organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl­benzaldehyde thio­semi­carbazone

aDepartment of Light Chemical Engineering, College of Food Science and Light Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: kingwell2004@sina.com.cn

(Received 13 August 2009; accepted 21 August 2009; online 26 August 2009)

The title compound, C9H11N3S, was prepared by reacting 4-methyl­benzaldehyde with thio­semicarbazide. An intra­molecular N—H⋯N hydrogen bond helps to establish the observed mol­ecular conformation. The crystal packing is realized by inter­molecular N—H⋯S hydrogen bonds.

Related literature

For general background to thio­semicarbazone compounds, see: Casas et al. (2000[Casas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197-261.]); Tarafder et al. (2000[Tarafder, M. T. H., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem. 25, 456-460.]); Ferrari et al. (2000[Ferrari, M. B., Capacchi, S., Reffo, G., Pelosi, G., Tarasconi, P., Albertini, R., Pinelli, S. & Lunghi, P. (2000). J. Inorg. Biochem. 81, 89-97.]); Deschamps et al. (2003[Deschamps, P., Kulkarni, P. P. & Sarkar, B. (2003). Inorg. Chem. 42, 7366-7368.]); Maccioni et al.(2003[Maccioni, E., Cardia, M. C., Distinto, S., Bonsignore, L. & De Logu, A. (2003). Farmaco, 58, 951-959.]); Chimenti et al. (2007[Chimenti, F., Maccioni, E., Secci, D., Bolasco, A., Chimenti, P., Granese, A., Befani, O., Turini, P., Alcaro, S., Ortuso, F., Cardia, M. C. & Distinto, S. (2007). J. Med. Chem. 50, 707-712.]); Zhang et al. (2009[Zhang, J., Wu, L., Zhuang, L. & Wang, G. (2009). Acta Cryst. E65, o884.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11N3S

  • Mr = 193.27

  • Monoclinic, P 21 /c

  • a = 13.234 (3) Å

  • b = 8.221 (2) Å

  • c = 10.311 (2) Å

  • β = 111.15 (3)°

  • V = 1046.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.924, Tmax = 0.974

  • 1982 measured reflections

  • 1898 independent reflections

  • 1322 reflections with I > 2σ(I)

  • Rint = 0.032

  • 3 standard reflections every 200 reflections intensity decay: 9%

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.146

  • S = 1.00

  • 1898 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Si 0.86 2.54 3.389 (3) 168
N3—H3B⋯Sii 0.86 2.61 3.395 (3) 153
N3—H3A⋯N1 0.86 2.29 2.641 (4) 105
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiosemicarbazones constitute an important class of N,S donor ligands due to their ability to react with a wide range of metals (Casas et al., 2000). Thiosemicarbazones exhibit various biological activities and have therefore attracted considerable pharmaceutical interest (Maccioni et al., 2003; Ferrari et al., 2000). They have been evaluated as antiviral, antibacterial and anticancer therapeutics. Thiosemicarbazones belong to a large group of thiourea derivatives, whose biological activities are a function of the parent aldehyde or ketone moiety (Chimenti et al., 2007). Schiff bases in general show potential as antimicrobial and anticancer agents (Tarafder et al., 2000; Deschamps et al., 2003) and have therefore envisaged biochemical and pharmacological applications. We are focusing our synthetic and structural studies on new products of thiazole Schiff bases from thiosemicarbazones (Zhang et al., 2009). We herein report the crystal structure of the title compound (I).

The atom-numbering scheme of (I) is shown in Fig.1, and all bond lengths are within normal ranges (Allen et al., 1987).

The sulfur atom and the hydrazine nitrogen N1 are in trans position with respect to the C9–N2 bond. The molecular conformation is determined by a strong intramolecular hydrogen bond N3–H3A···N1(2.641 (3) A°).

The planar phenyl ring A (C2/C3/C4/C5/C6/C7, r.m.s. deviation 0.0115 (1) Å) and the pseudo five-membered ring B(N1/N2/C9/N3/H3A, r.m.s. deviation 0.035 (1) Å that is formed by the N3—H3A···N1 hydrogen bond enclose a dihedral angle of 14 (1)°. The dihedral angle between the thiourea group (N1/N2/C9/S) and the phenyl ring measures to 17 (2)°.

The crystal packing is realized by intermolecular N—H···S hydrogen bonds (Table 1, Fig. 1 and Fig.2).

Related literature top

For general background to thiosemicarbazone compounds, see: Casas et al. (2000); Tarafder et al. (2000); Ferrari et al. (2000); Deschamps et al. (2003); Maccioni et al.(2003); Chimenti et al. (2007); Zhang et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 4-methyl-benzaldehyde (1.20 g, 0.01 mol) and hydrazinecarbothioamide (0.91 g, 0.01 mol) in 20 ml of absolute methanol was refluxed for about 3 h. After cooling, the precipitated solid separated was filtered and recrystallized from ethyl acetate. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of ethyl acetate at room temperature. 1H NMR (DMSO, δ, p.p.m.) 11.39 (s, 1 H), 8.17 (s, 1 H), 8.02 (s,2 H), 7.42 (m, 1 H), 7.30 (t, 2 H), 6.99 (t,1 H), 1.79 (t, 3 H).

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93 Å and N—H = 0.86 °, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x= 1.5 for methyl H and x = 1.2 for methylene H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom-numbering scheme and 30% displacement ellipsoids. The intramolecular hydrogen bond is shown as dashed lines.
[Figure 2] Fig. 2. Crystal packing of (I). Hydrogen bonds are drawn as dashed lines.
4-Methylbenzaldehyde thiosemicarbazone top
Crystal data top
C9H11N3SF(000) = 408
Mr = 193.27Dx = 1.227 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 27 reflections
a = 13.234 (3) Åθ = 1–25°
b = 8.221 (2) ŵ = 0.27 mm1
c = 10.311 (2) ÅT = 293 K
β = 111.15 (3)°Block, colorless
V = 1046.2 (4) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1322 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 25.3°, θmin = 1.7°
ω/2θ scansh = 150
Absorption correction: ψ scan
(North et al., 1968)
k = 09
Tmin = 0.924, Tmax = 0.974l = 1112
1982 measured reflections3 standard reflections every 200 reflections
1898 independent reflections intensity decay: 9%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.07P)2 + 0.38P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1898 reflectionsΔρmax = 0.26 e Å3
120 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.034 (4)
Crystal data top
C9H11N3SV = 1046.2 (4) Å3
Mr = 193.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.234 (3) ŵ = 0.27 mm1
b = 8.221 (2) ÅT = 293 K
c = 10.311 (2) Å0.30 × 0.20 × 0.10 mm
β = 111.15 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1322 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.032
Tmin = 0.924, Tmax = 0.9743 standard reflections every 200 reflections
1982 measured reflections intensity decay: 9%
1898 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.00Δρmax = 0.26 e Å3
1898 reflectionsΔρmin = 0.20 e Å3
120 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.48277 (7)0.09017 (9)0.81196 (7)0.0534 (3)
N10.34064 (18)0.0455 (3)0.4236 (2)0.0438 (6)
C10.0005 (3)0.2600 (6)0.1894 (3)0.0788 (12)
H1B0.03740.36140.19340.118*
H1C0.03240.25930.25850.118*
H1D0.05140.17210.20670.118*
N20.40264 (19)0.0458 (3)0.5647 (2)0.0456 (6)
H2A0.42750.13580.60650.055*
C20.0863 (3)0.2397 (5)0.0467 (3)0.0560 (9)
N30.3955 (2)0.2299 (3)0.5633 (3)0.0630 (8)
H3A0.36500.22630.47430.076*
H3B0.40780.32220.60540.076*
C30.1264 (3)0.0877 (4)0.0043 (3)0.0614 (9)
H3C0.10060.00340.05130.074*
C40.2041 (3)0.0681 (4)0.1365 (3)0.0553 (8)
H4A0.23020.03520.16780.066*
C50.2429 (2)0.2018 (4)0.2222 (3)0.0445 (7)
C60.2060 (2)0.3553 (4)0.1705 (3)0.0521 (8)
H6A0.23290.44650.22550.063*
C70.1289 (3)0.3741 (4)0.0370 (3)0.0565 (9)
H7A0.10560.47790.00360.068*
C80.3157 (2)0.1842 (4)0.3664 (3)0.0452 (7)
H8A0.34460.27700.41800.054*
C90.4235 (2)0.0939 (3)0.6353 (3)0.0420 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0798 (6)0.0472 (5)0.0282 (4)0.0056 (4)0.0134 (4)0.0039 (3)
N10.0512 (15)0.0501 (15)0.0282 (11)0.0033 (11)0.0121 (10)0.0016 (10)
C10.071 (2)0.116 (3)0.0399 (18)0.014 (2)0.0086 (17)0.015 (2)
N20.0603 (16)0.0443 (14)0.0268 (11)0.0011 (12)0.0094 (11)0.0010 (10)
C20.0497 (19)0.081 (2)0.0362 (16)0.0065 (17)0.0143 (14)0.0080 (16)
N30.100 (2)0.0425 (15)0.0339 (13)0.0016 (14)0.0082 (14)0.0005 (11)
C30.068 (2)0.067 (2)0.0419 (17)0.0007 (18)0.0119 (16)0.0070 (16)
C40.064 (2)0.055 (2)0.0386 (16)0.0061 (16)0.0082 (14)0.0039 (14)
C50.0452 (17)0.0530 (18)0.0342 (14)0.0006 (14)0.0131 (12)0.0056 (13)
C60.0556 (19)0.0562 (19)0.0423 (17)0.0015 (15)0.0151 (14)0.0060 (15)
C70.057 (2)0.066 (2)0.0451 (17)0.0113 (16)0.0169 (15)0.0190 (16)
C80.0516 (18)0.0476 (18)0.0332 (14)0.0002 (14)0.0115 (13)0.0019 (13)
C90.0492 (17)0.0438 (16)0.0320 (14)0.0015 (13)0.0135 (12)0.0018 (13)
Geometric parameters (Å, º) top
S—C91.704 (3)N3—H3A0.8600
N1—C81.271 (4)N3—H3B0.8600
N1—N21.389 (3)C3—C41.390 (4)
C1—C21.514 (4)C3—H3C0.9300
C1—H1B0.9600C4—C51.387 (4)
C1—H1C0.9600C4—H4A0.9300
C1—H1D0.9600C5—C61.388 (4)
N2—C91.334 (3)C5—C81.458 (4)
N2—H2A0.8600C6—C71.395 (4)
C2—C31.385 (5)C6—H6A0.9300
C2—C71.390 (5)C7—H7A0.9300
N3—C91.319 (3)C8—H8A0.9300
C8—N1—N2116.1 (2)C5—C4—C3120.4 (3)
C2—C1—H1B109.5C5—C4—H4A119.8
C2—C1—H1C109.5C3—C4—H4A119.8
H1B—C1—H1C109.5C4—C5—C6118.5 (3)
C2—C1—H1D109.5C4—C5—C8121.9 (3)
H1B—C1—H1D109.5C6—C5—C8119.5 (3)
H1C—C1—H1D109.5C5—C6—C7120.7 (3)
C9—N2—N1119.9 (2)C5—C6—H6A119.7
C9—N2—H2A120.1C7—C6—H6A119.7
N1—N2—H2A120.1C2—C7—C6120.8 (3)
C3—C2—C7117.9 (3)C2—C7—H7A119.6
C3—C2—C1121.4 (3)C6—C7—H7A119.6
C7—C2—C1120.8 (3)N1—C8—C5121.8 (3)
C9—N3—H3A120.0N1—C8—H8A119.1
C9—N3—H3B120.0C5—C8—H8A119.1
H3A—N3—H3B120.0N3—C9—N2117.5 (2)
C2—C3—C4121.6 (3)N3—C9—S123.0 (2)
C2—C3—H3C119.2N2—C9—S119.5 (2)
C4—C3—H3C119.2
C8—N1—N2—C9173.6 (3)C3—C2—C7—C62.8 (5)
C7—C2—C3—C42.1 (5)C1—C2—C7—C6177.7 (3)
C1—C2—C3—C4178.4 (3)C5—C6—C7—C20.8 (5)
C2—C3—C4—C50.7 (5)N2—N1—C8—C5174.4 (2)
C3—C4—C5—C62.8 (5)C4—C5—C8—N15.3 (5)
C3—C4—C5—C8173.4 (3)C6—C5—C8—N1170.9 (3)
C4—C5—C6—C72.0 (5)N1—N2—C9—N38.5 (4)
C8—C5—C6—C7174.2 (3)N1—N2—C9—S170.71 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N10.862.292.641 (4)105
N2—H2A···Si0.862.543.389 (3)168
N3—H3B···Sii0.862.613.395 (3)153
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC9H11N3S
Mr193.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.234 (3), 8.221 (2), 10.311 (2)
β (°) 111.15 (3)
V3)1046.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.924, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
1982, 1898, 1322
Rint0.032
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.146, 1.00
No. of reflections1898
No. of parameters120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.20

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N10.862.292.641 (4)104.5
N2—H2A···Si0.862.543.389 (3)167.6
N3—H3B···Sii0.862.613.395 (3)153.2
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCasas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197–261.  Web of Science CrossRef CAS Google Scholar
First citationChimenti, F., Maccioni, E., Secci, D., Bolasco, A., Chimenti, P., Granese, A., Befani, O., Turini, P., Alcaro, S., Ortuso, F., Cardia, M. C. & Distinto, S. (2007). J. Med. Chem. 50, 707–712.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDeschamps, P., Kulkarni, P. P. & Sarkar, B. (2003). Inorg. Chem. 42, 7366–7368.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFerrari, M. B., Capacchi, S., Reffo, G., Pelosi, G., Tarasconi, P., Albertini, R., Pinelli, S. & Lunghi, P. (2000). J. Inorg. Biochem. 81, 89–97.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMaccioni, E., Cardia, M. C., Distinto, S., Bonsignore, L. & De Logu, A. (2003). Farmaco, 58, 951–959.  CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem. 25, 456–460.  Web of Science CrossRef CAS Google Scholar
First citationZhang, J., Wu, L., Zhuang, L. & Wang, G. (2009). Acta Cryst. E65, o884.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds