organic compounds
1-(Benzothiazol-2-yl)-3-(4-nitrobenzoyl)thiourea
aDepartment of Chemistry, Research Complex, Allama Iqbal Open University, Islamabad, Pakistan, bDirectorate of Chemical & Power Sources, National Development Complex, PO Box 2216, Islamabad, Pakistan, and cInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany
*Correspondence e-mail: sohail262001@yahoo.com
The molecule of the title compound, C15H10N4O3S2, is almost planar (r.m.s. deviation = 0.1Å for all non-H atoms). An intramolecular N—H⋯O=C hydrogen bond is observed. In the crystal, molecules are connected into layers parallel to (10) by a classical intermolecular hydrogen bond from the second NH group to a nitro O atom and by three weak hydrogen bonds of the C—H⋯X type (X = O or Sthione).
Related literature
For general background to the chemistry of thiourea derivatives, see Choi et al. (2008); Jones et al. (2008); Su et al. (2006). For related structures, see: Saeed et al. (2008a,b,c); Yunus et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis Pro (Oxford Diffraction, 2009); cell CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809030803/im2131sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809030803/im2131Isup2.hkl
A mixture of ammonium thiocyanate (0.1 mol) and 4-nitrobenzoyl chloride (0.1 mol) in anhydrous acetone (60 ml) was stirred for 40 min. 2-Aminobenzothiazole (0.1 mol) was added and the reaction mixture was refluxed for 2 h. After cooling, the reaction mixture was poured into 800 ml of acidified cold water (pH = 5). The resulting dark yellow solid was filtered and washed with cold acetone (yield 1.56 g, 87%). The title compound (I) was obtained as suitable crystals for X-ray analysis after recrystallization of the solid from a 1:1 ethanol- dichloromethane mixture.
NH H atoms were refined freely. Other H atoms were placed in calculated positions and refined using a riding model with C—H 0.95 Å; hydrogen U values were fixed at 1.2 × U(eq) of the parent atom. Data are 99.3% complete to 2θ 145°.
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound in the crystal. Ellipsoids correspond to 50% probability levels. | |
Fig. 2. Packing diagram of the title compound viewed perpendicular to (101). Thin dashed lines represent "weak" and thick dashed lines classical H bonds. H atoms not involved in H bonds are omitted for clarity. |
C15H10N4O3S2 | F(000) = 736 |
Mr = 358.39 | Dx = 1.614 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: -P 2yn | Cell parameters from 21284 reflections |
a = 7.1596 (3) Å | θ = 3.8–75.7° |
b = 17.9071 (5) Å | µ = 3.50 mm−1 |
c = 11.5768 (4) Å | T = 100 K |
β = 96.446 (4)° | Lath, yellow |
V = 1474.85 (9) Å3 | 0.20 × 0.10 × 0.05 mm |
Z = 4 |
Oxford Diffraction Xcalibur Nova A diffractometer | 3026 independent reflections |
Radiation source: Nova (Cu) X-ray Source | 2834 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.040 |
Detector resolution: 10.3543 pixels mm-1 | θmax = 75.9°, θmin = 4.6° |
ω scans | h = −8→9 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | k = −22→22 |
Tmin = 0.682, Tmax = 1.000 | l = −14→14 |
30943 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.078 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0427P)2 + 0.7178P] where P = (Fo2 + 2Fc2)/3 |
3026 reflections | (Δ/σ)max = 0.001 |
225 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
C15H10N4O3S2 | V = 1474.85 (9) Å3 |
Mr = 358.39 | Z = 4 |
Monoclinic, P21/n | Cu Kα radiation |
a = 7.1596 (3) Å | µ = 3.50 mm−1 |
b = 17.9071 (5) Å | T = 100 K |
c = 11.5768 (4) Å | 0.20 × 0.10 × 0.05 mm |
β = 96.446 (4)° |
Oxford Diffraction Xcalibur Nova A diffractometer | 3026 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 2834 reflections with I > 2σ(I) |
Tmin = 0.682, Tmax = 1.000 | Rint = 0.040 |
30943 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.078 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.28 e Å−3 |
3026 reflections | Δρmin = −0.25 e Å−3 |
225 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.53606 (4) | 0.470055 (17) | 0.84776 (3) | 0.01726 (10) | |
C2 | 0.44766 (17) | 0.43337 (7) | 0.71218 (11) | 0.0165 (3) | |
N3 | 0.45826 (16) | 0.36156 (6) | 0.69808 (10) | 0.0194 (2) | |
C3A | 0.54057 (19) | 0.32891 (8) | 0.80022 (12) | 0.0190 (3) | |
C4 | 0.5778 (2) | 0.25256 (8) | 0.81532 (13) | 0.0232 (3) | |
H4 | 0.5452 | 0.2182 | 0.7538 | 0.028* | |
C5 | 0.6629 (2) | 0.22814 (8) | 0.92178 (13) | 0.0248 (3) | |
H5 | 0.6894 | 0.1765 | 0.9331 | 0.030* | |
C6 | 0.7108 (2) | 0.27842 (8) | 1.01331 (12) | 0.0234 (3) | |
H6 | 0.7681 | 0.2602 | 1.0859 | 0.028* | |
C7 | 0.67605 (19) | 0.35414 (8) | 0.99963 (12) | 0.0209 (3) | |
H7 | 0.7094 | 0.3883 | 1.0614 | 0.025* | |
C7A | 0.59024 (18) | 0.37870 (7) | 0.89188 (12) | 0.0178 (3) | |
S2 | 0.43025 (6) | 0.610190 (19) | 0.71210 (3) | 0.02877 (12) | |
N1 | 0.36489 (16) | 0.47552 (6) | 0.61966 (10) | 0.0173 (2) | |
H01 | 0.316 (3) | 0.4498 (11) | 0.5646 (16) | 0.029 (5)* | |
N2 | 0.25433 (16) | 0.57570 (6) | 0.50564 (10) | 0.0179 (2) | |
H02 | 0.260 (3) | 0.6224 (11) | 0.5014 (16) | 0.028 (5)* | |
N4 | −0.17337 (16) | 0.67589 (7) | 0.00397 (10) | 0.0215 (2) | |
O1 | 0.15674 (15) | 0.46515 (5) | 0.42156 (8) | 0.0227 (2) | |
O2 | −0.20909 (16) | 0.74281 (6) | 0.00649 (9) | 0.0300 (3) | |
O3 | −0.19731 (17) | 0.63730 (6) | −0.08377 (9) | 0.0314 (3) | |
C8 | 0.34765 (18) | 0.55045 (7) | 0.61124 (12) | 0.0183 (3) | |
C9 | 0.16239 (18) | 0.53355 (7) | 0.41710 (11) | 0.0174 (3) | |
C10 | 0.07004 (18) | 0.57425 (7) | 0.31352 (11) | 0.0168 (3) | |
C11 | 0.04521 (19) | 0.65149 (7) | 0.30881 (12) | 0.0194 (3) | |
H11 | 0.0855 | 0.6812 | 0.3749 | 0.023* | |
C12 | −0.03826 (19) | 0.68511 (8) | 0.20783 (12) | 0.0200 (3) | |
H12 | −0.0567 | 0.7376 | 0.2040 | 0.024* | |
C13 | −0.09376 (18) | 0.64017 (7) | 0.11316 (11) | 0.0177 (3) | |
C14 | −0.07437 (19) | 0.56315 (8) | 0.11565 (11) | 0.0188 (3) | |
H14 | −0.1166 | 0.5338 | 0.0495 | 0.023* | |
C15 | 0.00793 (19) | 0.53013 (7) | 0.21676 (12) | 0.0186 (3) | |
H15 | 0.0224 | 0.4774 | 0.2207 | 0.022* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.01993 (17) | 0.01434 (16) | 0.01670 (17) | 0.00078 (11) | −0.00157 (12) | 0.00075 (10) |
C2 | 0.0163 (6) | 0.0159 (6) | 0.0173 (6) | −0.0001 (5) | 0.0017 (5) | 0.0013 (5) |
N3 | 0.0218 (6) | 0.0165 (6) | 0.0194 (5) | 0.0011 (4) | −0.0001 (4) | 0.0017 (4) |
C3A | 0.0190 (6) | 0.0186 (7) | 0.0192 (6) | 0.0002 (5) | 0.0017 (5) | 0.0028 (5) |
C4 | 0.0278 (7) | 0.0171 (7) | 0.0240 (7) | 0.0003 (5) | 0.0005 (6) | 0.0008 (5) |
C5 | 0.0277 (7) | 0.0180 (7) | 0.0284 (7) | 0.0024 (5) | 0.0022 (6) | 0.0072 (6) |
C6 | 0.0237 (7) | 0.0235 (7) | 0.0222 (7) | 0.0015 (5) | −0.0001 (5) | 0.0076 (5) |
C7 | 0.0205 (7) | 0.0224 (7) | 0.0192 (6) | 0.0001 (5) | −0.0002 (5) | 0.0018 (5) |
C7A | 0.0161 (6) | 0.0164 (6) | 0.0209 (6) | 0.0011 (5) | 0.0021 (5) | 0.0023 (5) |
S2 | 0.0467 (2) | 0.01438 (18) | 0.02184 (19) | −0.00151 (14) | −0.01103 (15) | 0.00050 (12) |
N1 | 0.0206 (6) | 0.0145 (5) | 0.0159 (5) | 0.0002 (4) | −0.0023 (4) | 0.0008 (4) |
N2 | 0.0224 (6) | 0.0122 (5) | 0.0183 (5) | 0.0002 (4) | −0.0014 (4) | 0.0016 (4) |
N4 | 0.0201 (6) | 0.0226 (6) | 0.0206 (6) | −0.0019 (4) | −0.0025 (4) | 0.0037 (5) |
O1 | 0.0314 (5) | 0.0138 (4) | 0.0214 (5) | 0.0004 (4) | −0.0037 (4) | 0.0006 (4) |
O2 | 0.0372 (6) | 0.0211 (5) | 0.0294 (6) | 0.0048 (4) | −0.0073 (5) | 0.0060 (4) |
O3 | 0.0439 (7) | 0.0301 (6) | 0.0182 (5) | −0.0027 (5) | −0.0059 (4) | −0.0006 (4) |
C8 | 0.0190 (6) | 0.0174 (6) | 0.0182 (6) | 0.0002 (5) | 0.0012 (5) | 0.0023 (5) |
C9 | 0.0177 (6) | 0.0168 (6) | 0.0179 (6) | 0.0006 (5) | 0.0027 (5) | 0.0000 (5) |
C10 | 0.0156 (6) | 0.0162 (6) | 0.0186 (6) | −0.0008 (5) | 0.0019 (5) | 0.0008 (5) |
C11 | 0.0220 (7) | 0.0160 (6) | 0.0190 (6) | −0.0003 (5) | −0.0024 (5) | −0.0019 (5) |
C12 | 0.0215 (6) | 0.0149 (6) | 0.0227 (7) | 0.0008 (5) | −0.0015 (5) | 0.0002 (5) |
C13 | 0.0162 (6) | 0.0194 (6) | 0.0168 (6) | 0.0001 (5) | −0.0007 (5) | 0.0026 (5) |
C14 | 0.0191 (6) | 0.0194 (6) | 0.0178 (6) | −0.0012 (5) | 0.0011 (5) | −0.0018 (5) |
C15 | 0.0204 (6) | 0.0143 (6) | 0.0210 (7) | −0.0006 (5) | 0.0015 (5) | −0.0005 (5) |
S1—C7A | 1.7443 (13) | O1—C9 | 1.2269 (16) |
S1—C2 | 1.7529 (13) | C9—C10 | 1.4927 (18) |
C2—N3 | 1.2994 (18) | C10—C11 | 1.3949 (19) |
C2—N1 | 1.3877 (17) | C10—C15 | 1.4017 (19) |
N3—C3A | 1.3896 (17) | C11—C12 | 1.3890 (18) |
C3A—C4 | 1.4002 (19) | C12—C13 | 1.3815 (19) |
C3A—C7A | 1.4009 (19) | C13—C14 | 1.3863 (19) |
C4—C5 | 1.383 (2) | C14—C15 | 1.3828 (19) |
C5—C6 | 1.403 (2) | C4—H4 | 0.9500 |
C6—C7 | 1.385 (2) | C5—H5 | 0.9500 |
C7—C7A | 1.3982 (18) | C6—H6 | 0.9500 |
S2—C8 | 1.6439 (14) | C7—H7 | 0.9500 |
N1—C8 | 1.3499 (17) | N1—H01 | 0.832 (19) |
N2—C9 | 1.3791 (17) | N2—H02 | 0.84 (2) |
N2—C8 | 1.4007 (17) | C11—H11 | 0.9500 |
N4—O3 | 1.2246 (16) | C12—H12 | 0.9500 |
N4—O2 | 1.2264 (16) | C14—H14 | 0.9500 |
N4—C13 | 1.4731 (16) | C15—H15 | 0.9500 |
C7A—S1—C2 | 87.52 (6) | C15—C10—C9 | 116.03 (11) |
N3—C2—N1 | 117.86 (12) | C12—C11—C10 | 120.24 (12) |
N3—C2—S1 | 117.58 (10) | C13—C12—C11 | 118.26 (12) |
N1—C2—S1 | 124.55 (10) | C12—C13—C14 | 122.94 (12) |
C2—N3—C3A | 109.55 (11) | C12—C13—N4 | 118.49 (12) |
N3—C3A—C4 | 125.00 (13) | C14—C13—N4 | 118.56 (12) |
N3—C3A—C7A | 115.09 (12) | C15—C14—C13 | 118.37 (12) |
C4—C3A—C7A | 119.89 (12) | C14—C15—C10 | 120.15 (12) |
C5—C4—C3A | 118.59 (13) | C5—C4—H4 | 120.7 |
C4—C5—C6 | 121.06 (13) | C3A—C4—H4 | 120.7 |
C7—C6—C5 | 121.08 (13) | C4—C5—H5 | 119.5 |
C6—C7—C7A | 117.75 (13) | C6—C5—H5 | 119.5 |
C7—C7A—C3A | 121.62 (12) | C7—C6—H6 | 119.5 |
C7—C7A—S1 | 128.12 (11) | C5—C6—H6 | 119.5 |
C3A—C7A—S1 | 110.23 (10) | C6—C7—H7 | 121.1 |
C8—N1—C2 | 128.62 (12) | C7A—C7—H7 | 121.1 |
C9—N2—C8 | 127.82 (11) | C8—N1—H01 | 117.8 (13) |
O3—N4—O2 | 124.13 (12) | C2—N1—H01 | 113.5 (13) |
O3—N4—C13 | 118.13 (11) | C9—N2—H02 | 121.6 (13) |
O2—N4—C13 | 117.74 (11) | C8—N2—H02 | 110.6 (13) |
N1—C8—N2 | 114.50 (12) | C12—C11—H11 | 119.9 |
N1—C8—S2 | 124.95 (10) | C10—C11—H11 | 119.9 |
N2—C8—S2 | 120.54 (10) | C13—C12—H12 | 120.9 |
O1—C9—N2 | 122.03 (12) | C11—C12—H12 | 120.9 |
O1—C9—C10 | 120.50 (12) | C15—C14—H14 | 120.8 |
N2—C9—C10 | 117.47 (11) | C13—C14—H14 | 120.8 |
C11—C10—C15 | 120.00 (12) | C14—C15—H15 | 119.9 |
C11—C10—C9 | 123.96 (12) | C10—C15—H15 | 119.9 |
C7A—S1—C2—N3 | −1.03 (11) | C9—N2—C8—N1 | 7.7 (2) |
C7A—S1—C2—N1 | 177.99 (12) | C9—N2—C8—S2 | −173.54 (11) |
N1—C2—N3—C3A | −178.55 (11) | C8—N2—C9—O1 | −1.8 (2) |
S1—C2—N3—C3A | 0.54 (15) | C8—N2—C9—C10 | 178.80 (12) |
C2—N3—C3A—C4 | −178.51 (13) | O1—C9—C10—C11 | 169.88 (13) |
C2—N3—C3A—C7A | 0.44 (16) | N2—C9—C10—C11 | −10.69 (19) |
N3—C3A—C4—C5 | 179.12 (13) | O1—C9—C10—C15 | −10.64 (19) |
C7A—C3A—C4—C5 | 0.2 (2) | N2—C9—C10—C15 | 168.79 (12) |
C3A—C4—C5—C6 | 0.3 (2) | C15—C10—C11—C12 | −1.0 (2) |
C4—C5—C6—C7 | −0.6 (2) | C9—C10—C11—C12 | 178.44 (12) |
C5—C6—C7—C7A | 0.5 (2) | C10—C11—C12—C13 | −0.5 (2) |
C6—C7—C7A—C3A | 0.0 (2) | C11—C12—C13—C14 | 1.8 (2) |
C6—C7—C7A—S1 | −177.83 (11) | C11—C12—C13—N4 | −176.88 (12) |
N3—C3A—C7A—C7 | −179.35 (12) | O3—N4—C13—C12 | 169.77 (12) |
C4—C3A—C7A—C7 | −0.3 (2) | O2—N4—C13—C12 | −9.23 (19) |
N3—C3A—C7A—S1 | −1.19 (15) | O3—N4—C13—C14 | −8.94 (19) |
C4—C3A—C7A—S1 | 177.82 (11) | O2—N4—C13—C14 | 172.05 (12) |
C2—S1—C7A—C7 | 179.17 (13) | C12—C13—C14—C15 | −1.4 (2) |
C2—S1—C7A—C3A | 1.17 (10) | N4—C13—C14—C15 | 177.23 (12) |
N3—C2—N1—C8 | −175.86 (13) | C13—C14—C15—C10 | −0.2 (2) |
S1—C2—N1—C8 | 5.1 (2) | C11—C10—C15—C14 | 1.4 (2) |
C2—N1—C8—N2 | −179.42 (12) | C9—C10—C15—C14 | −178.12 (12) |
C2—N1—C8—S2 | 1.9 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H01···O1 | 0.83 (2) | 1.92 (2) | 2.598 (2) | 138 (2) |
N2—H02···O2i | 0.84 (2) | 2.42 (2) | 3.261 (2) | 175 (2) |
C5—H5···O1ii | 0.95 | 2.55 | 3.462 (2) | 161 |
C11—H11···O2i | 0.95 | 2.41 | 3.318 (2) | 159 |
C12—H12···S2iii | 0.95 | 2.73 | 3.673 (1) | 173 |
C7—H7···S2iv | 0.95 | 2.91 | 3.563 (1) | 127 |
Symmetry codes: (i) x+1/2, −y+3/2, z+1/2; (ii) x+1/2, −y+1/2, z+1/2; (iii) x−1/2, −y+3/2, z−1/2; (iv) −x+1, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C15H10N4O3S2 |
Mr | 358.39 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 7.1596 (3), 17.9071 (5), 11.5768 (4) |
β (°) | 96.446 (4) |
V (Å3) | 1474.85 (9) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 3.50 |
Crystal size (mm) | 0.20 × 0.10 × 0.05 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Nova A diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.682, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 30943, 3026, 2834 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.629 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.078, 1.06 |
No. of reflections | 3026 |
No. of parameters | 225 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.28, −0.25 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H01···O1 | 0.83 (2) | 1.92 (2) | 2.598 (2) | 138 (2) |
N2—H02···O2i | 0.84 (2) | 2.42 (2) | 3.261 (2) | 175 (2) |
C5—H5···O1ii | 0.95 | 2.55 | 3.462 (2) | 161.0 |
C11—H11···O2i | 0.95 | 2.41 | 3.318 (2) | 158.8 |
C12—H12···S2iii | 0.95 | 2.73 | 3.673 (1) | 172.8 |
C7—H7···S2iv | 0.95 | 2.91 | 3.563 (1) | 127.0 |
Symmetry codes: (i) x+1/2, −y+3/2, z+1/2; (ii) x+1/2, −y+1/2, z+1/2; (iii) x−1/2, −y+3/2, z−1/2; (iv) −x+1, −y+1, −z+2. |
Acknowledgements
The authors are grateful to Allama Iqbal Open University and the National Development Complex, Islamabad, Pakistan for the allocation of research and analytical laboratory facilities.
References
Choi, M. K., Kim, H. N., Choi, H. J., Yoon, J. & Hyun, M. H. (2008). Tetrahedron Lett. 49, 4522–4525. Web of Science CrossRef CAS Google Scholar
Jones, C. E., Turega, S. M., Clarke, M. L. & Philp, D. (2008). Tetrahedron Lett. 49, 4666–4669. Web of Science CrossRef CAS Google Scholar
Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction, Yarnton, England. Google Scholar
Saeed, S., Bhatti, M. H., Tahir, M. K. & Jones, P. G. (2008a). Acta Cryst. E64, o1369. Web of Science CSD CrossRef IUCr Journals Google Scholar
Saeed, S., Bhatti, M. H., Yunus, U. & Jones, P. G. (2008b). Acta Cryst. E64, o1485. Web of Science CSD CrossRef IUCr Journals Google Scholar
Saeed, S., Bhatti, M. H., Yunus, U. & Jones, P. G. (2008c). Acta Cryst. E64, o1566. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Su, B.-Q., Liu, G.-L., Sheng, L., Wang, X.-Q. & Xian, L. (2006). Phosphorus Sulphur Silicon, 181, 745–750. Web of Science CSD CrossRef CAS Google Scholar
Yunus, U., Tahir, M. K., Bhatti, M. H., Ali, S. & Wong, W.-Y. (2008). Acta Cryst. E64, o20. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thiourea and its derivatives have found extensive applications in the field of medicine, agriculture and analytical chemistry. They are known to exhibit a wide variety of biological activities such as antiviral, anti-bacterial, antifungal, antitubercular, herbicidal, insecticidal and some epoxy resin curing agents containing amino functional groups (Saeed et al., 2008a,b,c). They have found broad areas of application e.g. in anion recognition, nonlinear optics and catalysis, and also display good coordination abilities (Choi et al., 2008; Jones et al., 2008; Su et al., 2006). As part of our research on coordination chemistry of thioureas, we are interested in the study of the influence of non-covalent interactions, especially hydrogen bonds and π-π stacking interactions, on the coordination modes of benzothiazoles bearing the 4- nitrobenzoylthiourea group with transition metal ions. Such coordination compounds of thiourea have been studied for various biological systems like antibactrial, antifungal and anticancer activities (Yunus et al., 2008).The importance of such work lies in the possibility that the next generation of thiourea derivatives might be more efficacious as antimicrobial and anticancer agents. However, a thorough investigation relating structure and activity of thiourea derivatives as well as their stability under biological conditions is required. These detailed investigations could be helpful in designing more potent antimicrobial and anticancer agents for therapeutic use. Condensation of acyl or aroyl thiocyanates with primary amines affords 1, 3-disubstituted thioureas in excellent yields in a single step. In the present paper, the crystal structure of the title compound is reported.
The molecule of the title compound is shown in Fig. 1. The molecule is approximately planar (r.m.s. deviation for all non-H atoms 0.1 Å). The two ring systems (S1–C7A plus N1, C8, N2; C10–C15 plus N4, C9) are essentially parallel (interplanar angle 1.06 (3)°), because non-zero torsion angles such as C11—C10—C9—N2 - 10.7 (2) and N1—C8—N2—C9 7.7 (2)° effectively cancel out.
An intramolecular hydrogen bond N1—H01···O1 is observed. The second classical H bond N2—H02···O2 combines with the three shortest "weak" H bonds H5···O1, H11···O2 and H12···S2 (Table 1) to form layers parallel to (101) (Fig. 2).