organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Chloro­acetyl-2,6-bis­­(2-meth­oxy­phen­yl)-3,5-di­methyl­piperidin-4-one

aDivision of Image Science and Information Engineering, Pukyong National University, Busan 608-739, Republic of Korea, and bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 17 August 2009; accepted 24 August 2009; online 29 August 2009)

The piperidone ring in the title compound, C23H26ClNO4, adopts a boat conformation with its two out-of-plane C atoms deviating by 0.597 (2) and 0.630 (2) Å from the least-squares plane of the rest of atoms in the ring. The two aromatic rings are roughly perpendicular to each other, making a dihedral angle of 75.1 (1)°, and a C—H⋯π intra­molecular inter­action is observed. The crystal packing is stabilized by a C—H⋯O inter­molecular inter­action, generating a chain with a C(9) motif along the a axis.

Related literature

For the biological activity of the piperidine nucleus, see: Weintraub et al. (2003[Weintraub, P. M., Sabol, J. S., Kane, J. M. & Borcherding, D. R. (2003). Tetrahedron, 59, 2953-2989.]). For the biological activity of piperidones and their N-acyl derivatives, see: Perumal et al. (2001[Perumal, R. V., Adiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156-159.]); Weintraub et al. (2003[Weintraub, P. M., Sabol, J. S., Kane, J. M. & Borcherding, D. R. (2003). Tetrahedron, 59, 2953-2989.]); Aridoss et al. (2008[Aridoss, G., Amirthaganesan, S., Ashok Kumar, N., Kim, J. T., Lim, K. T., Kabilan, S. & Jeong, Y. T. (2008). Bioorg. Med. Chem. Lett. 18, 6542-6548.], 2009[Aridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 577-592.]); Aridoss, Balasubramanian, Parthiban, Ramachandran & Kabilan (2007[Aridoss, G., Balasubramanian, S., Parthiban, P., Ramachandran, R. & Kabilan, S. (2007). Med. Chem. Res. 16, 188-204.]). For a related structure, see: Ramachandran et al. (2008[Ramachandran, R., Aridoss, G., Velmurugan, D., Kabilan, S. & Jeong, Y. T. (2008). Acta Cryst. E64, o2009-o2010.]). For the synthesis, see: Aridoss, Balasubramanian, Parthiban & Kabilan (2007[Aridoss, G., Balasubramanian, S., Parthiban, P. & Kabilan, S. (2007). Spectrochim. Acta Part A, 68, 1153-1163.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C23H26ClNO4

  • Mr = 415.90

  • Triclinic, [P \overline 1]

  • a = 8.9921 (6) Å

  • b = 11.3725 (8) Å

  • c = 11.9373 (8) Å

  • α = 71.630 (1)°

  • β = 68.465 (1)°

  • γ = 72.903 (1)°

  • V = 1055.45 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.27 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 11114 measured reflections

  • 4603 independent reflections

  • 4054 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.145

  • S = 1.05

  • 4603 reflections

  • 266 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23C⋯O1i 0.96 2.50 3.321 (3) 144
C9—H9⋯Cg 0.93 2.69 3.621 (2) 177
Symmetry code: (i) x+1, y, z. Cg is the centroid of the C17–C22 ring.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Nitrogen containing heterocycles possess important biological profiles. For instance, the piperidine sub-structure is ubiquitous structural feature of many alkaloids, natural products and drug candidates (Weintraub et al., 2003). During the last decade, there were thousands of piperidine compounds mentioned in clinical and preclinical studies. As well owing to the relevance of piperidone-containing bioactive compounds, synthesis of piperidone derivatives have also attracted considerable attention among chemists and biologist (Perumal et al., 2001). It has been recognized well by our earlier studies that N-chloroacetyl and the further functionalized derivatives of 2,6-diarylpiperidin-4-one showed moderate to good antimicrobial, analgesic, antipyretic and antimycobacterial activities (Aridoss, Balasubramanian, Parthiban, Ramachandran & Kabilan, 2007; Aridoss et al., 2008,2009). As an extension to our studies on stereochemistry (Aridoss, Balasubramanian, Parthiban & Kabilan, 2007) and crystal studies (Ramachandran et al., 2008), we report here the X-ray crystallographic study of 1-chloroacetyl-2,6-bis (2-methoxyphenyl)-3,5-dimethylpiperidin-4-one.

The molecular structure of the title compound (I) is shown in Fig.1. The sum of the angles at N1 (358.9 (3)°) is in accordance with sp2 hybridization. The two phenyl rings in the title compound (I) are nearly perpendicular with the dihedral angle being 75.1 (1)°. Methoxy group attached to the phenyl rings is planar as evident from the torsion angle [(C14—O2—C13—C12 (-3.7 (3)°) and C23—O4—C22—C21 (-1.4 (2)°)]. The torsion angle around O1—C6—C7—Cl1 [0.0 (2)°] indicates the planarity of chloroacetyl moiety. The piperidone ring in the title compound (I) adopts boat conformation with atoms C2 and C5 deviating by -0.597 (2) and -0.630 (2) Å, respectively, from the least-squares plane defined by rest of the atoms (N1/C1/C3/C4) in the ring. The puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) for piperidone ring are q2 = 0.709 (2) Å, q3 = 0.022 (2) Å; QT = 0.710 (2) Å and θ = 88.3 (1)°.

The molecule of (I) is stabilized by weak C—H···O and C—H···π intramolecular interactions. In C—H···π intramolecular interaction, atom C9 acts as donor to the centroid (Cg) of the phenyl ring C17–C22 with H···Cg distance of 2.69 Å. The crystal packing is stabilized by C—H···O intermolecular interaction, wherein atom C23 acts as donor to O1 (1 + x, y, z) generating a chain C(9) along the a axis.

Related literature top

For the biological activity of the piperidine nucleus, see: Weintraub et al. (2003). For the biological activity of piperidones and their N-acyl derivatives, see: Perumal et al. (2001); Weintraub et al. (2003); Aridoss et al. (2008, 2009); Aridoss, Balasubramanian, Parthiban, Ramachandran & Kabilan (2007). For a related structure, see: Ramachandran et al. (2008). For the synthesis, see: Aridoss, Balasubramanian, Parthiban & Kabilan (2007). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983). Cg is the centroid of the C17–C22 ring.

Experimental top

The title compound was obtained by adopting our earlier method (Aridoss, Balasubramanian, Parthiban & Kabilan, 2007). To a solution of 2,6-bis(2- methoxyphenyl)-3,5-dimethylpiperidin-4-one (1 equiv.) and NEt3 (1.5 equiv.) in freshly distilled benzene, chloroacetyl chloride (1 equiv.) in benzene was added in drop wise. Stirring was continued until the completion of reaction. Later, it was poured into water and extracted with ethyl acetate. The combined organic extracts was then washed well with 3% sodium bicarbonate solution, brine and dried over anhydrous sodium sulfate. This upon evaporation and subsequent recrystallization of title compound in distilled ethanol afforded fine white crystals suitable for X-ray diffraction study.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, (I), showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular packing of (I), showing intramolecular C—H···π and intermolecular C—H···O interactions. For clarity, hydrogen atoms which are not involved in hydrogen bonding are omitted.
1-Chloroacetyl-2,6-bis(2-methoxyphenyl)-3,5-dimethylpiperidin-4-one top
Crystal data top
C23H26ClNO4Z = 2
Mr = 415.90F(000) = 440
Triclinic, P1Dx = 1.309 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9921 (6) ÅCell parameters from 3104 reflections
b = 11.3725 (8) Åθ = 1.9–28.0°
c = 11.9373 (8) ŵ = 0.21 mm1
α = 71.630 (1)°T = 293 K
β = 68.465 (1)°Block, colourless
γ = 72.903 (1)°0.27 × 0.22 × 0.20 mm
V = 1055.45 (12) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4054 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 28.0°, θmin = 1.9°
ω scansh = 1111
11114 measured reflectionsk = 1514
4603 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0778P)2 + 0.248P]
where P = (Fo2 + 2Fc2)/3
4603 reflections(Δ/σ)max < 0.001
266 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C23H26ClNO4γ = 72.903 (1)°
Mr = 415.90V = 1055.45 (12) Å3
Triclinic, P1Z = 2
a = 8.9921 (6) ÅMo Kα radiation
b = 11.3725 (8) ŵ = 0.21 mm1
c = 11.9373 (8) ÅT = 293 K
α = 71.630 (1)°0.27 × 0.22 × 0.20 mm
β = 68.465 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4054 reflections with I > 2σ(I)
11114 measured reflectionsRint = 0.026
4603 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.05Δρmax = 0.27 e Å3
4603 reflectionsΔρmin = 0.35 e Å3
266 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.62492 (17)0.76769 (12)0.18450 (12)0.0365 (3)
H10.58870.78130.11250.044*
C20.75304 (18)0.84927 (13)0.14741 (13)0.0409 (3)
H20.79830.82640.21640.049*
C30.6724 (2)0.98870 (15)0.13142 (15)0.0493 (4)
C40.51873 (19)1.02296 (13)0.23286 (14)0.0435 (3)
H40.53331.08700.26480.052*
C50.47941 (17)0.90843 (12)0.34028 (13)0.0376 (3)
H50.36550.93440.38790.045*
C60.33625 (18)0.76953 (14)0.31911 (14)0.0415 (3)
C70.3312 (2)0.6876 (2)0.2420 (2)0.0677 (5)
H7A0.41390.61080.24940.081*
H7B0.35720.73270.15560.081*
C80.70453 (17)0.62802 (13)0.21844 (13)0.0391 (3)
C90.7535 (2)0.57969 (14)0.32461 (14)0.0457 (3)
H90.73220.63230.37690.055*
C100.8335 (2)0.45490 (16)0.35465 (17)0.0557 (4)
H100.86530.42420.42610.067*
C110.8647 (2)0.37779 (16)0.27738 (19)0.0609 (5)
H110.91860.29420.29680.073*
C120.8177 (2)0.42187 (16)0.17127 (19)0.0591 (4)
H120.83920.36810.12010.071*
C130.73780 (19)0.54777 (15)0.14083 (15)0.0465 (3)
C140.7241 (3)0.5234 (2)0.0467 (2)0.0764 (6)
H14A0.84040.49970.08000.115*
H14B0.67820.57020.11280.115*
H14C0.67920.44860.00450.115*
C150.8945 (2)0.82148 (18)0.03379 (16)0.0550 (4)
H15A0.85360.83740.03450.083*
H15B0.94880.73450.05160.083*
H15C0.97040.87510.01280.083*
C160.3767 (2)1.08034 (17)0.17668 (17)0.0568 (4)
H16A0.40101.15350.11130.085*
H16B0.27841.10450.23970.085*
H16C0.36211.01880.14400.085*
C170.57351 (18)0.85534 (13)0.43542 (13)0.0380 (3)
C180.51132 (19)0.76226 (14)0.53789 (13)0.0431 (3)
H180.41290.74320.54750.052*
C190.5920 (2)0.69789 (16)0.62510 (15)0.0516 (4)
H190.54770.63720.69300.062*
C200.7387 (2)0.72462 (17)0.61039 (16)0.0541 (4)
H200.79660.67820.66620.065*
C210.8006 (2)0.81951 (16)0.51375 (15)0.0491 (4)
H210.89820.83860.50600.059*
C220.71660 (18)0.88681 (13)0.42754 (13)0.0400 (3)
C230.9135 (3)1.0185 (2)0.3189 (2)0.0691 (5)
H23A0.90011.04480.39150.104*
H23B0.93481.08720.24750.104*
H23C1.00340.94790.30920.104*
N10.48009 (14)0.80640 (11)0.28696 (11)0.0365 (3)
O10.21671 (13)0.80127 (12)0.40297 (11)0.0529 (3)
O20.68636 (18)0.59924 (13)0.03773 (12)0.0640 (4)
O30.7251 (2)1.06760 (13)0.04061 (15)0.0806 (5)
O40.76967 (14)0.98287 (11)0.33137 (11)0.0502 (3)
Cl10.14021 (6)0.64709 (5)0.28760 (5)0.06999 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0373 (7)0.0359 (6)0.0342 (6)0.0015 (5)0.0113 (5)0.0103 (5)
C20.0401 (7)0.0400 (7)0.0398 (7)0.0062 (6)0.0100 (6)0.0097 (5)
C30.0534 (9)0.0401 (7)0.0506 (8)0.0103 (7)0.0156 (7)0.0050 (6)
C40.0497 (8)0.0330 (6)0.0496 (8)0.0015 (6)0.0221 (7)0.0102 (6)
C50.0380 (7)0.0351 (6)0.0411 (7)0.0000 (5)0.0148 (6)0.0141 (5)
C60.0367 (7)0.0406 (7)0.0468 (7)0.0039 (5)0.0136 (6)0.0123 (6)
C70.0475 (9)0.0809 (13)0.0896 (14)0.0185 (9)0.0085 (9)0.0493 (11)
C80.0366 (7)0.0360 (7)0.0405 (7)0.0016 (5)0.0091 (6)0.0116 (5)
C90.0485 (8)0.0411 (7)0.0434 (7)0.0006 (6)0.0147 (6)0.0111 (6)
C100.0561 (10)0.0452 (8)0.0555 (9)0.0002 (7)0.0205 (8)0.0028 (7)
C110.0588 (10)0.0362 (8)0.0769 (12)0.0015 (7)0.0197 (9)0.0103 (8)
C120.0591 (10)0.0432 (8)0.0741 (11)0.0007 (7)0.0146 (9)0.0279 (8)
C130.0449 (8)0.0453 (8)0.0484 (8)0.0033 (6)0.0105 (6)0.0194 (6)
C140.0947 (16)0.0851 (14)0.0634 (12)0.0154 (12)0.0221 (11)0.0406 (11)
C150.0466 (9)0.0614 (10)0.0490 (9)0.0118 (7)0.0026 (7)0.0154 (7)
C160.0626 (11)0.0490 (9)0.0594 (10)0.0032 (8)0.0331 (9)0.0098 (7)
C170.0393 (7)0.0368 (6)0.0383 (7)0.0021 (5)0.0119 (6)0.0139 (5)
C180.0432 (8)0.0455 (7)0.0399 (7)0.0105 (6)0.0098 (6)0.0111 (6)
C190.0613 (10)0.0489 (8)0.0395 (7)0.0107 (7)0.0135 (7)0.0059 (6)
C200.0576 (10)0.0576 (9)0.0464 (8)0.0006 (8)0.0244 (7)0.0109 (7)
C210.0462 (8)0.0541 (9)0.0503 (8)0.0037 (7)0.0206 (7)0.0154 (7)
C220.0411 (7)0.0388 (7)0.0406 (7)0.0053 (6)0.0115 (6)0.0134 (5)
C230.0613 (11)0.0673 (12)0.0800 (13)0.0300 (9)0.0246 (10)0.0006 (10)
N10.0355 (6)0.0358 (5)0.0386 (6)0.0020 (4)0.0116 (5)0.0134 (4)
O10.0377 (6)0.0646 (7)0.0567 (7)0.0090 (5)0.0075 (5)0.0240 (6)
O20.0806 (9)0.0622 (7)0.0563 (7)0.0056 (7)0.0293 (7)0.0315 (6)
O30.0860 (11)0.0505 (7)0.0731 (9)0.0167 (7)0.0029 (8)0.0063 (6)
O40.0521 (7)0.0488 (6)0.0535 (6)0.0188 (5)0.0211 (5)0.0029 (5)
Cl10.0555 (3)0.0834 (4)0.0871 (4)0.0249 (2)0.0184 (2)0.0350 (3)
Geometric parameters (Å, º) top
C1—N11.4896 (17)C12—C131.399 (2)
C1—C81.5291 (18)C12—H120.9300
C1—C21.542 (2)C13—O21.370 (2)
C1—H10.9800C14—O21.414 (2)
C2—C31.520 (2)C14—H14A0.9600
C2—C151.525 (2)C14—H14B0.9600
C2—H20.9800C14—H14C0.9600
C3—O31.210 (2)C15—H15A0.9600
C3—C41.510 (2)C15—H15B0.9600
C4—C51.533 (2)C15—H15C0.9600
C4—C161.539 (2)C16—H16A0.9600
C4—H40.9800C16—H16B0.9600
C5—N11.4866 (17)C16—H16C0.9600
C5—C171.5308 (18)C17—C221.397 (2)
C5—H50.9800C17—C181.400 (2)
C6—O11.2238 (18)C18—C191.381 (2)
C6—N11.3598 (19)C18—H180.9300
C6—C71.521 (2)C19—C201.377 (3)
C7—Cl11.755 (2)C19—H190.9300
C7—H7A0.9700C20—C211.379 (3)
C7—H7B0.9700C20—H200.9300
C8—C91.390 (2)C21—C221.397 (2)
C8—C131.396 (2)C21—H210.9300
C9—C101.389 (2)C22—O41.3612 (18)
C9—H90.9300C23—O41.410 (2)
C10—C111.369 (3)C23—H23A0.9600
C10—H100.9300C23—H23B0.9600
C11—C121.379 (3)C23—H23C0.9600
C11—H110.9300
N1—C1—C8112.28 (11)O2—C13—C8116.34 (13)
N1—C1—C2110.76 (11)O2—C13—C12123.70 (15)
C8—C1—C2109.21 (11)C8—C13—C12119.96 (15)
N1—C1—H1108.2O2—C14—H14A109.5
C8—C1—H1108.2O2—C14—H14B109.5
C2—C1—H1108.2H14A—C14—H14B109.5
C3—C2—C15112.61 (13)O2—C14—H14C109.5
C3—C2—C1110.45 (12)H14A—C14—H14C109.5
C15—C2—C1111.99 (12)H14B—C14—H14C109.5
C3—C2—H2107.2C2—C15—H15A109.5
C15—C2—H2107.2C2—C15—H15B109.5
C1—C2—H2107.2H15A—C15—H15B109.5
O3—C3—C4121.64 (15)C2—C15—H15C109.5
O3—C3—C2122.00 (16)H15A—C15—H15C109.5
C4—C3—C2116.32 (13)H15B—C15—H15C109.5
C3—C4—C5112.21 (11)C4—C16—H16A109.5
C3—C4—C16108.41 (13)C4—C16—H16B109.5
C5—C4—C16110.13 (14)H16A—C16—H16B109.5
C3—C4—H4108.7C4—C16—H16C109.5
C5—C4—H4108.7H16A—C16—H16C109.5
C16—C4—H4108.7H16B—C16—H16C109.5
N1—C5—C17110.48 (10)C22—C17—C18117.60 (13)
N1—C5—C4107.60 (11)C22—C17—C5126.74 (13)
C17—C5—C4121.40 (12)C18—C17—C5115.61 (13)
N1—C5—H5105.4C19—C18—C17121.83 (15)
C17—C5—H5105.4C19—C18—H18119.1
C4—C5—H5105.4C17—C18—H18119.1
O1—C6—N1122.87 (14)C20—C19—C18119.29 (15)
O1—C6—C7121.45 (14)C20—C19—H19120.4
N1—C6—C7115.66 (13)C18—C19—H19120.4
C6—C7—Cl1112.67 (13)C19—C20—C21120.68 (15)
C6—C7—H7A109.1C19—C20—H20119.7
Cl1—C7—H7A109.1C21—C20—H20119.7
C6—C7—H7B109.1C20—C21—C22119.85 (16)
Cl1—C7—H7B109.1C20—C21—H21120.1
H7A—C7—H7B107.8C22—C21—H21120.1
C9—C8—C13118.37 (13)O4—C22—C21122.75 (14)
C9—C8—C1120.37 (12)O4—C22—C17116.74 (13)
C13—C8—C1121.17 (13)C21—C22—C17120.49 (14)
C10—C9—C8121.73 (15)O4—C23—H23A109.5
C10—C9—H9119.1O4—C23—H23B109.5
C8—C9—H9119.1H23A—C23—H23B109.5
C11—C10—C9118.96 (16)O4—C23—H23C109.5
C11—C10—H10120.5H23A—C23—H23C109.5
C9—C10—H10120.5H23B—C23—H23C109.5
C10—C11—C12121.17 (15)C6—N1—C5117.12 (11)
C10—C11—H11119.4C6—N1—C1122.55 (11)
C12—C11—H11119.4C5—N1—C1119.22 (11)
C11—C12—C13119.81 (16)C13—O2—C14118.37 (15)
C11—C12—H12120.1C22—O4—C23119.13 (13)
C13—C12—H12120.1
N1—C1—C2—C347.55 (15)C11—C12—C13—C80.6 (3)
C8—C1—C2—C3171.71 (12)N1—C5—C17—C22116.22 (15)
N1—C1—C2—C15173.93 (12)C4—C5—C17—C2211.1 (2)
C8—C1—C2—C1561.92 (15)N1—C5—C17—C1861.14 (16)
C15—C2—C3—O34.8 (2)C4—C5—C17—C18171.55 (12)
C1—C2—C3—O3130.78 (19)C22—C17—C18—C193.6 (2)
C15—C2—C3—C4172.96 (14)C5—C17—C18—C19173.98 (13)
C1—C2—C3—C446.93 (18)C17—C18—C19—C200.8 (2)
O3—C3—C4—C5177.97 (18)C18—C19—C20—C213.7 (3)
C2—C3—C4—C54.31 (19)C19—C20—C21—C222.0 (2)
O3—C3—C4—C1660.2 (2)C20—C21—C22—O4178.85 (14)
C2—C3—C4—C16117.54 (16)C20—C21—C22—C172.6 (2)
C3—C4—C5—N152.29 (16)C18—C17—C22—O4176.08 (12)
C16—C4—C5—N168.57 (14)C5—C17—C22—O46.6 (2)
C3—C4—C5—C1776.29 (16)C18—C17—C22—C215.3 (2)
C16—C4—C5—C17162.84 (12)C5—C17—C22—C21171.99 (13)
O1—C6—C7—Cl10.0 (2)O1—C6—N1—C512.0 (2)
N1—C6—C7—Cl1178.78 (13)C7—C6—N1—C5166.80 (14)
N1—C1—C8—C954.71 (18)O1—C6—N1—C1179.81 (13)
C2—C1—C8—C968.55 (17)C7—C6—N1—C11.0 (2)
N1—C1—C8—C13128.78 (15)C17—C5—N1—C6109.92 (14)
C2—C1—C8—C13107.96 (16)C4—C5—N1—C6115.50 (13)
C13—C8—C9—C100.1 (2)C17—C5—N1—C181.81 (14)
C1—C8—C9—C10176.73 (15)C4—C5—N1—C152.77 (15)
C8—C9—C10—C110.0 (3)C8—C1—N1—C672.11 (16)
C9—C10—C11—C120.2 (3)C2—C1—N1—C6165.51 (12)
C10—C11—C12—C130.5 (3)C8—C1—N1—C5120.29 (13)
C9—C8—C13—O2179.59 (15)C2—C1—N1—C52.09 (15)
C1—C8—C13—O23.8 (2)C8—C13—O2—C14177.07 (18)
C9—C8—C13—C120.4 (2)C12—C13—O2—C143.7 (3)
C1—C8—C13—C12176.96 (15)C21—C22—O4—C231.4 (2)
C11—C12—C13—O2179.72 (18)C17—C22—O4—C23179.98 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23C···O1i0.962.503.321 (3)144
C9—H9···Cg0.932.693.621 (2)177
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC23H26ClNO4
Mr415.90
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.9921 (6), 11.3725 (8), 11.9373 (8)
α, β, γ (°)71.630 (1), 68.465 (1), 72.903 (1)
V3)1055.45 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.27 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11114, 4603, 4054
Rint0.026
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.145, 1.05
No. of reflections4603
No. of parameters266
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.35

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23C···O1i0.962.503.321 (3)144
C9—H9···Cg0.932.693.621 (2)177
Symmetry code: (i) x+1, y, z.
 

Footnotes

Present address: Institute of Structural Biology and Biophysics-2, Forschungszentrum Jülich, D-52425 Jülich, Germany.

Acknowledgements

The authors thank Dr K. Ravikumar, Indian Institute of Chemical Technology, Hyderabad, India, for providing the X-ray data collection facility. GA and YTJ acknowledge the support provided by the second stage of the BK21 program, Republic of Korea. Financial support from the University Grants Commission (UGC–SAP) and the Department of Science & Technology (DST-FIST), Government of India, are acknowledged by DV for providing facilities to the department.

References

First citationAridoss, G., Amirthaganesan, S., Ashok Kumar, N., Kim, J. T., Lim, K. T., Kabilan, S. & Jeong, Y. T. (2008). Bioorg. Med. Chem. Lett. 18, 6542–6548.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAridoss, G., Balasubramanian, S., Parthiban, P. & Kabilan, S. (2007). Spectrochim. Acta Part A, 68, 1153–1163.  Web of Science CrossRef CAS Google Scholar
First citationAridoss, G., Balasubramanian, S., Parthiban, P., Ramachandran, R. & Kabilan, S. (2007). Med. Chem. Res. 16, 188–204.  Web of Science CrossRef CAS Google Scholar
First citationAridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 577–592.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationPerumal, R. V., Adiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156–159.  Google Scholar
First citationRamachandran, R., Aridoss, G., Velmurugan, D., Kabilan, S. & Jeong, Y. T. (2008). Acta Cryst. E64, o2009–o2010.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeintraub, P. M., Sabol, J. S., Kane, J. M. & Borcherding, D. R. (2003). Tetrahedron, 59, 2953–2989.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds