organic compounds
4-Methylbenzaldehyde thiosemicarbazone
aDepartment of Light Chemical Engineering, College of Food Science and Light Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: kingwell2004@sina.com.cn
The title compound, C9H11N3S, was prepared by reacting 4-methylbenzaldehyde with thiosemicarbazide. An intramolecular N—H⋯N hydrogen bond helps to establish the observed molecular conformation. The crystal packing is realized by intermolecular N—H⋯S hydrogen bonds.
Related literature
For general background to thiosemicarbazone compounds, see: Casas et al. (2000); Tarafder et al. (2000); Ferrari et al. (2000); Deschamps et al. (2003); Maccioni et al.(2003); Chimenti et al. (2007); Zhang et al. (2009). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809033297/im2136sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809033297/im2136Isup2.hkl
A mixture of 4-methyl-benzaldehyde (1.20 g, 0.01 mol) and hydrazinecarbothioamide (0.91 g, 0.01 mol) in 20 ml of absolute methanol was refluxed for about 3 h. After cooling, the precipitated solid separated was filtered and recrystallized from ethyl acetate. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of ethyl acetate at room temperature. 1H NMR (DMSO, δ, p.p.m.) 11.39 (s, 1 H), 8.17 (s, 1 H), 8.02 (s,2 H), 7.42 (m, 1 H), 7.30 (t, 2 H), 6.99 (t,1 H), 1.79 (t, 3 H).
All H atoms were positioned geometrically, with C—H = 0.93 Å and N—H = 0.86 °, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x= 1.5 for methyl H and x = 1.2 for methylene H atoms.
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C9H11N3S | F(000) = 408 |
Mr = 193.27 | Dx = 1.227 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 27 reflections |
a = 13.234 (3) Å | θ = 1–25° |
b = 8.221 (2) Å | µ = 0.27 mm−1 |
c = 10.311 (2) Å | T = 293 K |
β = 111.15 (3)° | Block, colorless |
V = 1046.2 (4) Å3 | 0.30 × 0.20 × 0.10 mm |
Z = 4 |
Enraf–Nonius CAD-4 diffractometer | 1322 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.032 |
Graphite monochromator | θmax = 25.3°, θmin = 1.7° |
ω/2θ scans | h = −15→0 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→9 |
Tmin = 0.924, Tmax = 0.974 | l = −11→12 |
1982 measured reflections | 3 standard reflections every 200 reflections |
1898 independent reflections | intensity decay: 9% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.052 | H-atom parameters constrained |
wR(F2) = 0.146 | w = 1/[σ2(Fo2) + (0.07P)2 + 0.38P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
1898 reflections | Δρmax = 0.26 e Å−3 |
120 parameters | Δρmin = −0.20 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.034 (4) |
C9H11N3S | V = 1046.2 (4) Å3 |
Mr = 193.27 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.234 (3) Å | µ = 0.27 mm−1 |
b = 8.221 (2) Å | T = 293 K |
c = 10.311 (2) Å | 0.30 × 0.20 × 0.10 mm |
β = 111.15 (3)° |
Enraf–Nonius CAD-4 diffractometer | 1322 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.032 |
Tmin = 0.924, Tmax = 0.974 | 3 standard reflections every 200 reflections |
1982 measured reflections | intensity decay: 9% |
1898 independent reflections |
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.146 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.26 e Å−3 |
1898 reflections | Δρmin = −0.20 e Å−3 |
120 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S | 0.48277 (7) | 0.09017 (9) | 0.81196 (7) | 0.0534 (3) | |
N1 | 0.34064 (18) | −0.0455 (3) | 0.4236 (2) | 0.0438 (6) | |
C1 | −0.0005 (3) | −0.2600 (6) | −0.1894 (3) | 0.0788 (12) | |
H1B | −0.0374 | −0.3614 | −0.1934 | 0.118* | |
H1C | 0.0324 | −0.2593 | −0.2585 | 0.118* | |
H1D | −0.0514 | −0.1721 | −0.2067 | 0.118* | |
N2 | 0.40264 (19) | −0.0458 (3) | 0.5647 (2) | 0.0456 (6) | |
H2A | 0.4275 | −0.1358 | 0.6065 | 0.055* | |
C2 | 0.0863 (3) | −0.2397 (5) | −0.0467 (3) | 0.0560 (9) | |
N3 | 0.3955 (2) | 0.2299 (3) | 0.5633 (3) | 0.0630 (8) | |
H3A | 0.3650 | 0.2263 | 0.4743 | 0.076* | |
H3B | 0.4078 | 0.3222 | 0.6054 | 0.076* | |
C3 | 0.1264 (3) | −0.0877 (4) | 0.0043 (3) | 0.0614 (9) | |
H3C | 0.1006 | 0.0034 | −0.0513 | 0.074* | |
C4 | 0.2041 (3) | −0.0681 (4) | 0.1365 (3) | 0.0553 (8) | |
H4A | 0.2302 | 0.0352 | 0.1678 | 0.066* | |
C5 | 0.2429 (2) | −0.2018 (4) | 0.2222 (3) | 0.0445 (7) | |
C6 | 0.2060 (2) | −0.3553 (4) | 0.1705 (3) | 0.0521 (8) | |
H6A | 0.2329 | −0.4465 | 0.2255 | 0.063* | |
C7 | 0.1289 (3) | −0.3741 (4) | 0.0370 (3) | 0.0565 (9) | |
H7A | 0.1056 | −0.4779 | 0.0036 | 0.068* | |
C8 | 0.3157 (2) | −0.1842 (4) | 0.3664 (3) | 0.0452 (7) | |
H8A | 0.3446 | −0.2770 | 0.4180 | 0.054* | |
C9 | 0.4235 (2) | 0.0939 (3) | 0.6353 (3) | 0.0420 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S | 0.0798 (6) | 0.0472 (5) | 0.0282 (4) | −0.0056 (4) | 0.0134 (4) | −0.0039 (3) |
N1 | 0.0512 (15) | 0.0501 (15) | 0.0282 (11) | −0.0033 (11) | 0.0121 (10) | −0.0016 (10) |
C1 | 0.071 (2) | 0.116 (3) | 0.0399 (18) | −0.014 (2) | 0.0086 (17) | −0.015 (2) |
N2 | 0.0603 (16) | 0.0443 (14) | 0.0268 (11) | −0.0011 (12) | 0.0094 (11) | −0.0010 (10) |
C2 | 0.0497 (19) | 0.081 (2) | 0.0362 (16) | −0.0065 (17) | 0.0143 (14) | −0.0080 (16) |
N3 | 0.100 (2) | 0.0425 (15) | 0.0339 (13) | 0.0016 (14) | 0.0082 (14) | −0.0005 (11) |
C3 | 0.068 (2) | 0.067 (2) | 0.0419 (17) | −0.0007 (18) | 0.0119 (16) | 0.0070 (16) |
C4 | 0.064 (2) | 0.055 (2) | 0.0386 (16) | −0.0061 (16) | 0.0082 (14) | −0.0039 (14) |
C5 | 0.0452 (17) | 0.0530 (18) | 0.0342 (14) | −0.0006 (14) | 0.0131 (12) | −0.0056 (13) |
C6 | 0.0556 (19) | 0.0562 (19) | 0.0423 (17) | −0.0015 (15) | 0.0151 (14) | −0.0060 (15) |
C7 | 0.057 (2) | 0.066 (2) | 0.0451 (17) | −0.0113 (16) | 0.0169 (15) | −0.0190 (16) |
C8 | 0.0516 (18) | 0.0476 (18) | 0.0332 (14) | 0.0002 (14) | 0.0115 (13) | −0.0019 (13) |
C9 | 0.0492 (17) | 0.0438 (16) | 0.0320 (14) | −0.0015 (13) | 0.0135 (12) | −0.0018 (13) |
S—C9 | 1.704 (3) | N3—H3A | 0.8600 |
N1—C8 | 1.271 (4) | N3—H3B | 0.8600 |
N1—N2 | 1.389 (3) | C3—C4 | 1.390 (4) |
C1—C2 | 1.514 (4) | C3—H3C | 0.9300 |
C1—H1B | 0.9600 | C4—C5 | 1.387 (4) |
C1—H1C | 0.9600 | C4—H4A | 0.9300 |
C1—H1D | 0.9600 | C5—C6 | 1.388 (4) |
N2—C9 | 1.334 (3) | C5—C8 | 1.458 (4) |
N2—H2A | 0.8600 | C6—C7 | 1.395 (4) |
C2—C3 | 1.385 (5) | C6—H6A | 0.9300 |
C2—C7 | 1.390 (5) | C7—H7A | 0.9300 |
N3—C9 | 1.319 (3) | C8—H8A | 0.9300 |
C8—N1—N2 | 116.1 (2) | C5—C4—C3 | 120.4 (3) |
C2—C1—H1B | 109.5 | C5—C4—H4A | 119.8 |
C2—C1—H1C | 109.5 | C3—C4—H4A | 119.8 |
H1B—C1—H1C | 109.5 | C4—C5—C6 | 118.5 (3) |
C2—C1—H1D | 109.5 | C4—C5—C8 | 121.9 (3) |
H1B—C1—H1D | 109.5 | C6—C5—C8 | 119.5 (3) |
H1C—C1—H1D | 109.5 | C5—C6—C7 | 120.7 (3) |
C9—N2—N1 | 119.9 (2) | C5—C6—H6A | 119.7 |
C9—N2—H2A | 120.1 | C7—C6—H6A | 119.7 |
N1—N2—H2A | 120.1 | C2—C7—C6 | 120.8 (3) |
C3—C2—C7 | 117.9 (3) | C2—C7—H7A | 119.6 |
C3—C2—C1 | 121.4 (3) | C6—C7—H7A | 119.6 |
C7—C2—C1 | 120.8 (3) | N1—C8—C5 | 121.8 (3) |
C9—N3—H3A | 120.0 | N1—C8—H8A | 119.1 |
C9—N3—H3B | 120.0 | C5—C8—H8A | 119.1 |
H3A—N3—H3B | 120.0 | N3—C9—N2 | 117.5 (2) |
C2—C3—C4 | 121.6 (3) | N3—C9—S | 123.0 (2) |
C2—C3—H3C | 119.2 | N2—C9—S | 119.5 (2) |
C4—C3—H3C | 119.2 | ||
C8—N1—N2—C9 | −173.6 (3) | C3—C2—C7—C6 | 2.8 (5) |
C7—C2—C3—C4 | −2.1 (5) | C1—C2—C7—C6 | −177.7 (3) |
C1—C2—C3—C4 | 178.4 (3) | C5—C6—C7—C2 | −0.8 (5) |
C2—C3—C4—C5 | −0.7 (5) | N2—N1—C8—C5 | 174.4 (2) |
C3—C4—C5—C6 | 2.8 (5) | C4—C5—C8—N1 | 5.3 (5) |
C3—C4—C5—C8 | −173.4 (3) | C6—C5—C8—N1 | −170.9 (3) |
C4—C5—C6—C7 | −2.0 (5) | N1—N2—C9—N3 | −8.5 (4) |
C8—C5—C6—C7 | 174.2 (3) | N1—N2—C9—S | 170.71 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···N1 | 0.86 | 2.29 | 2.641 (4) | 105 |
N2—H2A···Si | 0.86 | 2.54 | 3.389 (3) | 168 |
N3—H3B···Sii | 0.86 | 2.61 | 3.395 (3) | 153 |
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x+1, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C9H11N3S |
Mr | 193.27 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 13.234 (3), 8.221 (2), 10.311 (2) |
β (°) | 111.15 (3) |
V (Å3) | 1046.2 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.27 |
Crystal size (mm) | 0.30 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.924, 0.974 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1982, 1898, 1322 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.601 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.146, 1.00 |
No. of reflections | 1898 |
No. of parameters | 120 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.20 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···N1 | 0.86 | 2.29 | 2.641 (4) | 104.5 |
N2—H2A···Si | 0.86 | 2.54 | 3.389 (3) | 167.6 |
N3—H3B···Sii | 0.86 | 2.61 | 3.395 (3) | 153.2 |
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x+1, y+1/2, −z+3/2. |
Acknowledgements
The authors thank the Center of Testing and Analysis, Nanjing University, for support.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Casas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197–261. Web of Science CrossRef CAS Google Scholar
Chimenti, F., Maccioni, E., Secci, D., Bolasco, A., Chimenti, P., Granese, A., Befani, O., Turini, P., Alcaro, S., Ortuso, F., Cardia, M. C. & Distinto, S. (2007). J. Med. Chem. 50, 707–712. Web of Science CrossRef PubMed CAS Google Scholar
Deschamps, P., Kulkarni, P. P. & Sarkar, B. (2003). Inorg. Chem. 42, 7366–7368. Web of Science CSD CrossRef PubMed CAS Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Ferrari, M. B., Capacchi, S., Reffo, G., Pelosi, G., Tarasconi, P., Albertini, R., Pinelli, S. & Lunghi, P. (2000). J. Inorg. Biochem. 81, 89–97. Web of Science CSD CrossRef PubMed CAS Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Maccioni, E., Cardia, M. C., Distinto, S., Bonsignore, L. & De Logu, A. (2003). Farmaco, 58, 951–959. CrossRef PubMed CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tarafder, M. T. H., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem. 25, 456–460. Web of Science CrossRef CAS Google Scholar
Zhang, J., Wu, L., Zhuang, L. & Wang, G. (2009). Acta Cryst. E65, o884. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thiosemicarbazones constitute an important class of N,S donor ligands due to their ability to react with a wide range of metals (Casas et al., 2000). Thiosemicarbazones exhibit various biological activities and have therefore attracted considerable pharmaceutical interest (Maccioni et al., 2003; Ferrari et al., 2000). They have been evaluated as antiviral, antibacterial and anticancer therapeutics. Thiosemicarbazones belong to a large group of thiourea derivatives, whose biological activities are a function of the parent aldehyde or ketone moiety (Chimenti et al., 2007). Schiff bases in general show potential as antimicrobial and anticancer agents (Tarafder et al., 2000; Deschamps et al., 2003) and have therefore envisaged biochemical and pharmacological applications. We are focusing our synthetic and structural studies on new products of thiazole Schiff bases from thiosemicarbazones (Zhang et al., 2009). We herein report the crystal structure of the title compound (I).
The atom-numbering scheme of (I) is shown in Fig.1, and all bond lengths are within normal ranges (Allen et al., 1987).
The sulfur atom and the hydrazine nitrogen N1 are in trans position with respect to the C9–N2 bond. The molecular conformation is determined by a strong intramolecular hydrogen bond N3–H3A···N1(2.641 (3) A°).
The planar phenyl ring A (C2/C3/C4/C5/C6/C7, r.m.s. deviation 0.0115 (1) Å) and the pseudo five-membered ring B(N1/N2/C9/N3/H3A, r.m.s. deviation 0.035 (1) Å that is formed by the N3—H3A···N1 hydrogen bond enclose a dihedral angle of 14 (1)°. The dihedral angle between the thiourea group (N1/N2/C9/S) and the phenyl ring measures to 17 (2)°.
The crystal packing is realized by intermolecular N—H···S hydrogen bonds (Table 1, Fig. 1 and Fig.2).