organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[2-(2-Chloro­phen­yl)-2-hy­droxy­ethyl]propan-2-aminium chloride

aCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and bCollege of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: fenghai289289@163.com

(Received 1 August 2009; accepted 6 August 2009; online 19 August 2009)

In the title compound, C11H17ClNO+·Cl, the side chain of the ethyl­amine group is orientated approximately perpendicular to the benzene ring, the dihedral angle between the C/C/N plane of the ethyl­amine group and the benzene plane being 83.5 (3)°. In the crystal structure, inter­molecular O—H⋯Cl and N—H⋯Cl hydrogen bonds are observed. The crystal studied was an inversion twin with a 0.51 (10):0.49 (10) domain ratio.

Related literature

For a related structure, see: Tang et al. (2009[Tang, Z., Xu, M., Zheng, G.-R. & Feng, H. (2009). Acta Cryst. E65, o1501.]).

[Scheme 1]

Experimental

Crystal data
  • C11H17ClNO+·Cl

  • Mr = 250.16

  • Orthorhombic, P 21 21 21

  • a = 7.3460 (3) Å

  • b = 11.7721 (5) Å

  • c = 15.2377 (8) Å

  • V = 1317.72 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 296 K

  • 0.40 × 0.36 × 0.32 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.835, Tmax = 0.864

  • 12577 measured reflections

  • 2977 independent reflections

  • 1874 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.107

  • S = 1.00

  • 2977 reflections

  • 140 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1243 Friedel pairs

  • Flack parameter: 0.51 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H112⋯Cl2 0.90 2.36 3.199 (2) 156
O1—H1⋯Cl2i 0.82 2.33 3.143 (2) 169
N1—H111⋯Cl2ii 0.90 2.28 3.138 (2) 160
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2007[Rigaku/MSC (2007). CrystalStructure. Rigaku/MSC. The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound (clorprenaline hydrochloride) is one of a series of structurally related β-adrenoceptorblocking drugs.

In the molecular structure (Fig. 1), there are no unusual bond distances or angles. The Cl atom and the phenyl plane is almost planar with the deviation of 0.0037 Å. The dihedral angle between the plane formed by C7/C8/N1 and the phenyl plane is 83.5 (3)°, which shows that the two planes are almost perpendicular. The C9—N1 distance of 1.506 Å is longer than the value of the similar bond distance of 1.474 Å (Tang et al., 2009).

O—H···Cl and N—H···Cl hydrogen bonds are found in the crystal structure and are essential forces in crystal formation. The hydroxyl hydrogen at O1 acts as a donor to Cl2. The ethylamine hydrogens at N1 also act as donors to Cl2.

Related literature top

For a related structure, see: Tang et al. (2009).

Experimental top

Racemic Clorprenaline hydrochloride was purchased from ShangHai Shengxin Medicine & Chemical Co., Ltd. ShangHai, China. Racemic Clorprenaline hydrochloride (5 g) was dissolved in ethanol (75 ml) and then hydrochloric acid was added to give pH of about 4. Colorless crystal of (I) separated from the solution in about 80% yield after one day.

Refinement top

All of the H atoms were placed in calculated positions and allowed to ride on their parent atoms, with C—H = 0.93 (aromatic), 0.98 (methine), 0.97 (methylene), 0.96 Å (methyl), O—H = 0.82 Å and N—H = 0.90 Å, and with Uiso(H) = 1.2–1.5 times Ueq of the parent atoms.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku/MSC, 2007); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels, showing 40% probability displacement ellipsoids.
N-[2-(2-Chlorophenyl)-2-hydroxyethyl]propan-2-aminium chloride top
Crystal data top
C11H17ClNO+·ClF(000) = 528
Mr = 250.16Dx = 1.261 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8627 reflections
a = 7.3460 (3) Åθ = 3.1–27.4°
b = 11.7721 (5) ŵ = 0.47 mm1
c = 15.2377 (8) ÅT = 296 K
V = 1317.72 (10) Å3Chunk, colorless
Z = 40.40 × 0.36 × 0.32 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2977 independent reflections
Radiation source: rotating anode1874 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.1°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1514
Tmin = 0.835, Tmax = 0.864l = 1919
12577 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.5P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.107(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.29 e Å3
2977 reflectionsΔρmin = 0.29 e Å3
140 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0054 (12)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1243 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.51 (10)
Crystal data top
C11H17ClNO+·ClV = 1317.72 (10) Å3
Mr = 250.16Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.3460 (3) ŵ = 0.47 mm1
b = 11.7721 (5) ÅT = 296 K
c = 15.2377 (8) Å0.40 × 0.36 × 0.32 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2977 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1874 reflections with I > 2σ(I)
Tmin = 0.835, Tmax = 0.864Rint = 0.031
12577 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.107Δρmax = 0.29 e Å3
S = 1.00Δρmin = 0.29 e Å3
2977 reflectionsAbsolute structure: Flack (1983), 1243 Friedel pairs
140 parametersAbsolute structure parameter: 0.51 (10)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl20.51205 (10)0.14865 (6)0.44638 (6)0.0648 (2)
Cl10.44580 (11)0.75320 (8)0.58138 (6)0.0779 (3)
O10.3177 (3)0.44304 (18)0.42787 (16)0.0698 (6)
H10.22940.41740.45420.105*
N10.5869 (3)0.37691 (19)0.55437 (15)0.0522 (6)
H1110.70290.35500.56280.063*
H1120.53410.32440.51980.063*
C70.4020 (4)0.5277 (2)0.4795 (2)0.0489 (7)
H70.32960.54220.53230.059*
C60.4249 (3)0.6368 (2)0.42750 (19)0.0488 (6)
C10.4496 (3)0.7418 (2)0.4678 (2)0.0546 (7)
C80.5901 (4)0.4868 (2)0.5047 (2)0.0537 (7)
H8A0.66230.47710.45190.064*
H8B0.64870.54430.54050.064*
C90.4922 (4)0.3739 (2)0.64202 (18)0.0579 (7)
H90.36390.39360.63320.069*
C50.4305 (4)0.6352 (3)0.3365 (2)0.0680 (9)
H50.41440.56690.30690.082*
C110.5028 (6)0.2537 (3)0.6769 (2)0.0777 (9)
H11A0.62790.23300.68540.093*
H11B0.44770.20270.63550.093*
H11C0.43930.24920.73190.093*
C20.4764 (4)0.8401 (3)0.4204 (3)0.0729 (10)
H20.49040.90910.44940.088*
C30.4824 (5)0.8360 (4)0.3318 (3)0.0920 (13)
H30.50180.90220.29980.110*
C40.4597 (5)0.7344 (5)0.2889 (3)0.0897 (12)
H40.46390.73190.22790.108*
C100.5746 (6)0.4584 (3)0.7044 (2)0.0928 (13)
H10A0.50990.45640.75910.111*
H10B0.56650.53320.67970.111*
H10C0.70010.43960.71440.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl20.0489 (4)0.0509 (3)0.0944 (6)0.0007 (3)0.0009 (4)0.0054 (4)
Cl10.0692 (5)0.0819 (6)0.0825 (6)0.0038 (5)0.0021 (4)0.0313 (5)
O10.0628 (13)0.0559 (12)0.0909 (18)0.0136 (10)0.0123 (12)0.0113 (12)
N10.0435 (11)0.0498 (13)0.0633 (15)0.0017 (10)0.0009 (11)0.0057 (11)
C70.0399 (13)0.0455 (14)0.0613 (17)0.0049 (12)0.0016 (12)0.0044 (13)
C60.0393 (12)0.0465 (14)0.0606 (18)0.0017 (12)0.0015 (12)0.0003 (13)
C10.0364 (13)0.0510 (15)0.0765 (19)0.0010 (13)0.0021 (13)0.0009 (15)
C80.0438 (14)0.0483 (15)0.069 (2)0.0023 (13)0.0006 (13)0.0073 (13)
C90.0513 (15)0.0647 (18)0.0577 (17)0.0011 (16)0.0030 (15)0.0076 (13)
C50.0671 (19)0.080 (2)0.057 (2)0.0136 (19)0.0015 (15)0.0010 (17)
C110.087 (2)0.074 (2)0.071 (2)0.006 (3)0.003 (2)0.0193 (17)
C20.0455 (15)0.0489 (16)0.124 (3)0.0015 (15)0.007 (2)0.0108 (18)
C30.059 (2)0.082 (3)0.135 (4)0.012 (2)0.010 (2)0.050 (3)
C40.076 (3)0.125 (3)0.068 (2)0.020 (3)0.0058 (19)0.039 (2)
C100.123 (3)0.086 (3)0.069 (2)0.011 (3)0.002 (2)0.012 (2)
Geometric parameters (Å, º) top
Cl1—C11.736 (3)C9—C111.514 (4)
O1—C71.413 (3)C9—H90.9800
O1—H10.8200C5—C41.391 (5)
N1—C81.499 (3)C5—H50.9300
N1—C91.506 (3)C11—H11A0.9600
N1—H1110.9000C11—H11B0.9600
N1—H1120.9000C11—H11C0.9600
C7—C81.513 (4)C2—C31.352 (6)
C7—C61.518 (4)C2—H20.9300
C7—H70.9800C3—C41.373 (7)
C6—C51.387 (4)C3—H30.9300
C6—C11.393 (4)C4—H40.9300
C1—C21.378 (5)C10—H10A0.9600
C8—H8A0.9700C10—H10B0.9600
C8—H8B0.9700C10—H10C0.9600
C9—C101.503 (5)
C7—O1—H1109.5C10—C9—H9108.5
C8—N1—C9118.4 (2)N1—C9—H9108.5
C8—N1—H111107.7C11—C9—H9108.5
C9—N1—H111107.7C6—C5—C4121.0 (4)
C8—N1—H112107.7C6—C5—H5119.5
C9—N1—H112107.7C4—C5—H5119.5
H111—N1—H112107.1C9—C11—H11A109.5
O1—C7—C8108.5 (2)C9—C11—H11B109.5
O1—C7—C6110.8 (2)H11A—C11—H11B109.5
C8—C7—C6107.5 (2)C9—C11—H11C109.5
O1—C7—H7110.0H11A—C11—H11C109.5
C8—C7—H7110.0H11B—C11—H11C109.5
C6—C7—H7110.0C3—C2—C1119.9 (3)
C5—C6—C1116.7 (3)C3—C2—H2120.1
C5—C6—C7120.9 (3)C1—C2—H2120.1
C1—C6—C7122.4 (2)C2—C3—C4120.2 (3)
C2—C1—C6122.2 (3)C2—C3—H3119.9
C2—C1—Cl1117.4 (3)C4—C3—H3119.9
C6—C1—Cl1120.4 (2)C3—C4—C5120.1 (4)
N1—C8—C7112.9 (2)C3—C4—H4120.0
N1—C8—H8A109.0C5—C4—H4120.0
C7—C8—H8A109.0C9—C10—H10A109.5
N1—C8—H8B109.0C9—C10—H10B109.5
C7—C8—H8B109.0H10A—C10—H10B109.5
H8A—C8—H8B107.8C9—C10—H10C109.5
C10—C9—N1111.1 (3)H10A—C10—H10C109.5
C10—C9—C11112.1 (3)H10B—C10—H10C109.5
N1—C9—C11108.0 (2)
O1—C7—C6—C523.6 (4)C6—C7—C8—N1178.2 (2)
C8—C7—C6—C594.8 (3)C8—N1—C9—C1058.5 (3)
O1—C7—C6—C1159.4 (2)C8—N1—C9—C11178.2 (3)
C8—C7—C6—C182.2 (3)C1—C6—C5—C40.1 (4)
C5—C6—C1—C20.6 (4)C7—C6—C5—C4177.1 (3)
C7—C6—C1—C2177.8 (2)C6—C1—C2—C31.1 (4)
C5—C6—C1—Cl1179.8 (2)Cl1—C1—C2—C3179.4 (3)
C7—C6—C1—Cl12.7 (3)C1—C2—C3—C40.7 (5)
C9—N1—C8—C762.6 (3)C2—C3—C4—C50.0 (6)
O1—C7—C8—N158.4 (3)C6—C5—C4—C30.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H112···Cl20.902.363.199 (2)156
O1—H1···Cl2i0.822.333.143 (2)169
N1—H111···Cl2ii0.902.283.138 (2)160
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC11H17ClNO+·Cl
Mr250.16
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)7.3460 (3), 11.7721 (5), 15.2377 (8)
V3)1317.72 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.40 × 0.36 × 0.32
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.835, 0.864
No. of measured, independent and
observed [I > 2σ(I)] reflections
12577, 2977, 1874
Rint0.031
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.107, 1.00
No. of reflections2977
No. of parameters140
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.29
Absolute structureFlack (1983), 1243 Friedel pairs
Absolute structure parameter0.51 (10)

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku/MSC, 2007), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H112···Cl20.902.363.199 (2)156
O1—H1···Cl2i0.822.333.143 (2)169
N1—H111···Cl2ii0.902.283.138 (2)160
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z+1.
 

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2007). CrystalStructure. Rigaku/MSC. The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Z., Xu, M., Zheng, G.-R. & Feng, H. (2009). Acta Cryst. E65, o1501.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds