metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Bis[1-allyl-3-(2-pyrid­yl-κN)thio­ureato-κS]palladium(II)

aInstitute of General and Inorganic Chemistry, NAS Ukraine, Kyiv, Prosp. Palladina 32/34, 03680 Ukraine
*Correspondence e-mail: orysyk@ionc.kiev.ua

(Received 13 July 2009; accepted 23 July 2009; online 12 August 2009)

Yellow plate-like shaped crystals of the title compound, [Pd(C9H10N3S)2], were obtained by ligand-exchange reaction between palladium(II) acetyl­acetonate and the corresponding organic reagent at room temperature. The PdII atom shows a slightly distorted square-planar coordination geometry consisting of two ligand mol­ecules in a cis conformation that bind in their thio­lic tautomeric form. Weak inter­molecular Pd⋯H inter­actions with Pd—H distances of 3.328 (2) Å were observed in the crystal structure. The three-dimensional network of the crystal structure is realized by weak inter­molecular C—H⋯N, N—H⋯N and C—H⋯S hydrogen bonds.

Related literature

For a related structure, see: Bon et al. (2007[Bon, V. V., Orysyk, S. I., Pekhnyo, V. I., Orysyk, V. V. & Volkov, S. V. (2007). Polyhedron, 26, 2935-2941.]). For the anti­tumoral properties of Pd compounds, see: Upadhayaya et al. (2009[Upadhayaya, R. S., Kulkarni, G. M., Vasireddy, N. R., Vandavasi, J. K., Dixit, S. S., Sharma, V. & Chattopadhyaya, J. (2009). Bioorg. Med. Chem. 17, 4681-4692.]), Hernández et al. (2008[Hernández, W., Paz, J., Vaisberg, A., Spodine, E., Richter, R. & Beyer, L. (2008). Bioinorg. Chem. Appl. pp. 1-10.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C9H10N3S)2]

  • Mr = 490.96

  • Monoclinic, P 21 /c

  • a = 10.8976 (6) Å

  • b = 8.9730 (5) Å

  • c = 21.798 (1) Å

  • β = 113.624 (2)°

  • V = 1952.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 173 K

  • 0.51 × 0.21 × 0.05 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.583, Tmax = 0.941

  • 17417 measured reflections

  • 4010 independent reflections

  • 3522 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.055

  • S = 1.03

  • 4010 reflections

  • 272 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯N2i 0.95 2.64 3.511 (3) 152
C14—H14A⋯N5ii 0.95 2.57 3.376 (3) 143
N3—H3N⋯N3iii 0.78 (3) 2.84 (3) 3.425 (4) 133 (2)
C4—H4A⋯S2iv 0.95 2.98 3.728 (2) 136
C12—H12A⋯S1v 0.95 3.02 3.910 (2) 156
C18B—H18D⋯S1vi 0.95 2.95 3.85 (1) 160
C7—H7A⋯S2iii 0.99 2.85 3.825 (3) 167
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y, -z+1; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Palladium complexes with carbothioamide derivatives as organic ligands attract ongoing scientific interest due to their cytotoxic, antitumoral, antifungal and antimicrobial activities (Upadhayaya et al. 2009; Hernández et al. 2008)

The asymmetric unit of the title compound contains one molecule of the complex (Fig. 1). Palladium shows a slightly distorted square-planar coordination geometry with a mean deviation from the plane of 0.0679 (2) Å. Two molecules of the organic ligand chelate the palladium in cis-conformation via carbothioamide sulfur and pyridine nitrogen atoms. The observed bond lengths of the carbothioamide fragment [C(6)—S(1) 1.752 (2), C(15)—S(2) 1.753 (2), C(6)—N(2) 1.301 (3) and C(15)—N(5) 1.302 (3) Å] indicate the thiolic tautomeric form of the thiourea derivative. The six-membered metallacycle exhibits a non-planar geometry with torsion angles Pd(1)—S(1)—C(6)—N(2) 142.8 (2) and Pd(1)—S(2)—C(15)—N(5) 134.1 (2)°. The allyl substituents of both coordinated ligand molecules are disordered over two positions with occupancies of 0.7 and 0.3, respectively. The crystal structure of the title compound shows weak intermolecular Pd···H interactions with d(Pd—H) = 3.328 Å. The 3-D network is realized by weak C—H···N, N—H···N and C—H···S intermolecular hydrogen bonds (Fig.2, Table 1).

Related literature top

For a related structure, see: Bon et al. (2007). For the antitumoral properties of Pd compounds, see: Upadhayaya et al. (2009), Hernández et al. (2008).

Experimental top

Single crystals of title compound were synthesized by a ligand exchange reaction between 5 ml (5x10-3 M) of a solution of palladium(II) acetylacetonate in chloroform and 5 ml (10-2 M) of an ethanolic solution of the organic ligand. After staying one month in a dark place the layered mixture becomes homogeneous and yellow plate-like shaped crystals were grown.

Refinement top

Disorder of both allyl fragments has been observed in the molecular structure of the title compound. Disordered allyl substituents C8, C9 and C17, C18 were treated with occupancies 0.71/0.29 and 0.70/0.30, respectively, and refined with equal ADP for both parts. H atoms bonded to N were located in a difference map and refined freely. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.99 Å for CH2 [Uiso(H) = 1.2Ueq(C)] and C—H = 0.95 Å for CH [Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The title compound showing 50% probability displacement ellipsoids for the non-hydrogen atoms. Only one position is shown for disordered allyl fragments
[Figure 2] Fig. 2. Crystal packing of title compound, projection down the a axis. Dashed lines indicate hydrogen bonds.
cis-Bis[1-allyl-3-(2-pyridyl-κN)thioureato- κS]palladium(II) top
Crystal data top
[Pd(C9H10N3S)2]F(000) = 992
Mr = 490.96Dx = 1.670 Mg m3
Monoclinic, P21/cMelting point: 343 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.8976 (6) ÅCell parameters from 8451 reflections
b = 8.9730 (5) Åθ = 3.0–26.4°
c = 21.798 (1) ŵ = 1.18 mm1
β = 113.624 (2)°T = 173 K
V = 1952.9 (2) Å3Plate, yellow
Z = 40.51 × 0.21 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
4010 independent reflections
Radiation source: fine-focus sealed tube3522 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 8.26 pixels mm-1θmax = 26.4°, θmin = 2.0°
ϕ and ω scansh = 1313
Absorption correction: numerical
(SADABS; Bruker, 2005)
k = 1111
Tmin = 0.583, Tmax = 0.941l = 2627
17417 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.02P)2 + 1.8761P]
where P = (Fo2 + 2Fc2)/3
4010 reflections(Δ/σ)max = 0.001
272 parametersΔρmax = 0.58 e Å3
3 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Pd(C9H10N3S)2]V = 1952.9 (2) Å3
Mr = 490.96Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.8976 (6) ŵ = 1.18 mm1
b = 8.9730 (5) ÅT = 173 K
c = 21.798 (1) Å0.51 × 0.21 × 0.05 mm
β = 113.624 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4010 independent reflections
Absorption correction: numerical
(SADABS; Bruker, 2005)
3522 reflections with I > 2σ(I)
Tmin = 0.583, Tmax = 0.941Rint = 0.026
17417 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0223 restraints
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.58 e Å3
4010 reflectionsΔρmin = 0.37 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.504182 (15)0.273165 (18)0.331038 (7)0.02144 (6)
S10.48920 (6)0.26120 (8)0.43136 (3)0.03554 (15)
S20.72854 (5)0.24180 (7)0.38621 (3)0.02877 (13)
N10.30161 (17)0.3217 (2)0.28592 (8)0.0226 (4)
N20.22927 (17)0.1688 (2)0.35666 (9)0.0246 (4)
N30.3409 (2)0.0682 (3)0.45961 (10)0.0356 (5)
N40.52967 (17)0.26693 (19)0.24180 (8)0.0216 (4)
N50.73705 (17)0.4037 (2)0.27993 (8)0.0238 (4)
N60.88430 (19)0.4612 (2)0.38499 (10)0.0330 (5)
C10.2066 (2)0.2704 (2)0.30613 (10)0.0231 (4)
C20.0738 (2)0.3203 (3)0.27361 (11)0.0282 (5)
H2A0.00670.28030.28620.034*
C30.0396 (2)0.4252 (3)0.22420 (11)0.0303 (5)
H3A0.05000.46000.20330.036*
C40.1382 (2)0.4802 (3)0.20512 (11)0.0299 (5)
H4A0.11770.55360.17100.036*
C50.2656 (2)0.4259 (2)0.23664 (11)0.0268 (5)
H5A0.33270.46330.22330.032*
C60.3393 (2)0.1622 (3)0.41056 (10)0.0262 (5)
C70.2192 (3)0.0080 (3)0.46317 (13)0.0396 (6)
H7A0.24450.06450.50050.048*
H7B0.16730.04610.42110.048*
C8A0.1310 (4)0.1276 (5)0.4737 (2)0.0501 (10)0.711 (5)
H8AA0.08850.19630.43830.060*0.711 (5)
C9A0.1099 (12)0.1423 (10)0.5274 (5)0.0819 (19)0.711 (5)
H9AA0.15070.07550.56380.098*0.711 (5)
H9AB0.05340.21980.53070.098*0.711 (5)
C8B0.1993 (11)0.0863 (13)0.5186 (6)0.0501 (10)0.289 (5)
H8BA0.26300.06960.56300.060*0.289 (5)
C9B0.103 (3)0.173 (3)0.5105 (16)0.0819 (19)0.289 (5)
H9BA0.03770.19240.46680.098*0.289 (5)
H9BB0.09620.21990.54810.098*0.289 (5)
C100.6369 (2)0.3219 (2)0.23255 (10)0.0230 (4)
C110.6465 (2)0.3015 (3)0.17078 (11)0.0332 (5)
H11A0.71890.34520.16350.040*
C120.5531 (3)0.2197 (3)0.12094 (12)0.0377 (6)
H12A0.56130.20410.07970.045*
C130.4457 (2)0.1597 (3)0.13180 (11)0.0350 (5)
H13A0.37980.10130.09840.042*
C140.4373 (2)0.1868 (3)0.19154 (11)0.0289 (5)
H14A0.36280.14760.19840.035*
C150.7807 (2)0.3775 (2)0.34392 (10)0.0240 (4)
C160.9495 (2)0.5766 (3)0.36190 (13)0.0380 (6)
H16A0.90160.67150.35980.046*
H16B0.93750.55150.31560.046*
C17A1.0931 (6)0.6027 (8)0.4014 (4)0.0486 (15)0.700 (9)
H17A1.12960.69140.39180.058*0.700 (9)
C18A1.1731 (5)0.5195 (7)0.4466 (3)0.0540 (13)0.700 (9)
H18A1.14190.42940.45810.065*0.700 (9)
H18B1.26450.54730.46910.065*0.700 (9)
C17B1.0811 (14)0.6032 (17)0.4263 (6)0.037 (3)0.300 (9)
H17B1.07450.64690.46450.044*0.300 (9)
C18B1.2000 (13)0.5671 (16)0.4290 (7)0.0540 (13)0.300 (9)
H18C1.20850.52330.39120.065*0.300 (9)
H18D1.27750.58470.46870.065*0.300 (9)
H6N0.904 (2)0.452 (3)0.4237 (13)0.027 (7)*
H3N0.404 (3)0.072 (3)0.4936 (13)0.038 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01747 (9)0.02785 (10)0.01790 (9)0.00036 (7)0.00594 (6)0.00161 (6)
S10.0235 (3)0.0626 (4)0.0191 (3)0.0085 (3)0.0070 (2)0.0001 (3)
S20.0197 (3)0.0401 (3)0.0239 (3)0.0029 (2)0.0061 (2)0.0081 (2)
N10.0208 (9)0.0246 (9)0.0209 (9)0.0000 (7)0.0067 (7)0.0016 (7)
N20.0226 (9)0.0260 (9)0.0244 (9)0.0010 (8)0.0086 (7)0.0030 (7)
N30.0307 (11)0.0493 (13)0.0246 (10)0.0025 (10)0.0089 (9)0.0118 (9)
N40.0207 (9)0.0228 (9)0.0203 (9)0.0008 (7)0.0071 (7)0.0007 (7)
N50.0204 (9)0.0259 (10)0.0247 (9)0.0012 (7)0.0084 (7)0.0003 (7)
N60.0257 (11)0.0419 (12)0.0250 (11)0.0068 (9)0.0035 (9)0.0041 (9)
C10.0230 (11)0.0212 (10)0.0240 (10)0.0029 (9)0.0082 (9)0.0029 (8)
C20.0198 (11)0.0314 (12)0.0317 (12)0.0025 (9)0.0086 (9)0.0007 (9)
C30.0205 (11)0.0319 (13)0.0320 (12)0.0035 (9)0.0038 (9)0.0020 (10)
C40.0302 (12)0.0273 (12)0.0272 (11)0.0008 (10)0.0064 (9)0.0053 (9)
C50.0253 (11)0.0292 (12)0.0253 (11)0.0022 (9)0.0093 (9)0.0022 (9)
C60.0241 (11)0.0323 (12)0.0244 (11)0.0032 (9)0.0120 (9)0.0011 (9)
C70.0474 (16)0.0395 (14)0.0343 (13)0.0108 (12)0.0188 (12)0.0048 (11)
C8A0.042 (2)0.068 (3)0.049 (2)0.0008 (19)0.0275 (18)0.005 (2)
C9A0.133 (4)0.060 (5)0.081 (7)0.006 (4)0.072 (5)0.018 (3)
C8B0.042 (2)0.068 (3)0.049 (2)0.0008 (19)0.0275 (18)0.005 (2)
C9B0.133 (4)0.060 (5)0.081 (7)0.006 (4)0.072 (5)0.018 (3)
C100.0230 (11)0.0209 (10)0.0247 (10)0.0013 (8)0.0091 (9)0.0024 (8)
C110.0315 (13)0.0446 (15)0.0269 (12)0.0040 (11)0.0153 (10)0.0024 (10)
C120.0433 (15)0.0479 (15)0.0233 (12)0.0028 (12)0.0148 (11)0.0041 (10)
C130.0388 (14)0.0365 (14)0.0238 (11)0.0081 (11)0.0064 (10)0.0074 (10)
C140.0263 (12)0.0299 (12)0.0275 (11)0.0055 (10)0.0077 (9)0.0019 (9)
C150.0191 (10)0.0245 (11)0.0281 (11)0.0034 (9)0.0094 (9)0.0023 (9)
C160.0321 (13)0.0382 (14)0.0427 (14)0.0109 (11)0.0139 (11)0.0101 (11)
C17A0.033 (3)0.045 (3)0.063 (4)0.013 (2)0.014 (3)0.002 (3)
C18A0.038 (3)0.059 (4)0.054 (3)0.009 (2)0.0074 (19)0.005 (2)
C17B0.039 (6)0.035 (5)0.045 (7)0.015 (4)0.026 (6)0.011 (5)
C18B0.038 (3)0.059 (4)0.054 (3)0.009 (2)0.0074 (19)0.005 (2)
Geometric parameters (Å, º) top
Pd1—N12.0713 (17)C7—H7A0.9900
Pd1—N42.0730 (17)C7—H7B0.9900
Pd1—S12.2598 (6)C8A—C9A1.288 (7)
Pd1—S22.2686 (6)C8A—H8AA0.9500
S1—C61.752 (2)C9A—H9AA0.9500
S2—C151.753 (2)C9A—H9AB0.9500
N1—C11.358 (3)C8B—C9B1.261 (17)
N1—C51.358 (3)C8B—H8BA0.9500
N2—C61.301 (3)C9B—H9BA0.9500
N2—C11.374 (3)C9B—H9BB0.9500
N3—C61.357 (3)C10—C111.404 (3)
N3—C71.463 (3)C11—C121.367 (3)
N3—H3N0.78 (3)C11—H11A0.9500
N4—C101.355 (3)C12—C131.392 (4)
N4—C141.359 (3)C12—H12A0.9500
N5—C151.302 (3)C13—C141.363 (3)
N5—C101.376 (3)C13—H13A0.9500
N6—C151.353 (3)C14—H14A0.9500
N6—C161.455 (3)C16—C17A1.471 (7)
N6—H6N0.79 (2)C16—C17B1.572 (13)
C1—C21.405 (3)C16—H16A0.9900
C2—C31.365 (3)C16—H16B0.9900
C2—H2A0.9500C17A—C18A1.265 (9)
C3—C41.389 (3)C17A—H17A0.9500
C3—H3A0.9500C18A—H18A0.9500
C4—C51.368 (3)C18A—H18B0.9500
C4—H4A0.9500C17B—C18B1.31 (2)
C5—H5A0.9500C17B—H17B0.9500
C7—C8B1.487 (11)C18B—H18C0.9500
C7—C8A1.519 (5)C18B—H18D0.9500
N1—Pd1—N494.48 (7)C9A—C8A—H8AA117.8
N1—Pd1—S189.59 (5)C7—C8A—H8AA117.8
N4—Pd1—S1174.63 (5)C8A—C9A—H9AA120.0
N1—Pd1—S2174.24 (5)C8A—C9A—H9AB120.0
N4—Pd1—S288.44 (5)H9AA—C9A—H9AB120.0
S1—Pd1—S287.80 (2)C9B—C8B—C7124.2 (18)
C6—S1—Pd1101.25 (7)C9B—C8B—H8BA117.9
C15—S2—Pd198.20 (7)C7—C8B—H8BA117.9
C1—N1—C5118.27 (18)C8B—C9B—H9BA120.0
C1—N1—Pd1125.52 (14)C8B—C9B—H9BB120.0
C5—N1—Pd1115.82 (14)H9BA—C9B—H9BB120.0
C6—N2—C1123.98 (19)N4—C10—N5123.65 (18)
C6—N3—C7123.1 (2)N4—C10—C11119.71 (19)
C6—N3—H3N116 (2)N5—C10—C11116.58 (19)
C7—N3—H3N116 (2)C12—C11—C10120.9 (2)
C10—N4—C14118.47 (18)C12—C11—H11A119.5
C10—N4—Pd1125.27 (14)C10—C11—H11A119.5
C14—N4—Pd1115.87 (14)C11—C12—C13118.8 (2)
C15—N5—C10123.16 (18)C11—C12—H12A120.6
C15—N6—C16124.1 (2)C13—C12—H12A120.6
C15—N6—H6N116.6 (18)C14—C13—C12118.5 (2)
C16—N6—H6N118.9 (18)C14—C13—H13A120.8
N1—C1—N2124.70 (19)C12—C13—H13A120.8
N1—C1—C2119.55 (19)N4—C14—C13123.6 (2)
N2—C1—C2115.73 (19)N4—C14—H14A118.2
C3—C2—C1121.2 (2)C13—C14—H14A118.2
C3—C2—H2A119.4N5—C15—N6117.3 (2)
C1—C2—H2A119.4N5—C15—S2129.22 (17)
C2—C3—C4118.8 (2)N6—C15—S2113.46 (16)
C2—C3—H3A120.6N6—C16—C17A117.6 (3)
C4—C3—H3A120.6N6—C16—C17B101.3 (5)
C5—C4—C3118.3 (2)N6—C16—H16A107.9
C5—C4—H4A120.8C17A—C16—H16A107.9
C3—C4—H4A120.8C17B—C16—H16A100.7
N1—C5—C4123.8 (2)N6—C16—H16B107.9
N1—C5—H5A118.1C17A—C16—H16B107.9
C4—C5—H5A118.1C17B—C16—H16B130.2
N2—C6—N3117.1 (2)H16A—C16—H16B107.2
N2—C6—S1129.58 (17)C18A—C17A—C16127.0 (6)
N3—C6—S1113.29 (17)C18A—C17A—H17A116.5
N3—C7—C8B107.4 (4)C16—C17A—H17A116.5
N3—C7—C8A112.9 (2)C17A—C18A—H18A120.0
N3—C7—H7A109.0C17A—C18A—H18B120.0
C8B—C7—H7A74.1H18A—C18A—H18B120.0
C8A—C7—H7A109.0C18B—C17B—C16122.2 (12)
N3—C7—H7B109.0C18B—C17B—H17B118.9
C8B—C7—H7B140.3C16—C17B—H17B118.9
C8A—C7—H7B109.0C17B—C18B—H18C120.0
H7A—C7—H7B107.8C17B—C18B—H18D120.0
C9A—C8A—C7124.3 (5)H18C—C18B—H18D120.0
N1—Pd1—S1—C642.71 (9)C6—N3—C7—C8B106.2 (5)
S2—Pd1—S1—C6142.43 (8)C6—N3—C7—C8A63.7 (3)
N4—Pd1—S2—C1547.84 (9)N3—C7—C8A—C9A112.2 (8)
S1—Pd1—S2—C15136.00 (7)C8B—C7—C8A—C9A22.0 (10)
N4—Pd1—N1—C1143.98 (17)N3—C7—C8B—C9B113.5 (19)
S1—Pd1—N1—C132.53 (17)C8A—C7—C8B—C9B8.4 (18)
N4—Pd1—N1—C543.35 (16)C14—N4—C10—N5179.6 (2)
S1—Pd1—N1—C5140.15 (15)Pd1—N4—C10—N57.2 (3)
N1—Pd1—N4—C10140.26 (17)C14—N4—C10—C113.2 (3)
S2—Pd1—N4—C1034.78 (16)Pd1—N4—C10—C11175.61 (16)
N1—Pd1—N4—C1447.14 (16)C15—N5—C10—N436.3 (3)
S2—Pd1—N4—C14137.82 (15)C15—N5—C10—C11146.4 (2)
C5—N1—C1—N2177.9 (2)N4—C10—C11—C123.8 (4)
Pd1—N1—C1—N25.4 (3)N5—C10—C11—C12178.9 (2)
C5—N1—C1—C23.2 (3)C10—C11—C12—C131.7 (4)
Pd1—N1—C1—C2175.69 (15)C11—C12—C13—C140.8 (4)
C6—N2—C1—N135.3 (3)C10—N4—C14—C130.7 (3)
C6—N2—C1—C2145.8 (2)Pd1—N4—C14—C13173.80 (19)
N1—C1—C2—C33.3 (3)C12—C13—C14—N41.4 (4)
N2—C1—C2—C3177.6 (2)C10—N5—C15—N6176.7 (2)
C1—C2—C3—C41.5 (3)C10—N5—C15—S20.6 (3)
C2—C3—C4—C50.3 (3)C16—N6—C15—N50.5 (3)
C1—N1—C5—C41.4 (3)C16—N6—C15—S2177.21 (18)
Pd1—N1—C5—C4174.65 (18)Pd1—S2—C15—N545.9 (2)
C3—C4—C5—N10.4 (4)Pd1—S2—C15—N6136.77 (15)
C1—N2—C6—N3172.1 (2)C15—N6—C16—C17A148.5 (4)
C1—N2—C6—S16.3 (3)C15—N6—C16—C17B165.4 (6)
C7—N3—C6—N217.4 (3)N6—C16—C17A—C18A13.5 (10)
C7—N3—C6—S1161.29 (19)C17B—C16—C17A—C18A61.2 (18)
Pd1—S1—C6—N237.2 (2)N6—C16—C17B—C18B112.2 (14)
Pd1—S1—C6—N3144.37 (16)C17A—C16—C17B—C18B25.9 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···N2i0.952.643.511 (3)152
C14—H14A···N5ii0.952.573.376 (3)143
N3—H3N···N3iii0.78 (3)2.84 (3)3.425 (4)133 (2)
C4—H4A···S2iv0.952.983.728 (2)136
C12—H12A···S1v0.953.023.910 (2)156
C18B—H18D···S1vi0.952.953.85 (1)160
C7—H7A···S2iii0.992.853.825 (3)167
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z+1; (iv) x+1, y+1/2, z+1/2; (v) x, y+1/2, z1/2; (vi) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Pd(C9H10N3S)2]
Mr490.96
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)10.8976 (6), 8.9730 (5), 21.798 (1)
β (°) 113.624 (2)
V3)1952.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.18
Crystal size (mm)0.51 × 0.21 × 0.05
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionNumerical
(SADABS; Bruker, 2005)
Tmin, Tmax0.583, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
17417, 4010, 3522
Rint0.026
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.055, 1.03
No. of reflections4010
No. of parameters272
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.37

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···N2i0.952.643.511 (3)152.2
C14—H14A···N5ii0.952.573.376 (3)142.7
N3—H3N···N3iii0.78 (3)2.84 (3)3.425 (4)133 (2)
C4—H4A···S2iv0.952.983.728 (2)136.4
C12—H12A···S1v0.953.023.910 (2)156.3
C18B—H18D···S1vi0.952.953.85 (1)160.2
C7—H7A···S2iii0.992.853.825 (3)167.3
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z+1; (iv) x+1, y+1/2, z+1/2; (v) x, y+1/2, z1/2; (vi) x+2, y+1, z+1.
 

References

First citationBon, V. V., Orysyk, S. I., Pekhnyo, V. I., Orysyk, V. V. & Volkov, S. V. (2007). Polyhedron, 26, 2935–2941.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHernández, W., Paz, J., Vaisberg, A., Spodine, E., Richter, R. & Beyer, L. (2008). Bioinorg. Chem. Appl. pp. 1–10.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUpadhayaya, R. S., Kulkarni, G. M., Vasireddy, N. R., Vandavasi, J. K., Dixit, S. S., Sharma, V. & Chattopadhyaya, J. (2009). Bioorg. Med. Chem. 17, 4681–4692.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds