organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis(bromo­meth­yl)-4,5-di­meth­oxy­benzene

aDepartment of Chemistry, Zaozhuang University, Shandong, People's Republic of China
*Correspondence e-mail: orgzfy@163.com

(Received 24 June 2009; accepted 29 July 2009; online 8 August 2009)

Colourless crystals of the title compound, C10H12Br2O2, were synthesized from 1,2-dimethoxy­benzene. The crystal structure is stabilized by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the use of the title compound in the preparation of crown ether derivatives and isoindoline compounds, see: Dalence-Guzman et al. (2008[Dalence-Guzman, M. F., Berglund, M., Skogvall, S. & Sterner, O. (2008). Bioorg. Med. Chem. 16, 2499-2512.]); Diederich et al. (1993[Diederich, F., Jonas, U., Gramlich, V., Herrmann, A., Ringsdorf, H. & Thilgen, C. (1993). Helv. Chim. Acta, 76, 2445-2453.]); Walpole et al. (1994[Walpole, C. S. J., Bevan, S., Bovermann, G., Boelsterli, J. J., Breckenridge, R., Davies, J. W., Hughes, G. A., James, I., Oberer, L., Winter, J. & Wrigglesworth, R. (1994). J. Med. Chem. 37, 1942-1954.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12Br2O2

  • Mr = 324.00

  • Orthorhombic, P b c a

  • a = 8.125 (6) Å

  • b = 14.689 (10) Å

  • c = 20.353 (13) Å

  • V = 2429 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 6.65 mm−1

  • T = 153 K

  • 0.15 × 0.10 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.456, Tmax = 0.516

  • 12237 measured reflections

  • 2475 independent reflections

  • 1643 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.117

  • S = 1.02

  • 2475 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O2i 0.99 2.48 3.373 (6) 150
C10—H10C⋯O2ii 0.98 2.48 3.392 (7) 155
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Bis-bromomethylation of 1,2-dimethoxybenzene afforded the title compound(I), which was useful for the preparation of crown ether derivatives and isoindoline compounds (Diederich et al., 1993; Walpole et al., 1994; Dalence-Guzman et al., 2008). It had been believed difficult to introduce hydroxyl groups directly to the 5- and 6-positions of isoindoline. With I as an intermediate, novel isoindoline derivatives could be easily prepared. The crystal structure of I is stabilized by intermolecular C–H···O hydrogen bonds.

Related literature top

For the use of the title compound in the preparation of crown ether derivatives and isoindoline compounds, see: Dalence-Guzman et al. (2008); Diederich et al. (1993); Walpole et al. (1994).

Experimental top

Thirty-three percent HBr in AcOH (31.0 ml) was added to a solution of 1,2-dimethoxybenzene (10 g, 0.0725 mmol) and paraformaldehyde (4.35 g, 0.145 mmol) in acetic acid (100 ml), while the temperature was kept at 283 K. After stirring at room temperature for 20 h, the mixture was heated to 338 K for 1 h. The mixture was concentrated. EtOAc was added to get a white precipitate. The precipitate was filtered and washed with EtOAc to afford the title compound (9.72 g, 41.4%) as a white solid. Colourless crystals were obtained by vapor diffusion of pentane into a dichloromethane solution over a period of 3 days. 1H NMR (400 MHz, CDCl3, 295 K): 6.84 (2H, s), 4.63 (4H, s), 3.90 (6H, s).

Refinement top

All H atoms were placed in calculated positions and refined as riding, with C—H = 0.96–0.98 Å, and Uiso(H) = 1.2–1.5 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing diagram of molecular, viewed down the a axis, with the C—H···O interactions shown as dashed lines.
1,2-Bis(bromomethyl)-4,5-dimethoxybenzene top
Crystal data top
C10H12Br2O2F(000) = 1264
Mr = 324.00Dx = 1.772 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2795 reflections
a = 8.125 (6) Åθ = 2.8–22.0°
b = 14.689 (10) ŵ = 6.65 mm1
c = 20.353 (13) ÅT = 153 K
V = 2429 (3) Å3Prism, colourless
Z = 80.15 × 0.10 × 0.10 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2475 independent reflections
Radiation source: fine-focus sealed tube1643 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 26.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 106
Tmin = 0.456, Tmax = 0.516k = 1817
12237 measured reflectionsl = 2520
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0542P)2 + 2.9265P]
where P = (Fo2 + 2Fc2)/3
2475 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
C10H12Br2O2V = 2429 (3) Å3
Mr = 324.00Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.125 (6) ŵ = 6.65 mm1
b = 14.689 (10) ÅT = 153 K
c = 20.353 (13) Å0.15 × 0.10 × 0.10 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2475 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1643 reflections with I > 2σ(I)
Tmin = 0.456, Tmax = 0.516Rint = 0.043
12237 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.02Δρmax = 0.89 e Å3
2475 reflectionsΔρmin = 0.72 e Å3
129 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.41088 (8)0.58977 (4)0.08751 (3)0.0691 (2)
Br20.16982 (8)0.43548 (4)0.13229 (3)0.0720 (2)
C10.3186 (6)0.2549 (3)0.1807 (2)0.0410 (10)
O20.3599 (4)0.1778 (2)0.21493 (15)0.0514 (8)
C20.4121 (6)0.2681 (3)0.12203 (19)0.0385 (10)
C30.1717 (6)0.3963 (3)0.1603 (2)0.0443 (10)
O10.5203 (4)0.1999 (2)0.10678 (14)0.0549 (9)
C40.2023 (6)0.3175 (3)0.1981 (2)0.0438 (10)
H40.13990.30770.23700.053*
C50.3861 (6)0.3470 (3)0.0855 (2)0.0428 (10)
H50.45000.35740.04710.051*
C80.0391 (7)0.4600 (3)0.1814 (2)0.0568 (13)
H8A0.07450.52350.17330.068*
H8B0.01940.45290.22910.068*
C70.2466 (7)0.4960 (3)0.0628 (2)0.0554 (12)
H7A0.13430.52060.06890.067*
H7B0.26020.48010.01580.067*
C60.2675 (6)0.4116 (3)0.1043 (2)0.0441 (11)
C100.2760 (7)0.1627 (4)0.2764 (3)0.0681 (16)
H10A0.29010.21590.30480.102*
H10B0.32220.10880.29800.102*
H10C0.15850.15290.26800.102*
C200.6114 (8)0.2081 (4)0.0474 (3)0.0712 (16)
H20A0.53620.20430.00980.107*
H20B0.69230.15880.04470.107*
H20C0.66840.26690.04670.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0821 (5)0.0486 (3)0.0765 (4)0.0146 (3)0.0161 (3)0.0010 (2)
Br20.0562 (4)0.0688 (4)0.0911 (5)0.0108 (3)0.0137 (3)0.0024 (3)
C10.048 (3)0.035 (2)0.040 (2)0.002 (2)0.0024 (19)0.0038 (18)
O20.051 (2)0.0500 (18)0.0532 (18)0.0134 (15)0.0079 (15)0.0175 (14)
C20.034 (2)0.040 (2)0.042 (2)0.0025 (19)0.0016 (19)0.0022 (18)
C30.046 (3)0.036 (2)0.051 (3)0.002 (2)0.008 (2)0.0076 (19)
O10.062 (2)0.0549 (19)0.0474 (17)0.0175 (18)0.0145 (16)0.0053 (15)
C40.050 (3)0.043 (2)0.039 (2)0.001 (2)0.000 (2)0.0005 (18)
C50.042 (3)0.048 (2)0.038 (2)0.003 (2)0.003 (2)0.0009 (19)
C80.063 (3)0.041 (3)0.067 (3)0.008 (2)0.008 (3)0.010 (2)
C70.058 (3)0.045 (3)0.063 (3)0.003 (2)0.013 (3)0.011 (2)
C60.052 (3)0.034 (2)0.046 (2)0.003 (2)0.006 (2)0.0016 (19)
C100.062 (4)0.075 (3)0.068 (3)0.013 (3)0.018 (3)0.031 (3)
C200.077 (4)0.075 (4)0.062 (3)0.019 (3)0.029 (3)0.006 (3)
Geometric parameters (Å, º) top
Br1—C71.983 (5)C5—C61.405 (6)
Br2—C82.002 (5)C5—H50.9500
C1—C41.365 (6)C8—H8A0.9900
C1—O21.372 (5)C8—H8B0.9900
C1—C21.428 (6)C7—C61.510 (6)
O2—C101.442 (6)C7—H7A0.9900
C2—O11.368 (5)C7—H7B0.9900
C2—C51.394 (6)C10—H10A0.9800
C3—C61.399 (6)C10—H10B0.9800
C3—C41.413 (6)C10—H10C0.9800
C3—C81.490 (7)C20—H20A0.9800
O1—C201.422 (6)C20—H20B0.9800
C4—H40.9500C20—H20C0.9800
C4—C1—O2126.4 (4)H8A—C8—H8B108.1
C4—C1—C2119.7 (4)C6—C7—Br1110.6 (3)
O2—C1—C2114.0 (4)C6—C7—H7A109.5
C1—O2—C10116.9 (4)Br1—C7—H7A109.5
O1—C2—C5125.8 (4)C6—C7—H7B109.5
O1—C2—C1115.7 (3)Br1—C7—H7B109.5
C5—C2—C1118.5 (4)H7A—C7—H7B108.1
C6—C3—C4118.5 (4)C3—C6—C5119.7 (4)
C6—C3—C8122.5 (4)C3—C6—C7121.7 (4)
C4—C3—C8119.0 (4)C5—C6—C7118.7 (4)
C2—O1—C20117.7 (4)O2—C10—H10A109.5
C1—C4—C3122.1 (4)O2—C10—H10B109.5
C1—C4—H4118.9H10A—C10—H10B109.5
C3—C4—H4118.9O2—C10—H10C109.5
C2—C5—C6121.4 (4)H10A—C10—H10C109.5
C2—C5—H5119.3H10B—C10—H10C109.5
C6—C5—H5119.3O1—C20—H20A109.5
C3—C8—Br2110.9 (3)O1—C20—H20B109.5
C3—C8—H8A109.5H20A—C20—H20B109.5
Br2—C8—H8A109.5O1—C20—H20C109.5
C3—C8—H8B109.5H20A—C20—H20C109.5
Br2—C8—H8B109.5H20B—C20—H20C109.5
C4—C1—O2—C102.0 (7)O1—C2—C5—C6177.7 (4)
C2—C1—O2—C10177.1 (4)C1—C2—C5—C62.0 (6)
C4—C1—C2—O1177.0 (4)C6—C3—C8—Br282.9 (5)
O2—C1—C2—O13.8 (6)C4—C3—C8—Br297.1 (4)
C4—C1—C2—C52.7 (6)C4—C3—C6—C52.6 (6)
O2—C1—C2—C5176.5 (4)C8—C3—C6—C5177.4 (4)
C5—C2—O1—C202.2 (7)C4—C3—C6—C7177.6 (4)
C1—C2—O1—C20177.5 (4)C8—C3—C6—C72.3 (7)
O2—C1—C4—C3178.3 (4)C2—C5—C6—C30.7 (7)
C2—C1—C4—C30.8 (7)C2—C5—C6—C7179.6 (4)
C6—C3—C4—C11.9 (7)Br1—C7—C6—C396.8 (5)
C8—C3—C4—C1178.1 (4)Br1—C7—C6—C583.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O2i0.992.483.373 (6)150
C10—H10C···O2ii0.982.483.392 (7)155
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H12Br2O2
Mr324.00
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)153
a, b, c (Å)8.125 (6), 14.689 (10), 20.353 (13)
V3)2429 (3)
Z8
Radiation typeMo Kα
µ (mm1)6.65
Crystal size (mm)0.15 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.456, 0.516
No. of measured, independent and
observed [I > 2σ(I)] reflections
12237, 2475, 1643
Rint0.043
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.117, 1.02
No. of reflections2475
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.72

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Br1—C71.983 (5)C2—C51.394 (6)
Br2—C82.002 (5)C3—C61.399 (6)
C1—C41.365 (6)C3—C41.413 (6)
C1—O21.372 (5)C3—C81.490 (7)
C1—C21.428 (6)O1—C201.422 (6)
O2—C101.442 (6)C5—C61.405 (6)
C2—O11.368 (5)C7—C61.510 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O2i0.992.483.373 (6)150.2
C10—H10C···O2ii0.982.483.392 (7)155.2
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y, z+1/2.
 

Acknowledgements

The author is grateful to the Sciences Foundation of Shandong Provincial Education Department (No. J06D61) as well as the Doctoral Science Foundation of Zaozhuang University.

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDalence-Guzman, M. F., Berglund, M., Skogvall, S. & Sterner, O. (2008). Bioorg. Med. Chem. 16, 2499–2512.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDiederich, F., Jonas, U., Gramlich, V., Herrmann, A., Ringsdorf, H. & Thilgen, C. (1993). Helv. Chim. Acta, 76, 2445–2453.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWalpole, C. S. J., Bevan, S., Bovermann, G., Boelsterli, J. J., Breckenridge, R., Davies, J. W., Hughes, G. A., James, I., Oberer, L., Winter, J. & Wrigglesworth, R. (1994). J. Med. Chem. 37, 1942–1954.  CSD CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds