organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(Benzo­thia­zol-2-yl)-3-(4-nitro­benzo­yl)thio­urea

aDepartment of Chemistry, Research Complex, Allama Iqbal Open University, Islamabad, Pakistan, bDirectorate of Chemical & Power Sources, National Development Complex, PO Box 2216, Islamabad, Pakistan, and cInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany
*Correspondence e-mail: sohail262001@yahoo.com

(Received 29 July 2009; accepted 3 August 2009; online 8 August 2009)

The mol­ecule of the title compound, C15H10N4O3S2, is almost planar (r.m.s. deviation = 0.1Å for all non-H atoms). An intra­molecular N—H⋯O=C hydrogen bond is observed. In the crystal, mol­ecules are connected into layers parallel to (10[\overline{1}]) by a classical inter­molecular hydrogen bond from the second NH group to a nitro O atom and by three weak hydrogen bonds of the C—H⋯X type (X = O or Sthione).

Related literature

For general background to the chemistry of thio­urea derivatives, see Choi et al. (2008[Choi, M. K., Kim, H. N., Choi, H. J., Yoon, J. & Hyun, M. H. (2008). Tetrahedron Lett. 49, 4522-4525.]); Jones et al. (2008[Jones, C. E., Turega, S. M., Clarke, M. L. & Philp, D. (2008). Tetrahedron Lett. 49, 4666-4669.]); Su et al. (2006[Su, B.-Q., Liu, G.-L., Sheng, L., Wang, X.-Q. & Xian, L. (2006). Phosphorus Sulphur Silicon, 181, 745-750.]). For related structures, see: Saeed et al. (2008a[Saeed, S., Bhatti, M. H., Tahir, M. K. & Jones, P. G. (2008a). Acta Cryst. E64, o1369.],b[Saeed, S., Bhatti, M. H., Yunus, U. & Jones, P. G. (2008b). Acta Cryst. E64, o1485.],c[Saeed, S., Bhatti, M. H., Yunus, U. & Jones, P. G. (2008c). Acta Cryst. E64, o1566.]); Yunus et al. (2008[Yunus, U., Tahir, M. K., Bhatti, M. H., Ali, S. & Wong, W.-Y. (2008). Acta Cryst. E64, o20.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10N4O3S2

  • Mr = 358.39

  • Monoclinic, P 21 /n

  • a = 7.1596 (3) Å

  • b = 17.9071 (5) Å

  • c = 11.5768 (4) Å

  • β = 96.446 (4)°

  • V = 1474.85 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.50 mm−1

  • T = 100 K

  • 0.20 × 0.10 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur Nova A diffractometer

  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction, Yarnton, England.]) Tmin = 0.682, Tmax = 1.000 (expected range = 0.573–0.840)

  • 30943 measured reflections

  • 3026 independent reflections

  • 2834 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.078

  • S = 1.06

  • 3026 reflections

  • 225 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H01⋯O1 0.83 (2) 1.92 (2) 2.598 (2) 138 (2)
N2—H02⋯O2i 0.84 (2) 2.42 (2) 3.261 (2) 175 (2)
C5—H5⋯O1ii 0.95 2.55 3.462 (2) 161
C11—H11⋯O2i 0.95 2.41 3.318 (2) 159
C12—H12⋯S2iii 0.95 2.73 3.673 (1) 173
C7—H7⋯S2iv 0.95 2.91 3.563 (1) 127
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+2.

Data collection: CrysAlis Pro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction, Yarnton, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thiourea and its derivatives have found extensive applications in the field of medicine, agriculture and analytical chemistry. They are known to exhibit a wide variety of biological activities such as antiviral, anti-bacterial, antifungal, antitubercular, herbicidal, insecticidal and some epoxy resin curing agents containing amino functional groups (Saeed et al., 2008a,b,c). They have found broad areas of application e.g. in anion recognition, nonlinear optics and catalysis, and also display good coordination abilities (Choi et al., 2008; Jones et al., 2008; Su et al., 2006). As part of our research on coordination chemistry of thioureas, we are interested in the study of the influence of non-covalent interactions, especially hydrogen bonds and π-π stacking interactions, on the coordination modes of benzothiazoles bearing the 4- nitrobenzoylthiourea group with transition metal ions. Such coordination compounds of thiourea have been studied for various biological systems like antibactrial, antifungal and anticancer activities (Yunus et al., 2008).The importance of such work lies in the possibility that the next generation of thiourea derivatives might be more efficacious as antimicrobial and anticancer agents. However, a thorough investigation relating structure and activity of thiourea derivatives as well as their stability under biological conditions is required. These detailed investigations could be helpful in designing more potent antimicrobial and anticancer agents for therapeutic use. Condensation of acyl or aroyl thiocyanates with primary amines affords 1, 3-disubstituted thioureas in excellent yields in a single step. In the present paper, the crystal structure of the title compound is reported.

The molecule of the title compound is shown in Fig. 1. The molecule is approximately planar (r.m.s. deviation for all non-H atoms 0.1 Å). The two ring systems (S1–C7A plus N1, C8, N2; C10–C15 plus N4, C9) are essentially parallel (interplanar angle 1.06 (3)°), because non-zero torsion angles such as C11—C10—C9—N2 - 10.7 (2) and N1—C8—N2—C9 7.7 (2)° effectively cancel out.

An intramolecular hydrogen bond N1—H01···O1 is observed. The second classical H bond N2—H02···O2 combines with the three shortest "weak" H bonds H5···O1, H11···O2 and H12···S2 (Table 1) to form layers parallel to (101) (Fig. 2).

Related literature top

For general background to the chemistry of thiourea derivatives, see Choi et al. (2008); Jones et al. (2008); Su et al. (2006). For related structures, see: Saeed et al. (2008a,b,c); Yunus et al. (2008).

Experimental top

A mixture of ammonium thiocyanate (0.1 mol) and 4-nitrobenzoyl chloride (0.1 mol) in anhydrous acetone (60 ml) was stirred for 40 min. 2-Aminobenzothiazole (0.1 mol) was added and the reaction mixture was refluxed for 2 h. After cooling, the reaction mixture was poured into 800 ml of acidified cold water (pH = 5). The resulting dark yellow solid was filtered and washed with cold acetone (yield 1.56 g, 87%). The title compound (I) was obtained as suitable crystals for X-ray analysis after recrystallization of the solid from a 1:1 ethanol- dichloromethane mixture.

Refinement top

NH H atoms were refined freely. Other H atoms were placed in calculated positions and refined using a riding model with C—H 0.95 Å; hydrogen U values were fixed at 1.2 × U(eq) of the parent atom. Data are 99.3% complete to 2θ 145°.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound in the crystal. Ellipsoids correspond to 50% probability levels.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed perpendicular to (101). Thin dashed lines represent "weak" and thick dashed lines classical H bonds. H atoms not involved in H bonds are omitted for clarity.
1-(Benzothiazol-2-yl)-3-(4-nitrobenzoyl)thiourea top
Crystal data top
C15H10N4O3S2F(000) = 736
Mr = 358.39Dx = 1.614 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 21284 reflections
a = 7.1596 (3) Åθ = 3.8–75.7°
b = 17.9071 (5) ŵ = 3.50 mm1
c = 11.5768 (4) ÅT = 100 K
β = 96.446 (4)°Lath, yellow
V = 1474.85 (9) Å30.20 × 0.10 × 0.05 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Nova A
diffractometer
3026 independent reflections
Radiation source: Nova (Cu) X-ray Source2834 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.040
Detector resolution: 10.3543 pixels mm-1θmax = 75.9°, θmin = 4.6°
ω scansh = 89
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 2222
Tmin = 0.682, Tmax = 1.000l = 1414
30943 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.7178P]
where P = (Fo2 + 2Fc2)/3
3026 reflections(Δ/σ)max = 0.001
225 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C15H10N4O3S2V = 1474.85 (9) Å3
Mr = 358.39Z = 4
Monoclinic, P21/nCu Kα radiation
a = 7.1596 (3) ŵ = 3.50 mm1
b = 17.9071 (5) ÅT = 100 K
c = 11.5768 (4) Å0.20 × 0.10 × 0.05 mm
β = 96.446 (4)°
Data collection top
Oxford Diffraction Xcalibur Nova A
diffractometer
3026 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2834 reflections with I > 2σ(I)
Tmin = 0.682, Tmax = 1.000Rint = 0.040
30943 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.28 e Å3
3026 reflectionsΔρmin = 0.25 e Å3
225 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.53606 (4)0.470055 (17)0.84776 (3)0.01726 (10)
C20.44766 (17)0.43337 (7)0.71218 (11)0.0165 (3)
N30.45826 (16)0.36156 (6)0.69808 (10)0.0194 (2)
C3A0.54057 (19)0.32891 (8)0.80022 (12)0.0190 (3)
C40.5778 (2)0.25256 (8)0.81532 (13)0.0232 (3)
H40.54520.21820.75380.028*
C50.6629 (2)0.22814 (8)0.92178 (13)0.0248 (3)
H50.68940.17650.93310.030*
C60.7108 (2)0.27842 (8)1.01331 (12)0.0234 (3)
H60.76810.26021.08590.028*
C70.67605 (19)0.35414 (8)0.99963 (12)0.0209 (3)
H70.70940.38831.06140.025*
C7A0.59024 (18)0.37870 (7)0.89188 (12)0.0178 (3)
S20.43025 (6)0.610190 (19)0.71210 (3)0.02877 (12)
N10.36489 (16)0.47552 (6)0.61966 (10)0.0173 (2)
H010.316 (3)0.4498 (11)0.5646 (16)0.029 (5)*
N20.25433 (16)0.57570 (6)0.50564 (10)0.0179 (2)
H020.260 (3)0.6224 (11)0.5014 (16)0.028 (5)*
N40.17337 (16)0.67589 (7)0.00397 (10)0.0215 (2)
O10.15674 (15)0.46515 (5)0.42156 (8)0.0227 (2)
O20.20909 (16)0.74281 (6)0.00649 (9)0.0300 (3)
O30.19731 (17)0.63730 (6)0.08377 (9)0.0314 (3)
C80.34765 (18)0.55045 (7)0.61124 (12)0.0183 (3)
C90.16239 (18)0.53355 (7)0.41710 (11)0.0174 (3)
C100.07004 (18)0.57425 (7)0.31352 (11)0.0168 (3)
C110.04521 (19)0.65149 (7)0.30881 (12)0.0194 (3)
H110.08550.68120.37490.023*
C120.03826 (19)0.68511 (8)0.20783 (12)0.0200 (3)
H120.05670.73760.20400.024*
C130.09376 (18)0.64017 (7)0.11316 (11)0.0177 (3)
C140.07437 (19)0.56315 (8)0.11565 (11)0.0188 (3)
H140.11660.53380.04950.023*
C150.00793 (19)0.53013 (7)0.21676 (12)0.0186 (3)
H150.02240.47740.22070.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01993 (17)0.01434 (16)0.01670 (17)0.00078 (11)0.00157 (12)0.00075 (10)
C20.0163 (6)0.0159 (6)0.0173 (6)0.0001 (5)0.0017 (5)0.0013 (5)
N30.0218 (6)0.0165 (6)0.0194 (5)0.0011 (4)0.0001 (4)0.0017 (4)
C3A0.0190 (6)0.0186 (7)0.0192 (6)0.0002 (5)0.0017 (5)0.0028 (5)
C40.0278 (7)0.0171 (7)0.0240 (7)0.0003 (5)0.0005 (6)0.0008 (5)
C50.0277 (7)0.0180 (7)0.0284 (7)0.0024 (5)0.0022 (6)0.0072 (6)
C60.0237 (7)0.0235 (7)0.0222 (7)0.0015 (5)0.0001 (5)0.0076 (5)
C70.0205 (7)0.0224 (7)0.0192 (6)0.0001 (5)0.0002 (5)0.0018 (5)
C7A0.0161 (6)0.0164 (6)0.0209 (6)0.0011 (5)0.0021 (5)0.0023 (5)
S20.0467 (2)0.01438 (18)0.02184 (19)0.00151 (14)0.01103 (15)0.00050 (12)
N10.0206 (6)0.0145 (5)0.0159 (5)0.0002 (4)0.0023 (4)0.0008 (4)
N20.0224 (6)0.0122 (5)0.0183 (5)0.0002 (4)0.0014 (4)0.0016 (4)
N40.0201 (6)0.0226 (6)0.0206 (6)0.0019 (4)0.0025 (4)0.0037 (5)
O10.0314 (5)0.0138 (4)0.0214 (5)0.0004 (4)0.0037 (4)0.0006 (4)
O20.0372 (6)0.0211 (5)0.0294 (6)0.0048 (4)0.0073 (5)0.0060 (4)
O30.0439 (7)0.0301 (6)0.0182 (5)0.0027 (5)0.0059 (4)0.0006 (4)
C80.0190 (6)0.0174 (6)0.0182 (6)0.0002 (5)0.0012 (5)0.0023 (5)
C90.0177 (6)0.0168 (6)0.0179 (6)0.0006 (5)0.0027 (5)0.0000 (5)
C100.0156 (6)0.0162 (6)0.0186 (6)0.0008 (5)0.0019 (5)0.0008 (5)
C110.0220 (7)0.0160 (6)0.0190 (6)0.0003 (5)0.0024 (5)0.0019 (5)
C120.0215 (6)0.0149 (6)0.0227 (7)0.0008 (5)0.0015 (5)0.0002 (5)
C130.0162 (6)0.0194 (6)0.0168 (6)0.0001 (5)0.0007 (5)0.0026 (5)
C140.0191 (6)0.0194 (6)0.0178 (6)0.0012 (5)0.0011 (5)0.0018 (5)
C150.0204 (6)0.0143 (6)0.0210 (7)0.0006 (5)0.0015 (5)0.0005 (5)
Geometric parameters (Å, º) top
S1—C7A1.7443 (13)O1—C91.2269 (16)
S1—C21.7529 (13)C9—C101.4927 (18)
C2—N31.2994 (18)C10—C111.3949 (19)
C2—N11.3877 (17)C10—C151.4017 (19)
N3—C3A1.3896 (17)C11—C121.3890 (18)
C3A—C41.4002 (19)C12—C131.3815 (19)
C3A—C7A1.4009 (19)C13—C141.3863 (19)
C4—C51.383 (2)C14—C151.3828 (19)
C5—C61.403 (2)C4—H40.9500
C6—C71.385 (2)C5—H50.9500
C7—C7A1.3982 (18)C6—H60.9500
S2—C81.6439 (14)C7—H70.9500
N1—C81.3499 (17)N1—H010.832 (19)
N2—C91.3791 (17)N2—H020.84 (2)
N2—C81.4007 (17)C11—H110.9500
N4—O31.2246 (16)C12—H120.9500
N4—O21.2264 (16)C14—H140.9500
N4—C131.4731 (16)C15—H150.9500
C7A—S1—C287.52 (6)C15—C10—C9116.03 (11)
N3—C2—N1117.86 (12)C12—C11—C10120.24 (12)
N3—C2—S1117.58 (10)C13—C12—C11118.26 (12)
N1—C2—S1124.55 (10)C12—C13—C14122.94 (12)
C2—N3—C3A109.55 (11)C12—C13—N4118.49 (12)
N3—C3A—C4125.00 (13)C14—C13—N4118.56 (12)
N3—C3A—C7A115.09 (12)C15—C14—C13118.37 (12)
C4—C3A—C7A119.89 (12)C14—C15—C10120.15 (12)
C5—C4—C3A118.59 (13)C5—C4—H4120.7
C4—C5—C6121.06 (13)C3A—C4—H4120.7
C7—C6—C5121.08 (13)C4—C5—H5119.5
C6—C7—C7A117.75 (13)C6—C5—H5119.5
C7—C7A—C3A121.62 (12)C7—C6—H6119.5
C7—C7A—S1128.12 (11)C5—C6—H6119.5
C3A—C7A—S1110.23 (10)C6—C7—H7121.1
C8—N1—C2128.62 (12)C7A—C7—H7121.1
C9—N2—C8127.82 (11)C8—N1—H01117.8 (13)
O3—N4—O2124.13 (12)C2—N1—H01113.5 (13)
O3—N4—C13118.13 (11)C9—N2—H02121.6 (13)
O2—N4—C13117.74 (11)C8—N2—H02110.6 (13)
N1—C8—N2114.50 (12)C12—C11—H11119.9
N1—C8—S2124.95 (10)C10—C11—H11119.9
N2—C8—S2120.54 (10)C13—C12—H12120.9
O1—C9—N2122.03 (12)C11—C12—H12120.9
O1—C9—C10120.50 (12)C15—C14—H14120.8
N2—C9—C10117.47 (11)C13—C14—H14120.8
C11—C10—C15120.00 (12)C14—C15—H15119.9
C11—C10—C9123.96 (12)C10—C15—H15119.9
C7A—S1—C2—N31.03 (11)C9—N2—C8—N17.7 (2)
C7A—S1—C2—N1177.99 (12)C9—N2—C8—S2173.54 (11)
N1—C2—N3—C3A178.55 (11)C8—N2—C9—O11.8 (2)
S1—C2—N3—C3A0.54 (15)C8—N2—C9—C10178.80 (12)
C2—N3—C3A—C4178.51 (13)O1—C9—C10—C11169.88 (13)
C2—N3—C3A—C7A0.44 (16)N2—C9—C10—C1110.69 (19)
N3—C3A—C4—C5179.12 (13)O1—C9—C10—C1510.64 (19)
C7A—C3A—C4—C50.2 (2)N2—C9—C10—C15168.79 (12)
C3A—C4—C5—C60.3 (2)C15—C10—C11—C121.0 (2)
C4—C5—C6—C70.6 (2)C9—C10—C11—C12178.44 (12)
C5—C6—C7—C7A0.5 (2)C10—C11—C12—C130.5 (2)
C6—C7—C7A—C3A0.0 (2)C11—C12—C13—C141.8 (2)
C6—C7—C7A—S1177.83 (11)C11—C12—C13—N4176.88 (12)
N3—C3A—C7A—C7179.35 (12)O3—N4—C13—C12169.77 (12)
C4—C3A—C7A—C70.3 (2)O2—N4—C13—C129.23 (19)
N3—C3A—C7A—S11.19 (15)O3—N4—C13—C148.94 (19)
C4—C3A—C7A—S1177.82 (11)O2—N4—C13—C14172.05 (12)
C2—S1—C7A—C7179.17 (13)C12—C13—C14—C151.4 (2)
C2—S1—C7A—C3A1.17 (10)N4—C13—C14—C15177.23 (12)
N3—C2—N1—C8175.86 (13)C13—C14—C15—C100.2 (2)
S1—C2—N1—C85.1 (2)C11—C10—C15—C141.4 (2)
C2—N1—C8—N2179.42 (12)C9—C10—C15—C14178.12 (12)
C2—N1—C8—S21.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01···O10.83 (2)1.92 (2)2.598 (2)138 (2)
N2—H02···O2i0.84 (2)2.42 (2)3.261 (2)175 (2)
C5—H5···O1ii0.952.553.462 (2)161
C11—H11···O2i0.952.413.318 (2)159
C12—H12···S2iii0.952.733.673 (1)173
C7—H7···S2iv0.952.913.563 (1)127
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+3/2, z1/2; (iv) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC15H10N4O3S2
Mr358.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)7.1596 (3), 17.9071 (5), 11.5768 (4)
β (°) 96.446 (4)
V3)1474.85 (9)
Z4
Radiation typeCu Kα
µ (mm1)3.50
Crystal size (mm)0.20 × 0.10 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur Nova A
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.682, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
30943, 3026, 2834
Rint0.040
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.078, 1.06
No. of reflections3026
No. of parameters225
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.25

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01···O10.83 (2)1.92 (2)2.598 (2)138 (2)
N2—H02···O2i0.84 (2)2.42 (2)3.261 (2)175 (2)
C5—H5···O1ii0.952.553.462 (2)161.0
C11—H11···O2i0.952.413.318 (2)158.8
C12—H12···S2iii0.952.733.673 (1)172.8
C7—H7···S2iv0.952.913.563 (1)127.0
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+3/2, z1/2; (iv) x+1, y+1, z+2.
 

Acknowledgements

The authors are grateful to Allama Iqbal Open University and the National Development Complex, Islamabad, Pakistan for the allocation of research and analytical laboratory facilities.

References

First citationChoi, M. K., Kim, H. N., Choi, H. J., Yoon, J. & Hyun, M. H. (2008). Tetrahedron Lett. 49, 4522–4525.  Web of Science CrossRef CAS Google Scholar
First citationJones, C. E., Turega, S. M., Clarke, M. L. & Philp, D. (2008). Tetrahedron Lett. 49, 4666–4669.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSaeed, S., Bhatti, M. H., Tahir, M. K. & Jones, P. G. (2008a). Acta Cryst. E64, o1369.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, S., Bhatti, M. H., Yunus, U. & Jones, P. G. (2008b). Acta Cryst. E64, o1485.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, S., Bhatti, M. H., Yunus, U. & Jones, P. G. (2008c). Acta Cryst. E64, o1566.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSu, B.-Q., Liu, G.-L., Sheng, L., Wang, X.-Q. & Xian, L. (2006). Phosphorus Sulphur Silicon, 181, 745–750.  Web of Science CSD CrossRef CAS Google Scholar
First citationYunus, U., Tahir, M. K., Bhatti, M. H., Ali, S. & Wong, W.-Y. (2008). Acta Cryst. E64, o20.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds