | 0.0158 (9) | 0.0146 (9) | 0.0019 (8) | 0.0053 (8) | 0.0026 (8) |
N3 | 0.0225 (10) | 0.0155 (9) | 0.0167 (9) | 0.0049 (8) | 0.0057 (8) | 0.0039 (8) |
N4 | 0.0139 (9) | 0.0140 (9) | 0.0148 (9) | 0.0009 (7) | 0.0003 (7) | 0.0009 (7) |
C1 | 0.0398 (16) | 0.0247 (13) | 0.0239 (13) | 0.0110 (11) | 0.0120 (11) | −0.0002 (11) |
C2 | 0.0155 (11) | 0.0186 (11) | 0.0165 (11) | 0.0013 (9) | 0.0020 (9) | −0.0017 (9) |
C3 | 0.0148 (11) | 0.0200 (11) | 0.0151 (10) | −0.0021 (9) | 0.0007 (8) | 0.0000 (9) |
C4 | 0.0309 (14) | 0.0201 (12) | 0.0175 (11) | 0.0041 (10) | 0.0071 (10) | 0.0046 (10) |
C5 | 0.0306 (14) | 0.0299 (14) | 0.0277 (14) | 0.0073 (11) | 0.0043 (11) | 0.0093 (12) |
C6 | 0.0306 (14) | 0.0202 (12) | 0.0257 (13) | 0.0113 (10) | 0.0082 (11) | 0.0045 (10) |
C7 | 0.0169 (11) | 0.0165 (11) | 0.0146 (10) | 0.0030 (9) | −0.0008 (8) | −0.0016 (9) |
C8 | 0.0148 (11) | 0.0186 (11) | 0.0138 (10) | 0.0004 (9) | 0.0010 (8) | −0.0012 (9) |
C9 | 0.0195 (12) | 0.0265 (13) | 0.0209 (12) | 0.0005 (10) | 0.0065 (9) | 0.0019 (10) |
C10 | 0.0199 (12) | 0.0237 (12) | 0.0304 (13) | −0.0006 (10) | −0.0007 (10) | −0.0041 (11) |
Cu1—N1 | 1.9751 (18) | C1—C2 | 1.486 (3) |
Cu1—N2 | 1.9469 (18) | C1—H1A | 0.9800 |
Cu1—N3 | 1.9320 (19) | C1—H1B | 0.9800 |
Cu1—N4 | 1.9650 (18) | C1—H1C | 0.9800 |
Cu1—O2i | 2.4646 (16) | C2—C3 | 1.522 (3) |
Ca1—O3 | 2.3134 (16) | C4—C5 | 1.504 (4) |
Ca1—O4ii | 2.2818 (16) | C4—H4A | 0.9900 |
Ca1—O5 | 2.3811 (16) | C4—H4B | 0.9900 |
O1—N1 | 1.377 (2) | C5—C6 | 1.516 (4) |
O1—H1O | 0.9852 | C5—H5A | 0.9900 |
O2—N4 | 1.363 (2) | C5—H5B | 0.9900 |
O3—C3 | 1.255 (3) | C6—H6A | 0.9900 |
O4—C7 | 1.262 (3) | C6—H6B | 0.9900 |
O5—C10 | 1.436 (3) | C7—C8 | 1.516 (3) |
O5—H5O | 0.9358 | C8—C9 | 1.482 (3) |
N1—C2 | 1.287 (3) | C9—H9A | 0.9800 |
N2—C3 | 1.317 (3) | C9—H9B | 0.9800 |
N2—C4 | 1.466 (3) | C9—H9C | 0.9800 |
N3—C7 | 1.316 (3) | C10—H10A | 0.9800 |
N3—C6 | 1.464 (3) | C10—H10B | 0.9800 |
N4—C8 | 1.288 (3) | C10—H10C | 0.9800 |
N3—Cu1—N2 | 98.02 (8) | H1B—C1—H1C | 109.5 |
N3—Cu1—N4 | 82.10 (8) | N1—C2—C1 | 124.7 (2) |
N2—Cu1—N4 | 166.31 (8) | N1—C2—C3 | 112.64 (19) |
N3—Cu1—N1 | 163.47 (8) | C1—C2—C3 | 122.6 (2) |
N2—Cu1—N1 | 81.29 (8) | O3—C3—N2 | 127.6 (2) |
N4—Cu1—N1 | 94.69 (8) | O3—C3—C2 | 118.5 (2) |
N3—Cu1—O2i | 103.12 (7) | N2—C3—C2 | 113.87 (19) |
N2—Cu1—O2i | 106.54 (7) | N2—C4—C5 | 112.4 (2) |
N4—Cu1—O2i | 86.66 (6) | N2—C4—H4A | 109.1 |
N1—Cu1—O2i | 92.83 (7) | C5—C4—H4A | 109.1 |
O4iii—Ca1—O4ii | 180.00 (8) | N2—C4—H4B | 109.1 |
O4iii—Ca1—O3iv | 91.40 (6) | C5—C4—H4B | 109.1 |
O4ii—Ca1—O3iv | 88.60 (6) | H4A—C4—H4B | 107.9 |
O4iii—Ca1—O3 | 88.60 (6) | C4—C5—C6 | 117.9 (2) |
O4ii—Ca1—O3 | 91.40 (6) | C4—C5—H5A | 107.8 |
O3iv—Ca1—O3 | 180.0 | C6—C5—H5A | 107.8 |
O4iii—Ca1—O5 | 85.18 (6) | C4—C5—H5B | 107.8 |
O4ii—Ca1—O5 | 94.82 (6) | C6—C5—H5B | 107.8 |
O3iv—Ca1—O5 | 95.69 (6) | H5A—C5—H5B | 107.2 |
O3—Ca1—O5 | 84.31 (6) | N3—C6—C5 | 112.0 (2) |
O4iii—Ca1—O5iv | 94.82 (6) | N3—C6—H6A | 109.2 |
O4ii—Ca1—O5iv | 85.18 (6) | C5—C6—H6A | 109.2 |
O3iv—Ca1—O5iv | 84.31 (6) | N3—C6—H6B | 109.2 |
O3—Ca1—O5iv | 95.69 (6) | C5—C6—H6B | 109.2 |
O5—Ca1—O5iv | 180.0 | H6A—C6—H6B | 107.9 |
N1—O1—H1O | 104.7 | O4—C7—N3 | 127.8 (2) |
C10—O5—H5O | 100.9 | O4—C7—C8 | 118.0 (2) |
C2—N1—O1 | 117.47 (18) | N3—C7—C8 | 114.15 (19) |
C2—N1—Cu1 | 116.42 (15) | N4—C8—C9 | 124.9 (2) |
O1—N1—Cu1 | 126.09 (14) | N4—C8—C7 | 112.86 (19) |
C3—N2—C4 | 118.48 (19) | C9—C8—C7 | 122.2 (2) |
C3—N2—Cu1 | 115.18 (15) | C8—C9—H9A | 109.5 |
C4—N2—Cu1 | 124.40 (15) | C8—C9—H9B | 109.5 |
C7—N3—C6 | 120.9 (2) | H9A—C9—H9B | 109.5 |
C7—N3—Cu1 | 114.57 (15) | C8—C9—H9C | 109.5 |
C6—N3—Cu1 | 123.60 (15) | H9A—C9—H9C | 109.5 |
C8—N4—O2 | 120.42 (18) | H9B—C9—H9C | 109.5 |
C8—N4—Cu1 | 115.63 (15) | O5—C10—H10A | 109.5 |
O2—N4—Cu1 | 123.91 (13) | O5—C10—H10B | 109.5 |
C2—C1—H1A | 109.5 | H10A—C10—H10B | 109.5 |
C2—C1—H1B | 109.5 | O5—C10—H10C | 109.5 |
H1A—C1—H1B | 109.5 | H10A—C10—H10C | 109.5 |
C2—C1—H1C | 109.5 | H10B—C10—H10C | 109.5 |
H1A—C1—H1C | 109.5 | ||
N3—Cu1—N1—C2 | −87.3 (3) | N2—Cu1—N4—O2 | −93.4 (3) |
N2—Cu1—N1—C2 | 1.52 (17) | N1—Cu1—N4—O2 | −21.15 (16) |
N4—Cu1—N1—C2 | −165.30 (17) | O2i—Cu1—N4—O2 | 71.42 (16) |
O2i—Cu1—N1—C2 | 107.82 (17) | Cu1i—Cu1—N4—O2 | 50.60 (13) |
Cu1i—Cu1—N1—C2 | 150.40 (17) | O1—N1—C2—C1 | 0.4 (3) |
N3—Cu1—N1—O1 | 91.4 (3) | Cu1—N1—C2—C1 | 179.3 (2) |
N2—Cu1—N1—O1 | −179.78 (18) | O1—N1—C2—C3 | −176.28 (17) |
N4—Cu1—N1—O1 | 13.41 (17) | Cu1—N1—C2—C3 | 2.5 (2) |
O2i—Cu1—N1—O1 | −73.47 (17) | C4—N2—C3—O3 | −4.2 (4) |
Cu1i—Cu1—N1—O1 | −30.90 (16) | Cu1—N2—C3—O3 | −169.08 (19) |
N3—Cu1—N2—C3 | 157.38 (17) | C4—N2—C3—C2 | 173.6 (2) |
N4—Cu1—N2—C3 | 67.8 (4) | Cu1—N2—C3—C2 | 8.8 (2) |
N1—Cu1—N2—C3 | −5.93 (16) | N1—C2—C3—O3 | 170.6 (2) |
O2i—Cu1—N2—C3 | −96.30 (17) | C1—C2—C3—O3 | −6.2 (3) |
Cu1i—Cu1—N2—C3 | −65.8 (2) | N1—C2—C3—N2 | −7.4 (3) |
N3—Cu1—N2—C4 | −6.4 (2) | C1—C2—C3—N2 | 175.8 (2) |
N4—Cu1—N2—C4 | −96.0 (4) | C3—N2—C4—C5 | −133.0 (2) |
N1—Cu1—N2—C4 | −169.8 (2) | Cu1—N2—C4—C5 | 30.3 (3) |
O2i—Cu1—N2—C4 | 99.87 (19) | N2—C4—C5—C6 | −62.6 (3) |
Cu1i—Cu1—N2—C4 | 130.39 (16) | C7—N3—C6—C5 | 132.3 (2) |
N2—Cu1—N3—C7 | −159.43 (17) | Cu1—N3—C6—C5 | −35.9 (3) |
N4—Cu1—N3—C7 | 6.74 (16) | C4—C5—C6—N3 | 65.8 (3) |
N1—Cu1—N3—C7 | −73.0 (3) | Ca1v—O4—C7—N3 | 57.7 (5) |
O2i—Cu1—N3—C7 | 91.42 (17) | Ca1v—O4—C7—C8 | −122.4 (3) |
Cu1i—Cu1—N3—C7 | 45.67 (17) | C6—N3—C7—O4 | 1.4 (4) |
N2—Cu1—N3—C6 | 9.4 (2) | Cu1—N3—C7—O4 | 170.55 (19) |
N4—Cu1—N3—C6 | 175.6 (2) | C6—N3—C7—C8 | −178.6 (2) |
N1—Cu1—N3—C6 | 95.8 (3) | Cu1—N3—C7—C8 | −9.4 (2) |
O2i—Cu1—N3—C6 | −99.71 (19) | O2—N4—C8—C9 | −0.9 (3) |
Cu1i—Cu1—N3—C6 | −145.46 (18) | Cu1—N4—C8—C9 | 176.75 (18) |
N3—Cu1—N4—C8 | −2.44 (16) | O2—N4—C8—C7 | −179.45 (17) |
N2—Cu1—N4—C8 | 89.0 (4) | Cu1—N4—C8—C7 | −1.8 (2) |
N1—Cu1—N4—C8 | 161.24 (16) | O4—C7—C8—N4 | −172.59 (19) |
O2i—Cu1—N4—C8 | −106.19 (16) | N3—C7—C8—N4 | 7.3 (3) |
Cu1i—Cu1—N4—C8 | −127.01 (18) | O4—C7—C8—C9 | 8.9 (3) |
N3—Cu1—N4—O2 | 175.17 (17) | N3—C7—C8—C9 | −171.2 (2) |
Symmetry codes: (i) −x, −y+2, −z; (ii) −x+1/2, y+1/2, −z+1/2; (iii) x−1/2, −y+3/2, z+1/2; (iv) −x, −y+2, −z+1; (v) −x+1/2, y−1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O2 | 0.99 | 1.65 | 2.610 (2) | 165 |
O5—H5O···O2vi | 0.94 | 1.79 | 2.681 (2) | 159 |
Symmetry code: (vi) x−1/2, −y+5/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [CaCu2(C9H13N4O4)2(CH4O)2] |
Mr | 713.71 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 120 |
a, b, c (Å) | 10.0554 (4), 8.7794 (3), 15.4465 (7) |
β (°) | 97.882 (2) |
V (Å3) | 1350.74 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.83 |
Crystal size (mm) | 0.28 × 0.24 × 0.13 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.622, 0.796 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8392, 3074, 2573 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.079, 1.04 |
No. of reflections | 3074 |
No. of parameters | 192 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.11, −0.56 |
Computer programs: COLLECT (Nonius, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
Cu1—N1 | 1.9751 (18) | Cu1—O2i | 2.4646 (16) |
Cu1—N2 | 1.9469 (18) | Ca1—O3 | 2.3134 (16) |
Cu1—N3 | 1.9320 (19) | Ca1—O4ii | 2.2818 (16) |
Cu1—N4 | 1.9650 (18) | Ca1—O5 | 2.3811 (16) |
Symmetry codes: (i) −x, −y+2, −z; (ii) −x+1/2, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O2 | 0.99 | 1.65 | 2.610 (2) | 165 |
O5—H5O···O2iii | 0.94 | 1.79 | 2.681 (2) | 159 |
Symmetry code: (iii) x−1/2, −y+5/2, z+1/2. |
Acknowledgements
The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. M/263–2008).
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Duda, A. M., Karaczyn, A., Kozłowski, H., Fritsky, I. O., Głowiak, T., Prisyazhnaya, E. V., Sliva, T. Yu. & Świątek-Kozłowska, J. (1997). J. Chem. Soc. Dalton Trans. pp. 3853–3859. CSD CrossRef Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fritsky, I. O. (1999). J. Chem. Soc. Dalton Trans. pp. 825–826. Web of Science CSD CrossRef Google Scholar
Fritsky, I. O., Karaczyn, A., Kozłowski, H., Głowiak, T. & Prisyazhnaya, E. V. (1999). Z. Naturforsch. Teil B, 54, 456–460. CAS Google Scholar
Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127. Web of Science CSD CrossRef Google Scholar
Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274. Web of Science CSD CrossRef Google Scholar
Fritsky, I. O., Świątek-Kozłowska, J., Kapshuk, A. A., Kozłowski, H., Sliva, T. Yu., Gumienna-Kontecka, E., Prisyazhnaya, E. V. & Iskenderov, T. S. (2000). Z. Naturforsch. Teil B, 55, 966–970. CAS Google Scholar
Gumienna-Kontecka, E., Berthon, G., Fritsky, I. O., Wieczorek, R., Latajka, Z. & Kozłowski, H. (2000). J. Chem. Soc. Dalton Trans. pp. 4201–4208. Web of Science CrossRef Google Scholar
Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437. Web of Science CrossRef PubMed Google Scholar
Mokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121. Web of Science CSD CrossRef CAS Google Scholar
Moroz, Y. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2008). Inorg. Chem. 47, 5656–5665. Web of Science CSD CrossRef PubMed CAS Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Onindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3911–3915. CrossRef Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997a). J. Chem. Soc. Dalton Trans. pp. 273–276. CSD CrossRef Web of Science Google Scholar
Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997b). J. Inorg. Biochem. 65, 287–294. CSD CrossRef CAS Web of Science Google Scholar
Wörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005). Eur. J. Inorg. Chem. pp. 759–765. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
N,N'-bis(2-hydroxyiminopropionylpropane)-1,2-diamine and its homologues (Duda et al., 1997; Fritsky et al., 1999), tetradentate oxime-and-amide open-chain ligands, have been intensively studied during the past 15 years as efficient polychelate ligands forming stable complexes with nickel(II) and copper(II) ions. The presence of an additional strong donor amide function in the vicinity of the oxime group results in important increase of chelating efficiency. For example, amide derivatives of 2-hydroxyiminopropanoic acid were shown to act as highly efficient chelators with respect to copper(II), nickel(II) and aluminium(III) ions (Gumienna-Kontecka et al., 2000; Onindo et al., 1995; Sliva et al., 1997a,b). Also, tetradentate oxime-and-amide open-chain ligands possess strong σ-donor capacity and thus have been successfully used for preparation of metal complexes with efficient stabilization of unusually high oxidation states of transition metal ions like CuIII and NiIII (Fritsky et al., 1998; Fritsky et al., 2006).
Earlier, the crystal and molecular structures of mononuclear anionic copper(II) complexes with N,N'-bis(2-hydroxyiminopropanoyl)propane-1,3-diamine (H4pap) of composition [Li(H2O)4][Cu(Hpap)].2H2O (Duda et al., 1997) and PPh4[Cu(Hpap)].4.5H2O (Kanderal et al., 2005) have been reported, as well as a series of modular cationic and anionic complex compounds containing [Cu(Hpap)]- anions (Fritsky et al., 2000). The present report describes the crystal structure of the title compound, a three-dimensional coordination polymer of composition [CaCu2(Hpap)2(CH3OH)2], featuring copper(II) complex anions connected by calcium ions.
The structure of the title compound is presented in Fig. 1. The ligand in the complex anion is coordinated in a tetradentate fashion forming three condensed chelate rings and being triply deprotonated. In the complex anion the CuII atom is situated in a distorted square-pyramidal geometry. The basal plane is defined by four N atoms belonging to the deprotonated amide and oxime groups of the Hpap ligand, which adopt a pseudo-macrocyclic conformation due to the presence of an intramolecular hydrogen bond uniting the cis-oximate O atoms. The apical position is occupied by the oxime O2 atom, and as a result, two neighboring Cu complex anions are united into a centrosymmetric [Cu2(Hpap)2]2- dimer, with a Cu···Cui [symmetry code: (i) -x, 2-y, -z] separation of 4.164 (1) Å. Each dimeric unit connects four Ca atoms and each Ca links four dimeric [Cu2(Hpap)2]2- units.
The basal plane of the Cu1 atom exhibits tetrahedral distortion with deviations of the N atoms from the mean plane defined by them by 0.025 (1) Å. Cu1 is displaced by 0.255 (1) Å from this plane in the direction of the apical O atom. The observed Cu—N distances (Table 1) are normal for the complexes with N-coordinated amide and oxime groups (Fritsky et al., 1998; Fritsky et al., 2006). A noticeable difference between Cu—N(amide) and Cu—N(oxime) distances is observed. The O1···O2 separation of the intramolecular hydrogen bond is equal to 2.610 (2) Å, which is close to the values reported for the analogous complexes with lithium and tetraphenylphosponium cations. The C═N, C═O, N—O and C—N bond lengths are typical for 2-hydroxyiminopropanoic acid and its amide derivatives (Fritsky, 1999; Mokhir et al., 2002; Moroz et al., 2008).
The CaII atom occupies a special position and is situated in moderately distorted octahedral environment (Fig. 1). The Ca—O bond distances are similar to the reported ones for six-coordinate calcium complexes (Wörl et al., 2005). The axial bond length Ca1—O5 [2.381 (1) Å] are somewhat longer than the equatorial ones. The O—Ca—O anlges values are in the range 84.31 (6) to 95.69 (6)°. The coordination geometry of the Ca atom is formed by six O atoms belonging to two methanol molecules and four amide groups. Thus, each Ca atom unites four dimeric Cu complex anionic unit. These Ca—O bonds, together with the intermolecular O—H···O hydrogen bonds between the methanol OH group and oxime O2 atom (Table 2), lead to a three-dimensional framework (Fig. 2).