organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Butane-1,4-di­ammonium bis­­(pyridine-2-carboxyl­ate) monohydrate

aSchool of Applied Chemical Engineering, the Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 10 August 2009; accepted 10 August 2009; online 15 August 2009)

The asymmetric unit of the title compound, C4H14N22+·2C6H4NO2·H2O, consists of half of a doubly protonated tetra­methyl­enediammonium dication, a pyridine-2-carboxyl­ate anion and half of a solvent water mol­ecule; the dication is located on a centre of inversion and a twofold rotation axis passes through the O atom of the water mol­ecule. The carboxyl­ate group of the anion appears to be delocalized on the basis of the C—O bond lengths. In the crystal structure, the components are linked by inter­molecular N—H⋯O, N—H⋯N and O—H⋯O hydrogen bonds.

Related literature

For the crystal structures of some butane-1,4-diammonium compounds, see: Natarajan & Cheetham (1997[Natarajan, S. & Cheetham, A. K. (1997). Chem. Commun. pp. 1089-1090.]); Zheng et al. (1999[Zheng, L.-M., Song, H.-H., Lin, C.-H., Wang, S.-L., Hu, Z., Yu, Z. & Xin, X.-Q. (1999). Inorg. Chem. 38, 4618-4619.]); Sediri et al. (2002[Sediri, F., Etteyeb, N., Steunou, N., Guyard-Duhayon, C., Maquet, J., Gharbi, N. & Livage, J. (2002). J. Solid State Chem. 167, 407-411.]); Srinivasan et al. (2005[Srinivasan, B. R., Näther, C. & Bensch, W. (2005). Acta Cryst. E61, m2454-m2456.]); Lemmerer & Billing (2006[Lemmerer, A. & Billing, D. G. (2006). Acta Cryst. E62, o1954-o1956.]); van Blerk & Kruger (2007[Blerk, C. van & Kruger, G. J. (2007). Acta Cryst. E63, o342-o344.], 2008[Blerk, C. van & Kruger, G. J. (2008). J. Chem. Crystallogr. 38, 175-179.]); Jayasundera et al. (2008[Jayasundera, A. C. A., Finch, A. A., Wormald, P. & Lightfoot, P. (2008). Chem. Mater. 20, 6810-6815.]). For the structure of pyridine-2-carboxylic acid, see: Hamazaki et al. (1998[Hamazaki, H., Hosomi, H., Takeda, S., Kataoka, H. & Ohba, S. (1998). Acta Cryst. C54, IUC9800049.]). For a related hexane-1,6-diammonium compound, see: Kim & Ha (2009[Kim, N.-H. & Ha, K. (2009). Acta Cryst. E65, o1415.]).

[Scheme 1]

Experimental

Crystal data
  • C4H14N22+·2C6H4NO2·H2O

  • Mr = 352.39

  • Monoclinic, C 2/c

  • a = 20.655 (3) Å

  • b = 7.6170 (11) Å

  • c = 12.910 (2) Å

  • β = 113.789 (4)°

  • V = 1858.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.27 × 0.21 × 0.16 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.740, Tmax = 0.985

  • 6674 measured reflections

  • 2298 independent reflections

  • 1040 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.152

  • S = 0.99

  • 2298 reflections

  • 162 parameters

  • All H-atom parameters refined

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.99 (3) 1.77 (3) 2.749 (3) 170 (2)
N2—H2B⋯O1ii 0.96 (3) 1.84 (3) 2.792 (3) 176 (2)
N2—H2C⋯O1iii 0.95 (3) 2.26 (3) 2.997 (3) 134 (2)
N2—H2C⋯N1iii 0.95 (3) 2.06 (3) 2.917 (3) 149 (2)
O3—H3O⋯O1iv 0.92 (4) 2.02 (4) 2.926 (3) 172 (4)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, C4H14N22+.2C6H4NO2-.H2O, consists of a doubly protonated tetramethylenediammonium dication, two pyridine-2-carboxylate anions and a solvent water molecule and the asymmetric unit contains one half of the formula unit (Fig. 1); a centre of inversion is located at the mid-point of the dication and the water molecule is disposed about a twofold rotation axis through O atom with the special position at (0, y, 1/4) (Wyckoff letter e). The carboxylate groups of the anions appear to be delocalized on the basis of the C—O bond lengths [C—O: 1.235 (3) and 1.251 (3) Å]. The torsion angles within the dication reveal that all N and C atoms of the dication display the anti conformation. In the crystal structure, the components are linked by intermolecular N—H···O, N—H···N and O—H···O hydrogen bonds (Table 1 and Fig. 2). There may also be intermolecular ππ interactions between adjacent pyridine rings, with a centroid-centroid distance of 3.796 (2) Å.

Related literature top

For the crystal structures of some butane-1,4-diammonium compounds, see: Natarajan & Cheetham (1997); Zheng et al. (1999); Sediri et al. (2002); Srinivasan et al. (2005); Lemmerer & Billing (2006); van Blerk & Kruger (2007, 2008); Jayasundera et al. (2008). For the structure of pyridine-2-carboxylic acid, see: Hamazaki et al. (1998). For a related hexane-1,6-diammonium compound, see: Kim & Ha (2009).

Experimental top

A solution of 1,4-diaminobutane (0.200 g, 2.269 mmol) and pyridine-2-carboxylic acid (1.173 g, 9.528 mmol) in H2O (20 ml) was stirred for 3 h at 60 °C. The solvent was removed under vacuum and the residue was washed with acetone/ether, to give a white powder (0.830 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from an acetone solution.

Refinement top

All H atoms were located from Fourier difference maps and refined isotropically; C—H = 0.91 (2)–1.05 (3) Å, N—H = 0.95 (3)–0.99 (3) Å and O—H = 0.92 (4) Å.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 40% probability level for non-H atoms. The superscript a corresponds to symmetry code: -x, -y + 1, -z.
[Figure 2] Fig. 2. View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.
Butane-1,4-diammonium bis(pyridine-2-carboxylate) monohydrate top
Crystal data top
C4H14N22+·2C6H4NO2·H2OF(000) = 752
Mr = 352.39Dx = 1.259 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1114 reflections
a = 20.655 (3) Åθ = 2.9–22.5°
b = 7.6170 (11) ŵ = 0.10 mm1
c = 12.910 (2) ÅT = 296 K
β = 113.789 (4)°Block, colorless
V = 1858.5 (5) Å30.27 × 0.21 × 0.16 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
2298 independent reflections
Radiation source: fine-focus sealed tube1040 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2727
Tmin = 0.740, Tmax = 0.985k = 109
6674 measured reflectionsl = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152All H-atom parameters refined
S = 0.99 w = 1/[σ2(Fo2) + (0.0576P)2]
where P = (Fo2 + 2Fc2)/3
2298 reflections(Δ/σ)max < 0.001
162 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C4H14N22+·2C6H4NO2·H2OV = 1858.5 (5) Å3
Mr = 352.39Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.655 (3) ŵ = 0.10 mm1
b = 7.6170 (11) ÅT = 296 K
c = 12.910 (2) Å0.27 × 0.21 × 0.16 mm
β = 113.789 (4)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2298 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1040 reflections with I > 2σ(I)
Tmin = 0.740, Tmax = 0.985Rint = 0.048
6674 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.152All H-atom parameters refined
S = 0.99Δρmax = 0.18 e Å3
2298 reflectionsΔρmin = 0.16 e Å3
162 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.42900 (8)0.4778 (2)0.55250 (14)0.0629 (6)
O20.36511 (9)0.6362 (3)0.61996 (15)0.0793 (7)
N10.31266 (9)0.3696 (3)0.37672 (16)0.0541 (6)
C10.25453 (15)0.3005 (4)0.2959 (2)0.0663 (8)
H10.2608 (13)0.230 (4)0.235 (2)0.089 (9)*
C20.18842 (15)0.3185 (4)0.2948 (3)0.0685 (8)
H20.1484 (13)0.262 (3)0.233 (2)0.073 (8)*
C30.18017 (14)0.4148 (4)0.3778 (3)0.0646 (8)
H30.1342 (14)0.439 (3)0.380 (2)0.085 (9)*
C40.23908 (13)0.4901 (4)0.4606 (2)0.0547 (7)
H40.2350 (11)0.556 (3)0.517 (2)0.055 (7)*
C50.30461 (11)0.4623 (3)0.45825 (18)0.0429 (6)
C60.37158 (13)0.5323 (3)0.5513 (2)0.0483 (6)
N20.05485 (12)0.8325 (3)0.15154 (19)0.0463 (5)
H2A0.0797 (12)0.853 (3)0.234 (2)0.072 (8)*
H2B0.0116 (14)0.898 (3)0.121 (2)0.070 (8)*
H2C0.0864 (14)0.863 (4)0.117 (2)0.091 (10)*
C70.00642 (18)0.5974 (3)0.0102 (2)0.0599 (8)
H7A0.0362 (16)0.665 (4)0.025 (3)0.106 (11)*
H7B0.0374 (16)0.642 (4)0.025 (3)0.116 (12)*
C80.04043 (18)0.6425 (4)0.1318 (2)0.0612 (8)
H8A0.0144 (16)0.604 (4)0.173 (3)0.113 (13)*
H8B0.0889 (17)0.577 (4)0.175 (3)0.127 (13)*
O30.00000.2467 (4)0.25000.0872 (10)
H3O0.018 (2)0.173 (5)0.311 (3)0.176 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0443 (9)0.0705 (12)0.0630 (12)0.0030 (9)0.0102 (8)0.0125 (9)
O20.0782 (13)0.0863 (15)0.0542 (12)0.0161 (11)0.0066 (10)0.0263 (11)
N10.0472 (12)0.0625 (14)0.0459 (12)0.0017 (10)0.0117 (10)0.0095 (10)
C10.0599 (18)0.0692 (19)0.0532 (17)0.0025 (15)0.0056 (14)0.0149 (14)
C20.0483 (17)0.0638 (19)0.068 (2)0.0074 (14)0.0032 (14)0.0020 (15)
C30.0429 (16)0.073 (2)0.071 (2)0.0037 (14)0.0156 (15)0.0136 (16)
C40.0538 (16)0.0597 (18)0.0500 (16)0.0119 (13)0.0202 (13)0.0062 (13)
C50.0462 (13)0.0407 (13)0.0368 (13)0.0041 (11)0.0116 (10)0.0035 (10)
C60.0527 (14)0.0423 (14)0.0412 (14)0.0048 (12)0.0097 (12)0.0015 (11)
N20.0456 (12)0.0466 (13)0.0425 (13)0.0015 (10)0.0134 (11)0.0049 (10)
C70.082 (2)0.0495 (16)0.0436 (15)0.0082 (16)0.0205 (15)0.0045 (12)
C80.089 (2)0.0471 (17)0.0409 (15)0.0074 (15)0.0191 (15)0.0047 (12)
O30.108 (2)0.072 (2)0.063 (2)0.0000.0152 (18)0.000
Geometric parameters (Å, º) top
O1—C61.251 (3)C5—C61.517 (3)
O2—C61.235 (3)N2—C81.479 (3)
N1—C51.332 (3)N2—H2A0.99 (3)
N1—C11.341 (3)N2—H2B0.96 (3)
C1—C21.367 (4)N2—H2C0.95 (3)
C1—H11.01 (3)C7—C81.478 (3)
C2—C31.364 (4)C7—C7i1.512 (5)
C2—H20.98 (2)C7—H7A0.96 (3)
C3—C41.380 (4)C7—H7B0.98 (3)
C3—H30.98 (3)C8—H8A0.95 (3)
C4—C51.383 (3)C8—H8B1.05 (3)
C4—H40.91 (2)O3—H3O0.92 (4)
C5—N1—C1117.7 (2)C8—N2—H2A108.6 (15)
N1—C1—C2123.1 (3)C8—N2—H2B110.4 (14)
N1—C1—H1117.5 (15)H2A—N2—H2B111 (2)
C2—C1—H1119.4 (15)C8—N2—H2C106.6 (17)
C3—C2—C1119.1 (3)H2A—N2—H2C108 (2)
C3—C2—H2122.5 (15)H2B—N2—H2C112 (2)
C1—C2—H2118.4 (15)C8—C7—C7i112.8 (3)
C2—C3—C4118.8 (3)C8—C7—H7A109.3 (19)
C2—C3—H3123.6 (16)C7i—C7—H7A112.5 (19)
C4—C3—H3117.5 (16)C8—C7—H7B106.8 (19)
C3—C4—C5119.0 (3)C7i—C7—H7B111.1 (19)
C3—C4—H4120.6 (14)H7A—C7—H7B104 (2)
C5—C4—H4120.4 (14)C7—C8—N2112.7 (2)
N1—C5—C4122.3 (2)C7—C8—H8A113.3 (19)
N1—C5—C6116.6 (2)N2—C8—H8A108.9 (19)
C4—C5—C6121.1 (2)C7—C8—H8B113.5 (17)
O2—C6—O1125.5 (2)N2—C8—H8B106.6 (17)
O2—C6—C5117.7 (2)H8A—C8—H8B101 (3)
O1—C6—C5116.8 (2)
C5—N1—C1—C21.1 (4)C3—C4—C5—C6176.1 (2)
N1—C1—C2—C31.7 (5)N1—C5—C6—O2171.3 (2)
C1—C2—C3—C40.4 (4)C4—C5—C6—O210.4 (3)
C2—C3—C4—C51.4 (4)N1—C5—C6—O19.5 (3)
C1—N1—C5—C40.8 (4)C4—C5—C6—O1168.8 (2)
C1—N1—C5—C6177.5 (2)C7i—C7—C8—N2178.3 (3)
C3—C4—C5—N12.1 (4)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2ii0.99 (3)1.77 (3)2.749 (3)170 (2)
N2—H2B···O1iii0.96 (3)1.84 (3)2.792 (3)176 (2)
N2—H2C···O1iv0.95 (3)2.26 (3)2.997 (3)134 (2)
N2—H2C···N1iv0.95 (3)2.06 (3)2.917 (3)149 (2)
O3—H3O···O1v0.92 (4)2.02 (4)2.926 (3)172 (4)
Symmetry codes: (ii) x+1/2, y+3/2, z+1; (iii) x1/2, y+3/2, z1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC4H14N22+·2C6H4NO2·H2O
Mr352.39
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)20.655 (3), 7.6170 (11), 12.910 (2)
β (°) 113.789 (4)
V3)1858.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.27 × 0.21 × 0.16
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.740, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
6674, 2298, 1040
Rint0.048
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.152, 0.99
No. of reflections2298
No. of parameters162
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.18, 0.16

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.99 (3)1.77 (3)2.749 (3)170 (2)
N2—H2B···O1ii0.96 (3)1.84 (3)2.792 (3)176 (2)
N2—H2C···O1iii0.95 (3)2.26 (3)2.997 (3)134 (2)
N2—H2C···N1iii0.95 (3)2.06 (3)2.917 (3)149 (2)
O3—H3O···O1iv0.92 (4)2.02 (4)2.926 (3)172 (4)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x1/2, y+3/2, z1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z+1.
 

Acknowledgements

This work was supported by a Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2007–412-J02001).

References

First citationBlerk, C. van & Kruger, G. J. (2007). Acta Cryst. E63, o342–o344.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBlerk, C. van & Kruger, G. J. (2008). J. Chem. Crystallogr. 38, 175–179.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHamazaki, H., Hosomi, H., Takeda, S., Kataoka, H. & Ohba, S. (1998). Acta Cryst. C54, IUC9800049.  CrossRef IUCr Journals Google Scholar
First citationJayasundera, A. C. A., Finch, A. A., Wormald, P. & Lightfoot, P. (2008). Chem. Mater. 20, 6810–6815.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, N.-H. & Ha, K. (2009). Acta Cryst. E65, o1415.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLemmerer, A. & Billing, D. G. (2006). Acta Cryst. E62, o1954–o1956.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNatarajan, S. & Cheetham, A. K. (1997). Chem. Commun. pp. 1089–1090.  CSD CrossRef Web of Science Google Scholar
First citationSediri, F., Etteyeb, N., Steunou, N., Guyard-Duhayon, C., Maquet, J., Gharbi, N. & Livage, J. (2002). J. Solid State Chem. 167, 407–411.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrinivasan, B. R., Näther, C. & Bensch, W. (2005). Acta Cryst. E61, m2454–m2456.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, L.-M., Song, H.-H., Lin, C.-H., Wang, S.-L., Hu, Z., Yu, Z. & Xin, X.-Q. (1999). Inorg. Chem. 38, 4618–4619.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds