organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(2-thienylmethyl­ene)benzene-1,4-di­amine

aSchool of Pharmaceutical Science, Harbin Medical University, Harbin 150086, People's Republic of China
*Correspondence e-mail: liufengzhi@live.cn

(Received 10 August 2009; accepted 12 August 2009; online 19 August 2009)

The Schiff base, C16H12N2S2, has been synthesized by refluxing an ethano­lic solution of thio­phene-2-carbaldehyde and benzene-1,4-diamine. The center of the benzene ring is located on a crystallographic center of inversion. The dihedral angle between the benzene and thio­phene rings is 63.6 (1)°.

Related literature

For general background to Schiff base complexes, see: Andersen et al. (2005[Andersen, L. H., Nielsen, I. B., Kristensen, M. B., El Ghazaly, M. O. A., Haacke, S., Nielsen, M. B. & Petersen, M. Å ;. (2005). J. Am. Chem. Soc. 127, 12347-12350.]); Koizumi et al. (2005[Koizumi, S., Nihei, M., Nakano, M. & Oshio, H. (2005). Inorg. Chem. 44, 1208-1210.]); Boskovic et al. (2003[Boskovic, C., Bircher, R., Tregenna-Piggott, P. L. W., Güdel, H. U., Paulsen, C., Wernsdorfer, W., Barra, A. L., Khatsko, E., Neels, A. & Stoeckli-Evans, H. (2003). J. Am. Chem. Soc. 125, 14046-14058.]); Oshio et al. (2005[Oshio, H., Nihei, M., Koizumi, S., Shiga, T., Nojiri, H., Nakano, M., Shirakawa, N. & Akatsu, M. (2005). J. Am. Chem. Soc. 127, 4568-4569.]). For the synthesis, see: Kannappan et al. (2005[Kannappan, R., Tanase, S., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 383-388.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12N2S2

  • Mr = 296.40

  • Monoclinic, P 21 /n

  • a = 6.1882 (7) Å

  • b = 7.2371 (9) Å

  • c = 16.375 (2) Å

  • β = 95.860 (2)°

  • V = 729.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 294 K

  • 0.15 × 0.11 × 0.09 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.949, Tmax = 0.969

  • 3380 measured reflections

  • 1252 independent reflections

  • 1021 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.196

  • S = 1.00

  • 1252 reflections

  • 91 parameters

  • H-atom parameters not refined

  • Δρmax = 1.07 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2002[Bruker (2002). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

During the past decades, Schiff bases have been intensively investigated not only because of their strong coordination capability but also due to diverse biological activities, such as e.g. antibacterial and antitumor activities (Andersen et al., 2005; Koizumi et al., 2005; Boskovic et al., 2003; Oshio et al., 2005). Here we report the structure of N,N'-bis-thiophene-2-yl-methylene-1,4-benzenediamine, which could be used as another Schiff base ligand in combination with metal ions.

The molecular structure of the title compound is depicted in Figure 1. The center of the phenyl ring represents a crystallographic center of inversion. The dihedral angle between the phenyl and thiophene rings is 63.6 (1)°. As it is expected the thiophene rings also are perfectly planar with a deviation of the S atom of 0.001 Å.

Related literature top

For general background to Schiff base complexes, see: Andersen et al. (2005); Koizumi et al. (2005); Boskovic et al. (2003); Oshio et al. (2005). For the synthesis, see: Kannappan et al. (2005).

Experimental top

N,N'-Bis-thiophene-2-yl-methylene-1,4-benzenediamine was prepared according to the method reported in the literature (Kannappan et al., 2005). Thiophene-2-carboxaldehyde (0.02 mol) was added to a stirred ethanolic solution of p-phenylenediamine (0.01 mol). The reaction mixture was stirred about 3 h and then the mixture was allowed to stand at room temperature for about two days. Yellow crystals suitable for X-ray diffraction analysis were collected with a yield of 60%. Anal. Calc. for C16H12N2S2: C 64.78, H 4.05, N 9.45%; Found: C 64.59, H 4.01, N 9.25%.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93Å and refined as riding with Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound, showing the atomic numbering scheme and 50% probability displacement ellipsoids. Atoms labeled with A at the symmetry positions (-x + 1,-y + 1,-z + 1).
N,N'-Bis(2-thienylmethylene)benzene-1,4-diamine top
Crystal data top
C16H12N2S2F(000) = 308
Mr = 296.40Dx = 1.349 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1252 reflections
a = 6.1882 (7) Åθ = 3.1–25.0°
b = 7.2371 (9) ŵ = 0.36 mm1
c = 16.375 (2) ÅT = 294 K
β = 95.860 (2)°Block, yellow
V = 729.5 (2) Å30.15 × 0.11 × 0.09 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1252 independent reflections
Radiation source: fine-focus sealed tube1021 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 77
Tmin = 0.949, Tmax = 0.969k = 88
3380 measured reflectionsl = 1910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.196H-atom parameters not refined
S = 1.00 w = 1/[σ2(Fo2) + (0.141P)2 + 0.3146P]
where P = (Fo2 + 2Fc2)/3
1252 reflections(Δ/σ)max < 0.001
91 parametersΔρmax = 1.07 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C16H12N2S2V = 729.5 (2) Å3
Mr = 296.40Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.1882 (7) ŵ = 0.36 mm1
b = 7.2371 (9) ÅT = 294 K
c = 16.375 (2) Å0.15 × 0.11 × 0.09 mm
β = 95.860 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1252 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1021 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.969Rint = 0.019
3380 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.196H-atom parameters not refined
S = 1.00Δρmax = 1.07 e Å3
1252 reflectionsΔρmin = 0.21 e Å3
91 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15131 (14)0.10612 (13)0.29041 (6)0.0619 (5)
N10.3196 (4)0.1917 (4)0.41314 (16)0.0486 (7)
C10.0201 (5)0.0013 (4)0.36497 (18)0.0462 (7)
C20.1804 (5)0.0755 (5)0.3705 (2)0.0565 (9)
H20.27740.03330.40610.068*
C30.2234 (6)0.2258 (5)0.3163 (3)0.0664 (10)
H30.34890.29720.31360.080*
C40.0594 (6)0.2534 (6)0.2685 (3)0.0707 (11)
H40.06240.34370.22800.085*
C50.1188 (5)0.1553 (4)0.41151 (18)0.0456 (7)
H50.03210.22970.44110.055*
C60.4043 (5)0.3492 (4)0.45720 (17)0.0422 (7)
C70.3093 (5)0.5209 (5)0.4490 (2)0.0564 (9)
H70.18200.53610.41420.068*
C80.6000 (6)0.3299 (5)0.5086 (2)0.0576 (9)
H80.66810.21530.51380.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0552 (6)0.0657 (7)0.0656 (7)0.0030 (4)0.0105 (4)0.0170 (4)
N10.0464 (15)0.0470 (15)0.0525 (15)0.0058 (11)0.0059 (11)0.0114 (12)
C10.0453 (16)0.0484 (17)0.0436 (15)0.0007 (12)0.0013 (12)0.0027 (13)
C20.0483 (18)0.062 (2)0.059 (2)0.0059 (15)0.0054 (15)0.0085 (16)
C30.0528 (19)0.061 (2)0.083 (3)0.0100 (16)0.0059 (18)0.0154 (19)
C40.068 (2)0.063 (2)0.079 (2)0.0017 (18)0.0038 (19)0.0248 (19)
C50.0500 (17)0.0447 (16)0.0424 (16)0.0006 (13)0.0052 (13)0.0041 (12)
C60.0422 (16)0.0427 (15)0.0417 (15)0.0024 (11)0.0046 (12)0.0051 (12)
C70.0480 (17)0.0531 (19)0.065 (2)0.0017 (14)0.0066 (15)0.0032 (16)
C80.055 (2)0.0484 (18)0.068 (2)0.0073 (14)0.0004 (16)0.0039 (16)
Geometric parameters (Å, º) top
S1—C41.694 (4)C3—H30.9300
S1—C11.719 (3)C4—H40.9300
N1—C51.268 (4)C5—H50.9300
N1—C61.421 (4)C6—C71.375 (4)
C1—C21.371 (4)C6—C81.410 (4)
C1—C51.449 (4)C7—C8i1.373 (5)
C2—C31.412 (5)C7—H70.9300
C2—H20.9300C8—C7i1.373 (5)
C3—C41.358 (6)C8—H80.9300
C4—S1—C191.48 (17)S1—C4—H4123.5
C5—N1—C6119.1 (3)N1—C5—C1122.0 (3)
C2—C1—C5127.8 (3)N1—C5—H5119.0
C2—C1—S1111.1 (2)C1—C5—H5119.0
C5—C1—S1121.1 (2)C7—C6—C8118.8 (3)
C1—C2—C3112.6 (3)C7—C6—N1122.9 (3)
C1—C2—H2123.7C8—C6—N1118.2 (3)
C3—C2—H2123.7C8i—C7—C6120.8 (3)
C4—C3—C2111.8 (3)C8i—C7—H7119.6
C4—C3—H3124.1C6—C7—H7119.6
C2—C3—H3124.1C7i—C8—C6120.4 (3)
C3—C4—S1113.0 (3)C7i—C8—H8119.8
C3—C4—H4123.5C6—C8—H8119.8
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H12N2S2
Mr296.40
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)6.1882 (7), 7.2371 (9), 16.375 (2)
β (°) 95.860 (2)
V3)729.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.15 × 0.11 × 0.09
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.949, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
3380, 1252, 1021
Rint0.019
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.196, 1.00
No. of reflections1252
No. of parameters91
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)1.07, 0.21

Computer programs: APEX2 (Bruker, 2002), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge financial support by the Science Foundation of Harbin Medical University.

References

First citationAndersen, L. H., Nielsen, I. B., Kristensen, M. B., El Ghazaly, M. O. A., Haacke, S., Nielsen, M. B. & Petersen, M. Å ;. (2005). J. Am. Chem. Soc. 127, 12347–12350.  Google Scholar
First citationBoskovic, C., Bircher, R., Tregenna-Piggott, P. L. W., Güdel, H. U., Paulsen, C., Wernsdorfer, W., Barra, A. L., Khatsko, E., Neels, A. & Stoeckli-Evans, H. (2003). J. Am. Chem. Soc. 125, 14046–14058.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2002). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKannappan, R., Tanase, S., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 383–388.  Web of Science CSD CrossRef CAS Google Scholar
First citationKoizumi, S., Nihei, M., Nakano, M. & Oshio, H. (2005). Inorg. Chem. 44, 1208–1210.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOshio, H., Nihei, M., Koizumi, S., Shiga, T., Nojiri, H., Nakano, M., Shirakawa, N. & Akatsu, M. (2005). J. Am. Chem. Soc. 127, 4568–4569.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds