metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1117-m1118

(2,2′-Bi­pyridine-κ2N,N′)chlorido[4′-(2,5-di­meth­oxy­phen­yl)-2,2′:6′,2′′-terpyridine-κ3N,N′,N′′]ruthenium(II) hexa­fluorido­phosphate aceto­nitrile monosolvate

aDepartment of Industrial Systems Engineering, Cluster of Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan, and bDepartment of Science Education, Faculty of Education, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
*Correspondence e-mail: daio@sss.fukushima-u.ac.jp

(Received 10 July 2009; accepted 17 August 2009; online 22 August 2009)

In the title compound, [RuCl(C10H8N2)(C23H19N3O2)]PF6·CH3CN, the ligand environment about the RuII atom is distorted octa­hedral, with the substituted terpyridyl ligand coordinated in a meridional fashion, the bipyridyl ligand coordinated in a cis fashion and the Cl atom trans to one of the bipyridyl N atoms. The Ru—N distances are in the range 2.036 (2)–2.084 (2) Å with the exception of the central Ru—N bond from the terpyridyl ligand, which is shorter [1.9503 (19) Å], as expected. The pendant dimethoxy­phenyl substituent is not coplanar with the terpyridyl unit; the dihedral angle between the central pyridyl ring and the benzene ring is 46.72 (11)°. The anion is disordered equally over two positions around an F—P—F bond axis.

Related literature

For details of the synthesis, see: Takeuchi et al. (1984[Takeuchi, K. J., Thompson, M. S., Pipes, D. W. & Meyer, T. J. (1984). Inorg. Chem. 23, 1845-1851.]); Storrier et al. (1995[Storrier, G. D., Colbran, S. B. & Hibbert, D. B. (1995). Inorg. Chim. Acta, 239, 1-4.], 1998[Storrier, G. D., Colbran, S. B. & Craig, D. C. (1998). J. Chem. Soc. Dalton Trans. pp. 1351-1363.]). For related structures, see: Spek et al. (1994[Spek, A. L., Gerli, A. & Reedijk, J. (1994). Acta Cryst. C50, 394-397.]); Fujihara et al. (2003[Fujihara, T., Okamura, R., Wada, T. & Tanaka, K. (2003). Dalton Trans. pp. 3221-3226.]); Tseng et al. (2008[Tseng, H.-W., Zong, R., Muckerman, J. T. & Thummel, R. (2008). Inorg. Chem. 47, 11763-11773.]). For general background to catalytic water oxidation using mononuclear ruthenium complexes, see: Tseng et al. (2008[Tseng, H.-W., Zong, R., Muckerman, J. T. & Thummel, R. (2008). Inorg. Chem. 47, 11763-11773.]).

[Scheme 1]

Experimental

Crystal data
  • [RuCl(C10H8N2)(C23H19N3O2)]PF6·C2H3N

  • Mr = 848.15

  • Orthorhombic, P b c a

  • a = 13.8691 (3) Å

  • b = 16.1993 (3) Å

  • c = 31.5514 (6) Å

  • V = 7088.7 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 296 K

  • 0.60 × 0.40 × 0.08 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.616, Tmax = 0.950

  • 102710 measured reflections

  • 8092 independent reflections

  • 5738 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.111

  • S = 1.01

  • 8092 reflections

  • 495 parameters

  • All H-atom parameters refined

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Selected bond lengths (Å)

Ru1—Cl1 2.4096 (8)
Ru1—N1 2.066 (2)
Ru1—N2 1.9503 (19)
Ru1—N3 2.082 (2)
Ru1—N4 2.036 (2)
Ru1—N5 2.084 (2)

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku Americas & Rigaku, 2007[Rigaku Americas & Rigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

There have been numerous reports of ruthenium(II) polypyridyl complexes. In particular, a series of mononuclear ruthenium(II) complexes with both 2,2':6',2''-terpyridine (tpy) and bidentate pyridyl ligands (NN) has exhibited the catalytic activity toward water oxidation (Tseng et al., 2008). We newly investigated the synthesis of ruthenium complexes bearing the substituted terpyridyl ligand because the absorption energies of the MLCT bands and the redox potentials of the complexes described above were consistent with their structures.

The ligand environment about the Ru atom is distorted octahedral, with the substituted terpyridyl ligand coordinated in a meridional fashion, the bipyridyl ligand coordinated in a cis fashion and the Cl atom trans to one of the bipyridyl N atoms (Fig. 1). The Ru—N distances are in the range of 2.036 (2)–2.084 (2) Å with the exception of the central Ru—N bond of the terpyridyl ligand, which is shorter [1.9503 (19) Å] as expected (Table 1). The Ru—Cl distance of 2.4096 (8) Å observed in this structure is similar to those found in other ruthenium(II)-terpyridine- chlorido complexes (Spek et al., 1994; Fujihara et al., 2003; Tseng et al., 2008). The pendant dimethoxyphenyl substituent is not coplanar with the terpyridyl moiety; the dihedral angle between the central pyridyl and the dimethoxyphenyl ring is 46.72 (11)°. This result is essentially comparable to that found for the free ligand (50.2°) (Storrier et al., 1998).

Related literature top

For details of the synthesis, see: Takeuchi et al. (1984); Storrier et al. (1995, 1998). For related structures, see: Spek et al. (1994); Fujihara et al. (2003); Tseng et al. (2008). For general background to catalytic water oxidation using mononuclear ruthenium complexes, see: Tseng et al. (2008).

Experimental top

The ligand 4'-(2,5-dimethoxyphenyl)-2,2':6',2''-terpyridine (tpyOMe) was prepared and purified as described by Storrier et al. (1995 and 1998). The title compound was prepared following a procedure similar to that for the synthesis of [RuCl(bpy)(tpy)]PF6 (bpy = 2,2'-bipyridine, tpy = 2,2':6',2''-terpyridine) (Takeuchi et al., 1984). X-ray quality crystals were grown by the diffusion of diethyl ether into an acetonitrile solution of the complex over a week.

Refinement top

Aromatic H atoms were fixed at C—H distances of 0.95 Å and refined as riding, with Uiso(H) = 1.2Ueq(C). Methyl H atoms were placed with idealized threefold symmetry and fixed C—H distances of 0.98 Å, and they were refined in a riding model with Uiso(H) = 1.5Ueq(C). Four F atoms in equatorial positions of the counter anion are disordered and were refined with the occupancy of all atoms fixed at 0.5.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku Americas & Rigaku, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku Americas & Rigaku, 2007).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms. H atoms are omitted for clarity. Only one component of the disordered hexafluoridophosphate ion is shown.
(2,2'-Bipyridine-κ2N,N')chlorido[4'-(2,5-dimethoxyphenyl)- 2,2':6',2''-terpyridine-κ3N,N',N'']ruthenium(II) hexafluoridophosphate acetonitrile monosolvate top
Crystal data top
[RuCl(C10H8N2)(C23H19N3O2)]PF6·C2H3NF(000) = 3424.00
Mr = 848.15Dx = 1.589 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ac 2abCell parameters from 82995 reflections
a = 13.8691 (3) Åθ = 3.0–27.5°
b = 16.1993 (3) ŵ = 0.64 mm1
c = 31.5514 (6) ÅT = 296 K
V = 7088.7 (2) Å3Platelet, black
Z = 80.60 × 0.40 × 0.08 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5738 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.036
ω scansθmax = 27.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1717
Tmin = 0.616, Tmax = 0.950k = 2120
102710 measured reflectionsl = 4040
8092 independent reflections
Refinement top
Refinement on F2All H-atom parameters refined
R[F2 > 2σ(F2)] = 0.037 w = 1/[0.0008Fo2 + σ(Fo2)]/(4Fo2)
wR(F2) = 0.111(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.84 e Å3
8092 reflectionsΔρmin = 0.59 e Å3
495 parameters
Crystal data top
[RuCl(C10H8N2)(C23H19N3O2)]PF6·C2H3NV = 7088.7 (2) Å3
Mr = 848.15Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.8691 (3) ŵ = 0.64 mm1
b = 16.1993 (3) ÅT = 296 K
c = 31.5514 (6) Å0.60 × 0.40 × 0.08 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
8092 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5738 reflections with F2 > 2σ(F2)
Tmin = 0.616, Tmax = 0.950Rint = 0.036
102710 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037495 parameters
wR(F2) = 0.111All H-atom parameters refined
S = 1.01Δρmax = 0.84 e Å3
8092 reflectionsΔρmin = 0.59 e Å3
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.09533 (2)0.785150 (10)0.691700 (10)0.03190 (6)
Cl10.07112 (6)0.78760 (5)0.71355 (2)0.0516 (2)
P10.28023 (11)0.55855 (8)0.55490 (4)0.0907 (4)
F10.3430 (3)0.6325 (2)0.53818 (13)0.1835 (19)
F20.2173 (4)0.4867 (2)0.56854 (18)0.211 (2)
F30.1973 (5)0.6208 (4)0.5418 (2)0.135 (2)*0.50
F40.3566 (5)0.5038 (4)0.5779 (2)0.127 (2)*0.50
F50.2666 (6)0.6000 (4)0.6016 (2)0.132 (2)*0.50
F60.2894 (9)0.5187 (6)0.5111 (3)0.195 (3)*0.50
F70.2059 (6)0.6174 (5)0.5747 (3)0.163 (3)*0.50
F80.3705 (5)0.5057 (4)0.5349 (2)0.133 (2)*0.50
F90.3448 (7)0.5796 (5)0.5938 (2)0.160 (2)*0.50
F100.2239 (7)0.5570 (6)0.5108 (2)0.167 (3)*0.50
O10.12400 (18)0.83112 (16)0.90412 (7)0.0633 (7)
O20.41159 (19)0.59908 (16)0.92417 (8)0.0699 (8)
N10.11237 (17)0.90625 (13)0.71081 (7)0.0375 (6)
N20.13304 (17)0.76860 (12)0.75064 (6)0.0336 (5)
N30.09369 (16)0.65680 (14)0.69479 (6)0.0357 (5)
N40.23041 (16)0.78277 (12)0.66643 (7)0.0358 (5)
N50.06613 (18)0.80557 (13)0.62776 (7)0.0389 (6)
N60.1768 (3)0.4872 (2)0.86305 (15)0.1152 (17)
C10.1022 (2)0.97542 (19)0.68752 (10)0.0490 (8)
C20.1122 (2)1.0527 (2)0.70476 (12)0.0591 (10)
C30.1352 (2)1.06143 (18)0.74710 (11)0.0550 (9)
C40.1486 (2)0.99131 (17)0.77096 (10)0.0461 (8)
C50.1378 (2)0.91387 (16)0.75254 (8)0.0379 (7)
C60.15085 (19)0.83516 (15)0.77544 (8)0.0347 (6)
C70.1817 (2)0.82465 (17)0.81662 (8)0.0392 (7)
C80.1916 (2)0.74570 (17)0.83322 (8)0.0383 (7)
C90.1693 (2)0.67785 (17)0.80744 (8)0.0388 (7)
C100.1395 (2)0.69120 (15)0.76611 (8)0.0347 (6)
C110.1159 (2)0.62689 (16)0.73418 (8)0.0374 (7)
C120.1172 (2)0.54346 (17)0.74277 (9)0.0444 (8)
C130.0981 (2)0.48827 (19)0.71038 (11)0.0553 (9)
C140.0772 (2)0.5174 (2)0.67092 (11)0.0609 (10)
C150.0751 (2)0.60201 (18)0.66405 (9)0.0510 (9)
C160.2300 (2)0.73057 (17)0.87661 (8)0.0416 (7)
C170.1949 (2)0.77434 (19)0.91198 (9)0.0476 (8)
C180.2308 (2)0.7558 (2)0.95182 (10)0.0613 (10)
C190.3015 (2)0.6975 (2)0.95717 (10)0.0602 (10)
C200.3381 (2)0.6556 (2)0.92280 (10)0.0534 (9)
C210.3013 (2)0.67203 (18)0.88303 (9)0.0461 (8)
C220.0980 (4)0.8867 (3)0.93613 (16)0.125 (2)
C230.4600 (3)0.5899 (2)0.96367 (13)0.0905 (15)
C240.3119 (2)0.77412 (17)0.68875 (10)0.0448 (8)
C250.4017 (2)0.77157 (19)0.67025 (13)0.0561 (10)
C260.4093 (2)0.7782 (2)0.62678 (15)0.0699 (12)
C270.3254 (2)0.7889 (2)0.60369 (12)0.0678 (11)
C280.2365 (2)0.79113 (17)0.62360 (9)0.0436 (7)
C290.1442 (2)0.80328 (17)0.60169 (9)0.0427 (7)
C300.1343 (3)0.8150 (2)0.55851 (10)0.0622 (10)
C310.0462 (3)0.8315 (2)0.54151 (10)0.0658 (11)
C320.0323 (2)0.8366 (2)0.56786 (10)0.0592 (10)
C330.0201 (2)0.82218 (18)0.61080 (9)0.0475 (8)
C340.1426 (3)0.5146 (2)0.89184 (15)0.0766 (13)
C350.0968 (3)0.5501 (3)0.92876 (18)0.110 (2)
H10.08740.97050.65820.058*
H20.10311.10030.68760.071*
H30.14171.11450.75960.066*
H40.16540.99570.80010.055*
H50.19500.87140.83380.047*
H60.17460.62320.81820.046*
H70.13130.52410.77050.053*
H80.09830.43060.71570.066*
H90.06570.48040.64810.073*
H100.05960.62200.63660.061*
H110.20610.78440.97580.074*
H120.32500.68570.98480.072*
H130.32540.64260.85920.055*
H140.07020.93600.92290.150*
H150.05040.86150.95510.150*
H160.15540.90220.95240.150*
H170.46450.64400.97750.109*
H180.42410.55180.98190.109*
H190.52500.56820.95880.109*
H200.30770.76930.71870.054*
H210.45820.76520.68700.067*
H220.47020.77570.61300.083*
H230.32920.79490.57380.082*
H240.18930.81200.54070.075*
H250.03880.83990.51190.079*
H260.09430.84940.55680.071*
H270.07490.82440.62880.057*
H280.14190.58930.94170.132*
H290.08090.50670.94920.132*
H300.03780.57920.92050.132*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.03289 (13)0.03422 (12)0.02858 (12)0.00031 (9)0.00081 (8)0.00003 (8)
Cl10.0380 (4)0.0673 (4)0.0496 (4)0.0000 (3)0.0067 (3)0.0027 (3)
P10.1047 (10)0.0843 (8)0.0833 (7)0.0299 (7)0.0148 (7)0.0013 (6)
F10.217 (4)0.135 (3)0.198 (4)0.048 (3)0.063 (3)0.027 (2)
F20.232 (5)0.116 (2)0.286 (6)0.057 (3)0.019 (4)0.040 (3)
O10.0577 (15)0.0826 (17)0.0495 (12)0.0089 (13)0.0019 (11)0.0175 (11)
O20.0721 (18)0.0796 (17)0.0579 (14)0.0122 (13)0.0194 (12)0.0128 (12)
N10.0372 (13)0.0350 (11)0.0403 (12)0.0010 (9)0.0004 (9)0.0022 (9)
N20.0359 (12)0.0349 (10)0.0300 (10)0.0001 (9)0.0014 (9)0.0006 (8)
N30.0386 (13)0.0371 (11)0.0316 (10)0.0018 (9)0.0006 (9)0.0034 (8)
N40.0345 (12)0.0326 (10)0.0404 (11)0.0010 (9)0.0006 (9)0.0029 (9)
N50.0438 (14)0.0383 (11)0.0346 (11)0.0040 (10)0.0026 (10)0.0008 (9)
N60.164 (4)0.073 (2)0.109 (3)0.024 (2)0.049 (3)0.009 (2)
C10.057 (2)0.0413 (15)0.0482 (16)0.0014 (14)0.0045 (14)0.0072 (12)
C20.063 (2)0.0361 (15)0.078 (2)0.0009 (15)0.0082 (18)0.0108 (15)
C30.052 (2)0.0349 (14)0.078 (2)0.0009 (14)0.0027 (18)0.0034 (14)
C40.0459 (18)0.0400 (14)0.0526 (16)0.0036 (13)0.0030 (14)0.0071 (12)
C50.0345 (15)0.0370 (13)0.0420 (14)0.0005 (11)0.0022 (12)0.0015 (11)
C60.0311 (14)0.0362 (13)0.0368 (12)0.0002 (11)0.0030 (10)0.0050 (10)
C70.0389 (16)0.0429 (14)0.0356 (13)0.0045 (12)0.0004 (11)0.0062 (11)
C80.0342 (15)0.0467 (14)0.0341 (13)0.0025 (12)0.0007 (11)0.0013 (11)
C90.0410 (16)0.0392 (14)0.0362 (13)0.0002 (12)0.0024 (11)0.0029 (11)
C100.0337 (14)0.0344 (12)0.0361 (12)0.0005 (11)0.0004 (11)0.0029 (10)
C110.0370 (16)0.0389 (14)0.0364 (13)0.0001 (11)0.0003 (11)0.0037 (11)
C120.0468 (18)0.0384 (13)0.0480 (16)0.0015 (13)0.0011 (13)0.0006 (12)
C130.064 (2)0.0365 (15)0.065 (2)0.0006 (14)0.0008 (17)0.0074 (14)
C140.081 (2)0.0491 (18)0.0523 (18)0.0067 (17)0.0028 (18)0.0184 (15)
C150.066 (2)0.0468 (16)0.0400 (15)0.0034 (15)0.0049 (14)0.0083 (12)
C160.0433 (17)0.0496 (16)0.0318 (12)0.0108 (13)0.0016 (11)0.0009 (11)
C170.0477 (18)0.0584 (18)0.0368 (14)0.0078 (15)0.0009 (12)0.0044 (12)
C180.068 (2)0.083 (2)0.0324 (14)0.018 (2)0.0028 (15)0.0043 (15)
C190.069 (2)0.077 (2)0.0344 (15)0.0134 (19)0.0092 (15)0.0111 (14)
C200.059 (2)0.0560 (18)0.0455 (16)0.0121 (16)0.0117 (14)0.0101 (14)
C210.0506 (19)0.0511 (16)0.0365 (14)0.0068 (14)0.0055 (12)0.0026 (12)
C220.154 (5)0.132 (4)0.090 (3)0.062 (3)0.023 (3)0.053 (3)
C230.104 (3)0.090 (2)0.077 (2)0.011 (2)0.047 (2)0.017 (2)
C240.0373 (16)0.0424 (15)0.0546 (17)0.0003 (12)0.0027 (13)0.0055 (12)
C250.0349 (17)0.0505 (18)0.083 (2)0.0001 (13)0.0053 (16)0.0052 (16)
C260.041 (2)0.078 (2)0.091 (2)0.0019 (17)0.0197 (19)0.008 (2)
C270.058 (2)0.091 (2)0.055 (2)0.006 (2)0.0189 (17)0.0058 (18)
C280.0441 (17)0.0442 (15)0.0425 (14)0.0023 (13)0.0073 (12)0.0029 (12)
C290.0496 (18)0.0418 (15)0.0369 (13)0.0055 (13)0.0016 (12)0.0018 (11)
C300.073 (2)0.079 (2)0.0346 (15)0.010 (2)0.0076 (16)0.0001 (15)
C310.087 (2)0.073 (2)0.0366 (15)0.011 (2)0.0155 (18)0.0067 (15)
C320.071 (2)0.0543 (18)0.0524 (17)0.0112 (17)0.0247 (17)0.0096 (14)
C330.0445 (18)0.0510 (16)0.0470 (15)0.0059 (14)0.0091 (13)0.0050 (13)
C340.091 (3)0.058 (2)0.081 (2)0.014 (2)0.011 (2)0.003 (2)
C350.112 (4)0.089 (3)0.128 (4)0.028 (2)0.042 (3)0.023 (3)
Geometric parameters (Å, º) top
Ru1—Cl12.4096 (8)C16—C171.409 (3)
Ru1—N12.066 (2)C16—C211.385 (4)
Ru1—N21.9503 (19)C17—C181.385 (4)
Ru1—N32.082 (2)C18—C191.371 (5)
Ru1—N42.036 (2)C19—C201.376 (4)
Ru1—N52.084 (2)C20—C211.380 (4)
P1—F11.573 (4)C24—C251.376 (4)
P1—F21.517 (4)C25—C261.380 (6)
P1—F31.585 (7)C26—C271.383 (5)
P1—F41.560 (7)C27—C281.384 (5)
P1—F51.631 (7)C28—C291.468 (4)
P1—F61.529 (10)C29—C301.383 (4)
P1—F71.537 (9)C30—C311.360 (5)
P1—F81.642 (7)C31—C321.373 (5)
P1—F91.557 (9)C32—C331.385 (4)
P1—F101.596 (9)C34—C351.447 (7)
O1—C171.369 (4)C1—H10.950
O1—C221.400 (5)C2—H20.950
O2—C201.371 (4)C3—H30.950
O2—C231.423 (5)C4—H40.950
N1—C11.347 (3)C7—H50.950
N1—C51.369 (3)C9—H60.950
N2—C61.355 (3)C12—H70.950
N2—C101.348 (3)C13—H80.950
N3—C111.369 (3)C14—H90.950
N3—C151.340 (3)C15—H100.950
N4—C241.339 (3)C18—H110.950
N4—C281.361 (3)C19—H120.950
N5—C291.361 (3)C21—H130.950
N5—C331.337 (3)C22—H140.980
N6—C341.116 (6)C22—H150.980
C1—C21.372 (4)C22—H160.980
C2—C31.381 (5)C23—H170.980
C3—C41.375 (4)C23—H180.980
C4—C51.391 (3)C23—H190.980
C5—C61.477 (3)C24—H200.950
C6—C71.378 (3)C25—H210.950
C7—C81.389 (3)C26—H220.950
C8—C91.402 (3)C27—H230.950
C8—C161.489 (3)C30—H240.950
C9—C101.385 (3)C31—H250.950
C10—C111.486 (3)C32—H260.950
C11—C121.379 (3)C33—H270.950
C12—C131.384 (4)C35—H280.980
C13—C141.363 (4)C35—H290.980
C14—C151.387 (4)C35—H300.980
Cl1—Ru1—N190.60 (6)C8—C16—C21120.1 (2)
Cl1—Ru1—N289.22 (7)C17—C16—C21118.4 (2)
Cl1—Ru1—N389.58 (6)O1—C17—C16116.3 (2)
Cl1—Ru1—N4173.57 (6)O1—C17—C18124.7 (2)
Cl1—Ru1—N595.06 (7)C16—C17—C18119.0 (2)
N1—Ru1—N279.72 (8)C17—C18—C19121.2 (3)
N1—Ru1—N3159.40 (8)C18—C19—C20120.4 (3)
N1—Ru1—N491.55 (8)O2—C20—C19125.4 (3)
N1—Ru1—N598.86 (8)O2—C20—C21115.6 (2)
N2—Ru1—N379.69 (7)C19—C20—C21119.0 (3)
N2—Ru1—N497.12 (9)C16—C21—C20121.9 (2)
N2—Ru1—N5175.52 (9)N4—C24—C25123.0 (3)
N3—Ru1—N490.54 (8)C24—C25—C26119.2 (3)
N3—Ru1—N5101.64 (7)C25—C26—C27118.0 (3)
N4—Ru1—N578.63 (9)C26—C27—C28120.9 (3)
F1—P1—F2176.8 (2)N4—C28—C27120.2 (2)
F1—P1—F380.2 (3)N4—C28—C29115.3 (2)
F1—P1—F4102.3 (3)C27—C28—C29124.5 (2)
F1—P1—F593.1 (3)N5—C29—C28114.4 (2)
F1—P1—F688.5 (4)N5—C29—C30120.8 (3)
F1—P1—F792.0 (3)C28—C29—C30124.8 (3)
F1—P1—F881.1 (3)C29—C30—C31120.4 (3)
F1—P1—F977.2 (3)C30—C31—C32119.0 (3)
F1—P1—F1089.5 (3)C31—C32—C33119.0 (3)
F2—P1—F398.3 (3)N5—C33—C32122.4 (2)
F2—P1—F479.8 (3)N6—C34—C35179.0 (5)
F2—P1—F589.6 (3)N1—C1—H1118.9
F2—P1—F688.8 (4)C2—C1—H1119.0
F2—P1—F788.6 (3)C1—C2—H2120.2
F2—P1—F898.5 (3)C3—C2—H2119.8
F2—P1—F9106.0 (4)C2—C3—H3121.1
F2—P1—F1087.4 (4)C4—C3—H3120.5
F3—P1—F4167.4 (4)C3—C4—H4120.1
F3—P1—F583.7 (4)C5—C4—H4119.8
F3—P1—F695.3 (5)C6—C7—H5120.0
F4—P1—F583.8 (3)C8—C7—H5120.0
F4—P1—F697.1 (5)C8—C9—H6120.4
F5—P1—F6178.0 (5)C10—C9—H6120.3
F7—P1—F8172.1 (4)C11—C12—H7120.5
F7—P1—F985.9 (5)C13—C12—H7120.5
F7—P1—F1092.1 (5)C12—C13—H8120.3
F8—P1—F988.8 (4)C14—C13—H8120.3
F8—P1—F1091.7 (4)C13—C14—H9120.6
F9—P1—F10166.4 (4)C15—C14—H9120.0
C17—O1—C22119.1 (3)N3—C15—H10118.6
C20—O2—C23116.6 (2)C14—C15—H10119.0
Ru1—N1—C1128.21 (19)C17—C18—H11119.1
Ru1—N1—C5113.32 (16)C19—C18—H11119.7
C1—N1—C5118.5 (2)C18—C19—H12119.8
Ru1—N2—C6119.35 (16)C20—C19—H12119.8
Ru1—N2—C10119.39 (16)C16—C21—H13118.7
C6—N2—C10121.2 (2)C20—C21—H13119.4
Ru1—N3—C11113.17 (16)O1—C22—H14108.6
Ru1—N3—C15129.04 (17)O1—C22—H15110.4
C11—N3—C15117.8 (2)O1—C22—H16109.5
Ru1—N4—C24124.92 (19)H14—C22—H15109.5
Ru1—N4—C28116.36 (18)H14—C22—H16109.5
C24—N4—C28118.7 (2)H15—C22—H16109.5
Ru1—N5—C29115.22 (19)O2—C23—H17109.0
Ru1—N5—C33126.37 (19)O2—C23—H18110.0
C29—N5—C33118.4 (2)O2—C23—H19109.5
N1—C1—C2122.1 (2)H17—C23—H18109.5
C1—C2—C3120.0 (3)H17—C23—H19109.5
C2—C3—C4118.4 (2)H18—C23—H19109.5
C3—C4—C5120.1 (2)N4—C24—H20118.7
N1—C5—C4120.7 (2)C25—C24—H20118.4
N1—C5—C6115.1 (2)C24—C25—H21120.9
C4—C5—C6124.1 (2)C26—C25—H21119.9
N2—C6—C5112.5 (2)C25—C26—H22121.2
N2—C6—C7120.2 (2)C27—C26—H22120.8
C5—C6—C7127.3 (2)C26—C27—H23119.3
C6—C7—C8120.0 (2)C28—C27—H23119.8
C7—C8—C9118.8 (2)C29—C30—H24119.8
C7—C8—C16122.3 (2)C31—C30—H24119.9
C9—C8—C16118.9 (2)C30—C31—H25120.9
C8—C9—C10119.3 (2)C32—C31—H25120.1
N2—C10—C9120.4 (2)C31—C32—H26120.5
N2—C10—C11113.1 (2)C33—C32—H26120.5
C9—C10—C11126.5 (2)N5—C33—H27118.9
N3—C11—C10114.6 (2)C32—C33—H27118.7
N3—C11—C12121.9 (2)C34—C35—H28108.3
C10—C11—C12123.5 (2)C34—C35—H29110.0
C11—C12—C13119.1 (2)C34—C35—H30110.1
C12—C13—C14119.4 (2)H28—C35—H29109.5
C13—C14—C15119.3 (3)H28—C35—H30109.5
N3—C15—C14122.5 (2)H29—C35—H30109.5
C8—C16—C17121.5 (2)
Cl1—Ru1—N1—C192.6 (2)Ru1—N4—C28—C27179.0 (2)
Cl1—Ru1—N1—C587.90 (18)Ru1—N4—C28—C291.8 (2)
Cl1—Ru1—N2—C690.20 (19)C24—N4—C28—C271.3 (3)
Cl1—Ru1—N2—C1088.8 (2)C24—N4—C28—C29177.9 (2)
Cl1—Ru1—N3—C1187.82 (17)C28—N4—C24—C251.4 (3)
Cl1—Ru1—N3—C1592.8 (2)Ru1—N5—C29—C283.1 (2)
Cl1—Ru1—N5—C29175.68 (17)Ru1—N5—C29—C30179.3 (2)
Cl1—Ru1—N5—C336.0 (2)Ru1—N5—C33—C32178.7 (2)
N1—Ru1—N2—C60.6 (2)C29—N5—C33—C320.4 (4)
N1—Ru1—N2—C10179.6 (2)C33—N5—C29—C28175.4 (2)
N2—Ru1—N1—C1178.3 (2)C33—N5—C29—C302.2 (4)
N2—Ru1—N1—C51.20 (18)N1—C1—C2—C31.2 (5)
N1—Ru1—N3—C112.8 (3)C1—C2—C3—C40.8 (5)
N1—Ru1—N3—C15176.6 (2)C2—C3—C4—C50.9 (4)
N3—Ru1—N1—C1177.0 (2)C3—C4—C5—N11.0 (4)
N3—Ru1—N1—C52.5 (3)C3—C4—C5—C6179.9 (2)
N1—Ru1—N4—C2478.3 (2)N1—C5—C6—N21.2 (3)
N1—Ru1—N4—C28101.35 (18)N1—C5—C6—C7175.9 (2)
N4—Ru1—N1—C181.4 (2)C4—C5—C6—N2177.9 (2)
N4—Ru1—N1—C598.16 (19)C4—C5—C6—C75.0 (4)
N1—Ru1—N5—C2992.92 (19)N2—C6—C7—C82.0 (4)
N1—Ru1—N5—C3385.4 (2)C5—C6—C7—C8178.9 (2)
N5—Ru1—N1—C12.6 (2)C6—C7—C8—C90.4 (4)
N5—Ru1—N1—C5176.89 (19)C6—C7—C8—C16176.4 (2)
N2—Ru1—N3—C111.47 (18)C7—C8—C9—C101.0 (4)
N2—Ru1—N3—C15177.9 (2)C7—C8—C16—C1748.6 (4)
N3—Ru1—N2—C6179.91 (18)C7—C8—C16—C21131.9 (3)
N3—Ru1—N2—C100.9 (2)C9—C8—C16—C17134.7 (3)
N2—Ru1—N4—C241.5 (2)C9—C8—C16—C2144.8 (3)
N2—Ru1—N4—C28178.82 (18)C16—C8—C9—C10175.8 (2)
N4—Ru1—N2—C690.8 (2)C8—C9—C10—N20.7 (4)
N4—Ru1—N2—C1090.1 (2)C8—C9—C10—C11178.0 (2)
N3—Ru1—N4—C2481.2 (2)N2—C10—C11—N31.1 (3)
N3—Ru1—N4—C2899.14 (18)N2—C10—C11—C12179.7 (2)
N4—Ru1—N3—C1198.61 (18)C9—C10—C11—N3176.4 (2)
N4—Ru1—N3—C1580.8 (2)C9—C10—C11—C122.8 (4)
N3—Ru1—N5—C2985.07 (19)N3—C11—C12—C131.8 (4)
N3—Ru1—N5—C3396.6 (2)C10—C11—C12—C13177.3 (2)
N5—Ru1—N3—C11177.11 (18)C11—C12—C13—C140.8 (4)
N5—Ru1—N3—C152.3 (2)C12—C13—C14—C150.4 (5)
N4—Ru1—N5—C293.12 (18)C13—C14—C15—N30.6 (5)
N4—Ru1—N5—C33175.2 (2)C8—C16—C17—O10.0 (3)
N5—Ru1—N4—C24177.0 (2)C8—C16—C17—C18177.8 (3)
N5—Ru1—N4—C282.62 (17)C8—C16—C21—C20179.4 (2)
C22—O1—C17—C16168.8 (3)C17—C16—C21—C200.2 (4)
C22—O1—C17—C1813.5 (5)C21—C16—C17—O1179.6 (2)
C23—O2—C20—C197.0 (5)C21—C16—C17—C181.7 (4)
C23—O2—C20—C21171.2 (3)O1—C17—C18—C19179.4 (3)
Ru1—N1—C1—C2177.5 (2)C16—C17—C18—C191.8 (5)
Ru1—N1—C5—C4177.5 (2)C17—C18—C19—C200.2 (5)
Ru1—N1—C5—C61.6 (2)C18—C19—C20—O2176.8 (3)
C1—N1—C5—C42.9 (4)C18—C19—C20—C211.3 (5)
C1—N1—C5—C6178.0 (2)O2—C20—C21—C16177.0 (2)
C5—N1—C1—C23.0 (4)C19—C20—C21—C161.4 (4)
Ru1—N2—C6—C50.2 (2)N4—C24—C25—C260.0 (3)
Ru1—N2—C6—C7177.1 (2)C24—C25—C26—C271.3 (5)
Ru1—N2—C10—C9177.8 (2)C25—C26—C27—C281.3 (5)
Ru1—N2—C10—C110.2 (2)C26—C27—C28—N40.0 (4)
C6—N2—C10—C93.1 (4)C26—C27—C28—C29179.2 (3)
C6—N2—C10—C11179.2 (2)N4—C28—C29—N50.9 (3)
C10—N2—C6—C5178.9 (2)N4—C28—C29—C30178.4 (2)
C10—N2—C6—C73.8 (3)C27—C28—C29—N5178.3 (2)
Ru1—N3—C11—C101.8 (2)C27—C28—C29—C300.8 (4)
Ru1—N3—C11—C12179.0 (2)N5—C29—C30—C312.0 (4)
Ru1—N3—C15—C14179.7 (2)C28—C29—C30—C31175.4 (3)
C11—N3—C15—C140.3 (4)C29—C30—C31—C320.2 (4)
C15—N3—C11—C10177.7 (2)C30—C31—C32—C331.9 (5)
C15—N3—C11—C121.5 (4)C31—C32—C33—N51.7 (4)
Ru1—N4—C24—C25179.0 (2)

Experimental details

Crystal data
Chemical formula[RuCl(C10H8N2)(C23H19N3O2)]PF6·C2H3N
Mr848.15
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)13.8691 (3), 16.1993 (3), 31.5514 (6)
V3)7088.7 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.60 × 0.40 × 0.08
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.616, 0.950
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
102710, 8092, 5738
Rint0.036
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.111, 1.01
No. of reflections8092
No. of parameters495
No. of restraints?
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.84, 0.59

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku Americas & Rigaku, 2007), SIR97 (Altomare et al., 1999), CRYSTALS (Betteridge et al., 2003), ORTEP-3 for Windows (Farrugia, 1997).

Selected bond lengths (Å) top
Ru1—Cl12.4096 (8)Ru1—N32.082 (2)
Ru1—N12.066 (2)Ru1—N42.036 (2)
Ru1—N21.9503 (19)Ru1—N52.084 (2)
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFujihara, T., Okamura, R., Wada, T. & Tanaka, K. (2003). Dalton Trans. pp. 3221–3226.  Web of Science CSD CrossRef Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku Americas & Rigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSpek, A. L., Gerli, A. & Reedijk, J. (1994). Acta Cryst. C50, 394–397.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationStorrier, G. D., Colbran, S. B. & Craig, D. C. (1998). J. Chem. Soc. Dalton Trans. pp. 1351–1363.  Web of Science CSD CrossRef Google Scholar
First citationStorrier, G. D., Colbran, S. B. & Hibbert, D. B. (1995). Inorg. Chim. Acta, 239, 1–4.  CrossRef CAS Web of Science Google Scholar
First citationTakeuchi, K. J., Thompson, M. S., Pipes, D. W. & Meyer, T. J. (1984). Inorg. Chem. 23, 1845–1851.  CrossRef CAS Web of Science Google Scholar
First citationTseng, H.-W., Zong, R., Muckerman, J. T. & Thummel, R. (2008). Inorg. Chem. 47, 11763–11773.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1117-m1118
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds