organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2201-o2202

3-(2-Chloro­ethyl)-2-methyl-4-oxo-4H-pyrido[1,2-a]pyrimidinium 2,4,6-tri­nitro­phenolate

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 31 July 2009; accepted 17 August 2009; online 22 August 2009)

In the cation of the title salt, C11H12ClN2O+·C6H2N3O7, the chloro­ethyl side chain is in a syn conformation, nearly orthogonal to the pyrimidine ring, with a dihedral angle of 78.9 (6)° between the plane of the chloro­ethyl chain and the pyrimidine ring. The dihedral angle between the fused rings is 4.3 (3)°. In the picrate anion, the benzene mean plane makes dihedral angles of 26.7 (1), 33.6 (2) and 5.3 (6)° with the two o-NO2 groups and the p-NO2 group, respectively. Extensive hydrogen-bond inter­actions occur between the cation–anion pair which help to establish the crystal packing. A three-center O⋯(H,H)—(N,C) acceptor hydrogen bond is observed between the phenolate O atom of the picrate anion and the amine and methyl groups of the cation. An N—H⋯(O,O) bifurcated hydrogen bond is observed between the amine group and two O atoms from the phenolate and o-NO2 groups.

Related literature

For related structures, see: Blaton et al. (1995[Blaton, N. M., Peeters, O. M. & De Ranter, C. J. (1995). Acta Cryst. C51, 533-535.]); Chen & He (2006[Chen, H.-L. & He, H.-W. (2006). Acta Cryst. E62, o1226-o1227.]); Peeters et al. (1993[Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1993). Acta Cryst. C49, 1698-1700.]). For general background, see: Baraldi et al. (2002[Baraldi, P. G., Cacciari, B., Romagnoli, R., Spalluto, G., Monopoli, A., Ongini, E., Varani, K. & Borea, P. A. (2002). J. Med. Chem. 45, 115-126.]); Gabbert & Giannini (1997[Gabbert, J. F. & Giannini, A. J. (1997). Am. J. Ther. 4, 159-164.]); Jasinski et al. (2009[Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2009). Acta Cryst. E65, o1987-o1988.]); White et al. (2004[White, D. C., Greenwood, D. C., Downey, A. L., Bloomquis, J. R. & Wolfe, J. F. (2004). Bioorg. Med. Chem. 12, 5711-5717.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) and for the program Mogul, see: Bruno et al. (2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12ClN2O+·C6H2N3O7

  • Mr = 451.78

  • Monoclinic, P 21 /n

  • a = 7.2718 (5) Å

  • b = 12.8159 (9) Å

  • c = 19.940 (3) Å

  • β = 97.642 (9)°

  • V = 1841.8 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.41 mm−1

  • T = 110 K

  • 0.44 × 0.37 × 0.23 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis Pro and CrysAlis RE. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.309, Tmax = 0.575

  • 6948 measured reflections

  • 3616 independent reflections

  • 3198 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.097

  • S = 1.03

  • 3616 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4A—H4AA⋯O1B 0.88 1.82 2.6811 (16) 167
N4A—H4AA⋯O62B 0.88 2.58 2.8632 (17) 100
C5B—H5BA⋯Cl1Ai 0.95 2.79 3.6112 (16) 146
C7A—H7AA⋯O1Aii 0.95 2.57 3.2446 (19) 128
C12A—H12C⋯O1B 0.98 2.41 3.2477 (19) 144
C9A—H9AA⋯O61Biii 0.95 2.61 3.2734 (19) 127
C12A—H12A⋯O21Biv 0.98 2.62 3.340 (2) 131
C10A—H10B⋯O62Bv 0.99 2.54 3.494 (2) 161
C11A—H11A⋯O22Bvi 0.99 2.52 3.385 (2) 146
C11A—H11B⋯O42Bvii 0.99 2.56 3.431 (2) 147
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x+2, -y+1, -z+1; (v) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) -x+1, -y+1, -z+1; (vii) x, y+1, z.

Data collection: CrysAlis Pro (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis Pro and CrysAlis RE. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis Pro and CrysAlis RE. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We have recently reported the crystal structure of 3-(2-chloroethyl)-2-methyl-4H-pyrido[1,2-a]pyrimidin-4-one (Jasinski et al., 2009) which is an intermediate in the synthesis of risperidone, and is a potent antipsychotic agent, especially useful for treating schizophrenia (Gabbert & Giannini, 1997). The present paper reports the interaction of 3-(2-chloroethyl)-2-methyl-4H-pyrido [1,2-a]pyrimidin-4-one as an electron donor with picric acid as electron acceptor which resulted in the formation of a charge transfer complex of title compound, (I), C17H14ClN5O8.

The title compound, C11H12ClN2O+.C6H2N3O7-, a picrate salt of 3-(2-chloroethyl)-2-methyl-4H-pyrido[1,2-a]pyrimidinium-4-one, crystallizes with one independent cation-anion pair in the asymmetric unit (Fig. 1). In the cation, the chloroethyl side chain is in a syn conformation [-sc, C1A—C2A—C10A—C11A = -78.29 (16)°], nearly orthogonal to the pyrimidine ring, with a dihedral angle of 78.9 (6)° between the chloroethyl side chain and the pyrimidine ring. The fused pyrimidine-pyridine ring is separated by 4.3 (3)°. In the picrate anion, the benzene ring adopts dihedral angles of 26.7 (1), 33.6 (2) and 5.3 (6)° with the mean planes of two o-NO2 and a p-NO2 group, respectively. Extensive hydrogen bond interactions occur between the cation-anion pair which help to establish crystal packing (Fig. 2). This includes a strong N4A—H4AA···O1B hydrogen bond and a collection of several weak C—H···O interactions within several sites between the cations and anions in the unit cell (Table 1). A three-center O···(H,H)-(N,C) acceptor hydrogen bond is observed between the phenolate oxygen atom (O1B) of the picrate anion and the amine (H4AA) and methyl group (H12C) hydrogen atoms of the pyrimidine group in the cation. A bifurcated (three-center) N—H···(O,O) hydrogen bond is observed between the amine hydrogen atom (H4AA) in the pyrimidine group and oxygen atoms from the phenolate (O1B) and o-NO2 (O62B) groups. Included in this bond is a weak N4A—H4AA···O62B interaction (Table 1). Bond lengths and angles in both the cation and anion can be regarded as normal (Cambridge Structural Database, Version 5.30, February, 2009; Allen, 2002, Mogul, Version 1.1.3; Bruno et al., 2004) The collective effects of both strong and weak intemolecular hydrogen bonds influence crystal packing in the title compound, C11H12ClN2O+.C6H2N3O7-, (I).

Related literature top

For related structures, see: Blaton et al. (1995); Chen & He (2006); Peeters et al. (1993). For general background, see: Baraldi et al. (2002); Gabbert & Giannini (1997); Jasinski et al. (2009); White et al. (2004). For a description of the Cambridge Structural Database, see: Allen (2002) and for the program Mogul, see: Bruno et al. (2004). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound was synthesized by adding a saturated solution of picric acid (0.92 g, 2 mmol) in methanol to a solution of 3-(2-chloroethyl)-2-methyl-4H-pyrido[1,2-a]pyrimidin-4-one (0.45 g, 2 mmol) in 10 ml of methanol. A yellow color developed and the resulting solution was stirred well with the formation of yellow precipitate which was filtered off, washed several times with diethyl ether and then dried over CaCl2 (yield 64.5%). X-ray quality crystals were grown from acetone solution. The melting range was found to be 415–418 K.

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with N—H = 0.88 Å, C—H = 0.95–0.99 Å, and with Uiso(H) = 1.17–1.48Ueq(C,N).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, C11H12ClN2O+.C6H2N3O7-, showing the cation-anion unit that comprises the asymmetric unit, the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound, (I), viewed down the b axis. Dashed lines indicate strong N—H···O, and weak N—H···O, C—H···O hydrogen bond interactions which produces a two-dimensional network arranged along the (101) plane of the unit cell.
3-(2-Chloroethyl)-2-methyl-4-oxo-4H-pyrido[1,2-a]pyrimidinium 2,4,6-trinitrophenolate top
Crystal data top
C11H12ClN2O+·C6H2N3O7F(000) = 928
Mr = 451.78Dx = 1.629 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 4324 reflections
a = 7.2718 (5) Åθ = 4.1–74.1°
b = 12.8159 (9) ŵ = 2.41 mm1
c = 19.940 (3) ÅT = 110 K
β = 97.642 (9)°Chunk, pale yellow
V = 1841.8 (3) Å30.44 × 0.37 × 0.23 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
3616 independent reflections
Radiation source: Enhance (Cu) X-ray Source3198 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 10.5081 pixels mm-1θmax = 74.0°, θmin = 4.1°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 159
Tmin = 0.309, Tmax = 0.575l = 2324
6948 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.063P)2 + 0.629P]
where P = (Fo2 + 2Fc2)/3
3616 reflections(Δ/σ)max < 0.001
281 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C11H12ClN2O+·C6H2N3O7V = 1841.8 (3) Å3
Mr = 451.78Z = 4
Monoclinic, P21/nCu Kα radiation
a = 7.2718 (5) ŵ = 2.41 mm1
b = 12.8159 (9) ÅT = 110 K
c = 19.940 (3) Å0.44 × 0.37 × 0.23 mm
β = 97.642 (9)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
3616 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
3198 reflections with I > 2σ(I)
Tmin = 0.309, Tmax = 0.575Rint = 0.017
6948 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
3616 reflectionsΔρmin = 0.29 e Å3
281 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1A0.86173 (5)0.88220 (3)0.687448 (19)0.02115 (12)
O1A0.51748 (16)0.63234 (9)0.76768 (5)0.0210 (2)
N1A0.37082 (17)0.50513 (9)0.69885 (6)0.0150 (3)
C1A0.5193 (2)0.58121 (11)0.71692 (8)0.0162 (3)
C2A0.6526 (2)0.58732 (11)0.66975 (7)0.0153 (3)
C3A0.6432 (2)0.52080 (11)0.61613 (7)0.0154 (3)
N4A0.50951 (17)0.44532 (10)0.60742 (6)0.0162 (3)
H4AA0.51240.40000.57440.019*
C5A0.3734 (2)0.43685 (11)0.64690 (7)0.0157 (3)
C6A0.2346 (2)0.35986 (12)0.63478 (8)0.0196 (3)
H6AA0.23780.31050.59940.024*
C7A0.0949 (2)0.35698 (13)0.67466 (9)0.0226 (3)
H7AA0.00180.30460.66770.027*
C8A0.0903 (2)0.43233 (13)0.72609 (8)0.0227 (3)
H8AA0.00950.43280.75240.027*
C9A0.2275 (2)0.50377 (12)0.73803 (8)0.0190 (3)
H9AA0.22540.55320.77340.023*
C10A0.7963 (2)0.67205 (12)0.68363 (8)0.0171 (3)
H10A0.90370.65680.65950.021*
H10B0.84090.67540.73270.021*
C11A0.7098 (2)0.77552 (12)0.65971 (8)0.0187 (3)
H11A0.59040.78440.67780.022*
H11B0.68430.77570.60970.022*
C12A0.7717 (2)0.52487 (13)0.56313 (8)0.0202 (3)
H12A0.90030.51880.58480.030*
H12B0.75540.59140.53880.030*
H12C0.74330.46710.53120.030*
O1B0.57412 (15)0.30604 (8)0.51298 (5)0.0185 (2)
O21B0.81068 (17)0.36265 (9)0.42333 (6)0.0246 (3)
O22B0.75216 (16)0.25511 (9)0.33919 (6)0.0223 (3)
O41B0.88575 (16)0.10609 (9)0.40701 (6)0.0233 (3)
O42B0.78903 (17)0.16264 (9)0.49860 (6)0.0248 (3)
O61B0.52961 (16)0.07476 (10)0.64703 (6)0.0250 (3)
O62B0.61759 (18)0.23621 (9)0.64474 (6)0.0257 (3)
N2B0.76693 (17)0.27587 (10)0.40009 (7)0.0174 (3)
N4B0.81817 (17)0.09140 (10)0.45962 (7)0.0175 (3)
N6B0.59534 (18)0.14919 (11)0.61918 (6)0.0180 (3)
C1B0.6503 (2)0.21995 (11)0.50651 (7)0.0145 (3)
C2B0.7355 (2)0.19261 (12)0.44702 (7)0.0153 (3)
C3B0.7866 (2)0.09381 (12)0.43082 (7)0.0158 (3)
H3BA0.83350.08040.38940.019*
C4B0.76828 (19)0.01382 (12)0.47634 (7)0.0156 (3)
C5B0.70412 (19)0.03312 (12)0.53788 (7)0.0157 (3)
H5BA0.69550.02200.56910.019*
C6B0.6534 (2)0.13254 (12)0.55290 (7)0.0151 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0225 (2)0.0160 (2)0.0248 (2)0.00529 (13)0.00290 (15)0.00297 (14)
O1A0.0287 (6)0.0192 (6)0.0158 (5)0.0004 (4)0.0054 (4)0.0034 (4)
N1A0.0175 (6)0.0129 (6)0.0149 (6)0.0017 (5)0.0037 (5)0.0018 (5)
C1A0.0202 (7)0.0121 (7)0.0157 (7)0.0020 (6)0.0006 (6)0.0025 (6)
C2A0.0158 (7)0.0143 (7)0.0154 (7)0.0002 (6)0.0009 (5)0.0019 (5)
C3A0.0154 (7)0.0140 (7)0.0167 (7)0.0020 (5)0.0018 (5)0.0017 (6)
N4A0.0189 (6)0.0144 (6)0.0159 (6)0.0004 (5)0.0044 (5)0.0028 (5)
C5A0.0187 (7)0.0128 (7)0.0156 (7)0.0032 (6)0.0023 (6)0.0027 (5)
C6A0.0218 (8)0.0136 (7)0.0232 (8)0.0012 (6)0.0023 (6)0.0006 (6)
C7A0.0205 (8)0.0169 (7)0.0303 (9)0.0027 (6)0.0035 (7)0.0057 (6)
C8A0.0225 (8)0.0234 (8)0.0237 (8)0.0017 (6)0.0089 (6)0.0076 (7)
C9A0.0226 (7)0.0190 (7)0.0165 (7)0.0039 (6)0.0069 (6)0.0048 (6)
C10A0.0176 (7)0.0171 (7)0.0163 (7)0.0007 (6)0.0010 (6)0.0011 (6)
C11A0.0180 (7)0.0150 (7)0.0221 (8)0.0044 (6)0.0002 (6)0.0017 (6)
C12A0.0213 (7)0.0221 (8)0.0183 (7)0.0019 (6)0.0063 (6)0.0027 (6)
O1B0.0219 (5)0.0163 (5)0.0175 (5)0.0027 (4)0.0037 (4)0.0018 (4)
O21B0.0309 (6)0.0177 (6)0.0261 (6)0.0055 (5)0.0071 (5)0.0003 (5)
O22B0.0257 (6)0.0268 (6)0.0149 (5)0.0026 (5)0.0045 (4)0.0025 (5)
O41B0.0264 (6)0.0222 (6)0.0226 (6)0.0026 (5)0.0085 (5)0.0070 (5)
O42B0.0296 (6)0.0152 (5)0.0313 (7)0.0001 (5)0.0103 (5)0.0018 (5)
O61B0.0266 (6)0.0304 (7)0.0199 (6)0.0034 (5)0.0096 (5)0.0024 (5)
O62B0.0412 (7)0.0208 (6)0.0149 (5)0.0088 (5)0.0029 (5)0.0030 (4)
N2B0.0148 (6)0.0188 (7)0.0190 (6)0.0009 (5)0.0039 (5)0.0017 (5)
N4B0.0141 (6)0.0172 (6)0.0210 (7)0.0015 (5)0.0018 (5)0.0039 (5)
N6B0.0177 (6)0.0220 (7)0.0143 (6)0.0041 (5)0.0027 (5)0.0012 (5)
C1B0.0129 (6)0.0157 (7)0.0148 (7)0.0008 (5)0.0010 (5)0.0021 (6)
C2B0.0141 (6)0.0178 (7)0.0140 (7)0.0020 (5)0.0016 (5)0.0011 (6)
C3B0.0131 (7)0.0198 (7)0.0145 (7)0.0007 (6)0.0025 (5)0.0026 (6)
C4B0.0138 (7)0.0155 (7)0.0175 (7)0.0005 (5)0.0019 (5)0.0036 (6)
C5B0.0125 (7)0.0166 (7)0.0178 (7)0.0014 (5)0.0011 (5)0.0007 (6)
C6B0.0136 (7)0.0186 (7)0.0133 (7)0.0003 (5)0.0028 (5)0.0011 (6)
Geometric parameters (Å, º) top
Cl1A—C11A1.7979 (15)C11A—H11A0.9900
O1A—C1A1.2073 (19)C11A—H11B0.9900
N1A—C5A1.3582 (19)C12A—H12A0.9800
N1A—C9A1.3835 (19)C12A—H12B0.9800
N1A—C1A1.4636 (19)C12A—H12C0.9800
C1A—C2A1.440 (2)O1B—C1B1.2489 (18)
C2A—C3A1.362 (2)O21B—N2B1.2303 (18)
C2A—C10A1.507 (2)O22B—N2B1.2337 (17)
C3A—N4A1.3659 (19)O41B—N4B1.2307 (17)
C3A—C12A1.502 (2)O42B—N4B1.2355 (18)
N4A—C5A1.3485 (19)O61B—N6B1.2317 (18)
N4A—H4AA0.8800O62B—N6B1.2279 (18)
C5A—C6A1.409 (2)N2B—C2B1.4572 (19)
C6A—C7A1.372 (2)N4B—C4B1.4469 (19)
C6A—H6AA0.9500N6B—C6B1.4559 (19)
C7A—C8A1.412 (2)C1B—C6B1.451 (2)
C7A—H7AA0.9500C1B—C2B1.452 (2)
C8A—C9A1.352 (2)C2B—C3B1.370 (2)
C8A—H8AA0.9500C3B—C4B1.387 (2)
C9A—H9AA0.9500C3B—H3BA0.9500
C10A—C11A1.517 (2)C4B—C5B1.392 (2)
C10A—H10A0.9900C5B—C6B1.371 (2)
C10A—H10B0.9900C5B—H5BA0.9500
C5A—N1A—C9A120.69 (13)Cl1A—C11A—H11A109.5
C5A—N1A—C1A122.17 (12)C10A—C11A—H11B109.5
C9A—N1A—C1A117.12 (13)Cl1A—C11A—H11B109.5
O1A—C1A—C2A126.96 (14)H11A—C11A—H11B108.1
O1A—C1A—N1A118.57 (14)C3A—C12A—H12A109.5
C2A—C1A—N1A114.47 (13)C3A—C12A—H12B109.5
C3A—C2A—C1A120.70 (14)H12A—C12A—H12B109.5
C3A—C2A—C10A123.83 (14)C3A—C12A—H12C109.5
C1A—C2A—C10A115.46 (13)H12A—C12A—H12C109.5
C2A—C3A—N4A120.25 (13)H12B—C12A—H12C109.5
C2A—C3A—C12A124.01 (14)O21B—N2B—O22B123.36 (13)
N4A—C3A—C12A115.73 (13)O21B—N2B—C2B118.35 (13)
C5A—N4A—C3A123.23 (13)O22B—N2B—C2B118.27 (13)
C5A—N4A—H4AA118.4O41B—N4B—O42B122.99 (13)
C3A—N4A—H4AA118.4O41B—N4B—C4B118.67 (13)
N4A—C5A—N1A118.62 (13)O42B—N4B—C4B118.33 (13)
N4A—C5A—C6A121.39 (14)O62B—N6B—O61B123.63 (13)
N1A—C5A—C6A119.99 (14)O62B—N6B—C6B118.15 (13)
C7A—C6A—C5A119.23 (15)O61B—N6B—C6B118.20 (13)
C7A—C6A—H6AA120.4O1B—C1B—C6B125.86 (14)
C5A—C6A—H6AA120.4O1B—C1B—C2B122.74 (13)
C6A—C7A—C8A119.56 (15)C6B—C1B—C2B111.23 (13)
C6A—C7A—H7AA120.2C3B—C2B—C1B125.03 (13)
C8A—C7A—H7AA120.2C3B—C2B—N2B117.04 (13)
C9A—C8A—C7A120.20 (15)C1B—C2B—N2B117.92 (13)
C9A—C8A—H8AA119.9C2B—C3B—C4B118.42 (14)
C7A—C8A—H8AA119.9C2B—C3B—H3BA120.8
C8A—C9A—N1A120.20 (15)C4B—C3B—H3BA120.8
C8A—C9A—H9AA119.9C3B—C4B—C5B121.21 (14)
N1A—C9A—H9AA119.9C3B—C4B—N4B119.28 (13)
C2A—C10A—C11A108.90 (12)C5B—C4B—N4B119.51 (13)
C2A—C10A—H10A109.9C6B—C5B—C4B119.29 (14)
C11A—C10A—H10A109.9C6B—C5B—H5BA120.4
C2A—C10A—H10B109.9C4B—C5B—H5BA120.4
C11A—C10A—H10B109.9C5B—C6B—C1B124.09 (14)
H10A—C10A—H10B108.3C5B—C6B—N6B116.97 (13)
C10A—C11A—Cl1A110.85 (11)C1B—C6B—N6B118.92 (13)
C10A—C11A—H11A109.5
C5A—N1A—C1A—O1A172.72 (13)C2A—C10A—C11A—Cl1A170.43 (10)
C9A—N1A—C1A—O1A6.0 (2)O1B—C1B—C2B—C3B165.97 (15)
C5A—N1A—C1A—C2A8.26 (19)C6B—C1B—C2B—C3B9.5 (2)
C9A—N1A—C1A—C2A173.04 (12)O1B—C1B—C2B—N2B13.0 (2)
O1A—C1A—C2A—C3A176.59 (15)C6B—C1B—C2B—N2B171.52 (12)
N1A—C1A—C2A—C3A4.5 (2)O21B—N2B—C2B—C3B145.18 (14)
O1A—C1A—C2A—C10A4.5 (2)O22B—N2B—C2B—C3B33.30 (19)
N1A—C1A—C2A—C10A174.42 (12)O21B—N2B—C2B—C1B35.76 (19)
C1A—C2A—C3A—N4A1.8 (2)O22B—N2B—C2B—C1B145.77 (14)
C10A—C2A—C3A—N4A179.40 (13)C1B—C2B—C3B—C4B4.6 (2)
C1A—C2A—C3A—C12A177.36 (14)N2B—C2B—C3B—C4B176.39 (13)
C10A—C2A—C3A—C12A1.5 (2)C2B—C3B—C4B—C5B1.6 (2)
C2A—C3A—N4A—C5A5.2 (2)C2B—C3B—C4B—N4B178.83 (13)
C12A—C3A—N4A—C5A174.00 (13)O41B—N4B—C4B—C3B4.1 (2)
C3A—N4A—C5A—N1A1.5 (2)O42B—N4B—C4B—C3B175.13 (13)
C3A—N4A—C5A—C6A177.89 (14)O41B—N4B—C4B—C5B175.43 (13)
C9A—N1A—C5A—N4A175.85 (13)O42B—N4B—C4B—C5B5.3 (2)
C1A—N1A—C5A—N4A5.5 (2)C3B—C4B—C5B—C6B1.8 (2)
C9A—N1A—C5A—C6A3.5 (2)N4B—C4B—C5B—C6B178.67 (13)
C1A—N1A—C5A—C6A175.12 (13)C4B—C5B—C6B—C1B4.3 (2)
N4A—C5A—C6A—C7A177.42 (14)C4B—C5B—C6B—N6B177.30 (13)
N1A—C5A—C6A—C7A2.0 (2)O1B—C1B—C6B—C5B166.06 (15)
C5A—C6A—C7A—C8A1.3 (2)C2B—C1B—C6B—C5B9.2 (2)
C6A—C7A—C8A—C9A3.1 (2)O1B—C1B—C6B—N6B12.4 (2)
C7A—C8A—C9A—N1A1.6 (2)C2B—C1B—C6B—N6B172.34 (12)
C5A—N1A—C9A—C8A1.8 (2)O62B—N6B—C6B—C5B152.45 (14)
C1A—N1A—C9A—C8A176.96 (13)O61B—N6B—C6B—C5B26.3 (2)
C3A—C2A—C10A—C11A100.58 (17)O62B—N6B—C6B—C1B29.02 (19)
C1A—C2A—C10A—C11A78.29 (16)O61B—N6B—C6B—C1B152.23 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4A—H4AA···O1B0.881.822.6811 (16)167
N4A—H4AA···O62B0.882.582.8632 (17)100
C5B—H5BA···Cl1Ai0.952.793.6112 (16)146
C7A—H7AA···O1Aii0.952.573.2446 (19)128
C12A—H12C···O1B0.982.413.2477 (19)144
C9A—H9AA···O61Biii0.952.613.2734 (19)127
C12A—H12A···O21Biv0.982.623.340 (2)131
C10A—H10B···O62Bv0.992.543.494 (2)161
C11A—H11A···O22Bvi0.992.523.385 (2)146
C11A—H11B···O42Bvii0.992.563.431 (2)147
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1/2, z+3/2; (iii) x+1/2, y+1/2, z+3/2; (iv) x+2, y+1, z+1; (v) x+3/2, y+1/2, z+3/2; (vi) x+1, y+1, z+1; (vii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC11H12ClN2O+·C6H2N3O7
Mr451.78
Crystal system, space groupMonoclinic, P21/n
Temperature (K)110
a, b, c (Å)7.2718 (5), 12.8159 (9), 19.940 (3)
β (°) 97.642 (9)
V3)1841.8 (3)
Z4
Radiation typeCu Kα
µ (mm1)2.41
Crystal size (mm)0.44 × 0.37 × 0.23
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.309, 0.575
No. of measured, independent and
observed [I > 2σ(I)] reflections
6948, 3616, 3198
Rint0.017
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.097, 1.03
No. of reflections3616
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.29

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4A—H4AA···O1B0.881.822.6811 (16)167.0
N4A—H4AA···O62B0.882.582.8632 (17)99.5
C5B—H5BA···Cl1Ai0.952.793.6112 (16)145.5
C7A—H7AA···O1Aii0.952.573.2446 (19)128.2
C12A—H12C···O1B0.982.413.2477 (19)143.7
C9A—H9AA···O61Biii0.952.613.2734 (19)127.2
C12A—H12A···O21Biv0.982.623.340 (2)130.8
C10A—H10B···O62Bv0.992.543.494 (2)160.7
C11A—H11A···O22Bvi0.992.523.385 (2)145.8
C11A—H11B···O42Bvii0.992.563.431 (2)146.6
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1/2, z+3/2; (iii) x+1/2, y+1/2, z+3/2; (iv) x+2, y+1, z+1; (v) x+3/2, y+1/2, z+3/2; (vi) x+1, y+1, z+1; (vii) x, y+1, z.
 

Acknowledgements

QNMHA thanks the University of Mysore for use of its research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBaraldi, P. G., Cacciari, B., Romagnoli, R., Spalluto, G., Monopoli, A., Ongini, E., Varani, K. & Borea, P. A. (2002). J. Med. Chem. 45, 115–126.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBlaton, N. M., Peeters, O. M. & De Ranter, C. J. (1995). Acta Cryst. C51, 533–535.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChen, H.-L. & He, H.-W. (2006). Acta Cryst. E62, o1226–o1227.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGabbert, J. F. & Giannini, A. J. (1997). Am. J. Ther. 4, 159–164.  CrossRef PubMed CAS Google Scholar
First citationJasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2009). Acta Cryst. E65, o1987–o1988.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis Pro and CrysAlis RE. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPeeters, O. M., Blaton, N. M. & De Ranter, C. J. (1993). Acta Cryst. C49, 1698–1700.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhite, D. C., Greenwood, D. C., Downey, A. L., Bloomquis, J. R. & Wolfe, J. F. (2004). Bioorg. Med. Chem. 12, 5711–5717.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2201-o2202
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds