metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1069-m1070

catena-Poly[[[tri­aqua­(4,5-di­aza­fluorene-9-one)cadmium]-μ-benzene-1,3-di­carboxyl­ato] dihydrate]

aDepartment of Chemistry, Baicheng Normal University, Baicheng 137000, People's Republic of China, and bSiping Academy of Science and Technology, Siping 136000, People's Republic of China
*Correspondence e-mail: fangwei1026@yahoo.com.cn

(Received 9 July 2009; accepted 7 August 2009; online 15 August 2009)

In the title compound, {[Cd(C8H4O4)(C11H6N2O)(H2O)3]·2H2O}n, the CdII atom is seven-coordinated by two N atoms from the phenanthroline-derived 4,5-diaza­fluorene-9-one ligand, two O atoms from one bidentate benzene-1,3-dicarboxyl­ate ligand and three O atoms from the three water mol­ecules in a distorted penta­gonal-bipyramidal arrangement. Moreover, there are two dissociative water mol­ecules in each unit. Neighbouring units inter­act through ππ inter­actions [centroid–centroid distances = 3.325 (3) and 3.358 (4) Å] and O—H⋯O hydrogen-bonding, resulting in a two-dimensional network extending parallel to (001).

Related literature

The 1,10-phenanthroline (phen) ligand has been widely used to build novel supra­molecular architectures through its aromatic ππ inter­ations, see: Chen & Liu (2002[Chen, X.-M. & Liu, G.-F. (2002). Chem. Eur. J. 8, 4811-4817.]). The phen derivative 4,5-diaza­fluorene-9-one was recently shown to form a coordination polymer with a distinctive supra­molecular architecture, see: Kraft et al. (2002[Kraft, B. J., Eppley, H. J., Huffman, J. C. & Zaleski, J. M. (2002). J. Am. Chem. Soc. 124, 272-280.]). For the ligand synthesis, see: Henderson et al. (1984[Henderson, L. J., Fronczek, F. R. & Cherry, W. R. (1984). J. Am. Chem. Soc. 106, 5876-5879.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C8H4O4)(C11H6N2O)(H2O)3]·2H2O

  • Mr = 548.78

  • Triclinic, [P \overline 1]

  • a = 6.9383 (10) Å

  • b = 10.8070 (16) Å

  • c = 14.429 (2) Å

  • α = 96.268 (2)°

  • β = 92.602 (2)°

  • γ = 102.019 (2)°

  • V = 1049.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 293 K

  • 0.34 × 0.29 × 0.20 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.697, Tmax = 0.804

  • 5319 measured reflections

  • 3804 independent reflections

  • 3260 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.093

  • S = 1.05

  • 3804 reflections

  • 284 parameters

  • H-atom parameters constrained

  • Δρmax = 1.39 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd1—O7 2.271 (3)
Cd1—O6 2.326 (3)
Cd1—O2 2.354 (3)
Cd1—O5 2.368 (3)
Cd1—O1 2.441 (3)
Cd1—N2 2.472 (3)
Cd1—N1 2.492 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—HO5A⋯O3i 0.85 1.95 2.728 (4) 151
O5—HO5B⋯O4ii 0.96 2.06 2.933 (4) 151
O6—HO6A⋯OW1iii 0.92 1.86 2.776 (5) 175
O6—HO6B⋯O4ii 0.99 1.70 2.675 (4) 171
O7—HO7A⋯O4iv 0.91 1.96 2.744 (4) 143
O7—HO7B⋯OW2 0.91 1.87 2.757 (4) 162
OW1—HW1A⋯O8v 0.89 2.07 2.903 (5) 156
OW1—HW1B⋯O1vi 0.90 2.12 2.824 (5) 135
OW2—HW2A⋯O3vii 0.99 1.80 2.769 (4) 168
OW2—HW2B⋯O2viii 0.95 1.99 2.936 (5) 173
Symmetry codes: (i) -x, -y+1, -z; (ii) x, y+1, z; (iii) -x, -y+1, -z+1; (iv) x+1, y+1, z; (v) -x+1, -y+2, -z+1; (vi) -x+1, -y+1, -z+1; (vii) -x+1, -y+1, -z; (viii) x+1, y, z.

Data collection: APEX2 (Bruker, 1998[Bruker (1998). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The 1,10-phenanthroline (phen) ligand has been widely used to build novel supramolecular architectures through its aromatic π-π interations (Chen & Liu, 2002). The phen derivative 4,5-diazafluorene-9-one (C11H6N2O; L), was recently shown to form a coordination polymer with a distinctive supramolecular architecture (Kraft et al., 2002). We selected benzene-1,3-dicarboxylate (C8H4O42-; 1,3-BDC) to act as a metal-metal linker in its deprotonated form and L as a secondary ligand, generating the title compound, [Cd(C11H6N2O)(C8H4O4)(H2O)3.2H2O], a new coordinationg polymer, which is reported here. In compound (I), the CdII atom of unit is surrounded by two N atoms derived from the bidentate L ligand, two O atom from a bidentate 1,3-BDC ligand and three O atoms from three H2O moleculars. This results in a very distorted CdN2O5 pentagonal bipyramid with the donor atoms of both the bidentate species occupying both an equatorial and an axial site (Table 1, Fig.1). The average Cd—O and Cd—N distances are 2.352 (3) and 2.482 (3) Å, respectively. Neighbouring units in (I) are connectede through π-π interactions between L ligands with π-π stacking distances of 3.325 (3) and 3.358 (4) Å, resulting in a two-dimensional supramolecular structure. Finally, interunit OW—H···O hydrogen bonds (Table 2) complete the structure of (I).

Related literature top

The 1,10-phenanthroline (phen) ligand has been widely used to build novel supramolecular architectures through its aromatic ππ interations, see: Chen & Liu (2002). The phen derivative 4,5-diazafluorene-9-one was recently shown to form a coordination polymer with a distinctive supramolecular architecture, see: Kraft et al. (2002). For the ligand synthesis, see: Henderson et al. (1984).

Experimental top

Ligand L was synthesized according to the literature method. (Henderson et al., 1984). A mixture of CdCl2 (0.3 mmol), L(0.1 mmol) and H21,3-BDC (0.3 mmol) in distilled water (30 ml) was stirred thoroughly for 1 h at ambient temperature. The pH was adjusted to 7.5 with aqueous NaOH solution. The suspension was then sealed in a Teflon-lined stainless steel reaction vessel (40 ml). The reaction was performed under autogeneous pressure and static conditions in an oven at 443 K for 4.5 d. The vessel was then cooled slowly inside the oven to 298 K at a rate of 5 K h-1 before opening: yellow crystals of (I) were collected.

Refinement top

All H atoms on C atoms were generated geometrically and refined as riding atoms with C—H= 0.93Å and Uiso(H)= 1.2 times Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. view of the local coordination of Cd(II) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. A view of the two-dimensional supramolecular structure of (I) generated by π-π interactions.
catena-Poly[[[triaqua(4,5-diazafluorene-9-one)cadmium]-µ- benzene-1,3-dicarboxylato] dihydrate] top
Crystal data top
[Cd(C8H4O4)(C11H6N2O)(H2O)3]·2H2OZ = 2
Mr = 548.78F(000) = 552.0
Triclinic, P1Dx = 1.737 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9383 (10) ÅCell parameters from 25 reflections
b = 10.8070 (16) Åθ = 7.5–15°
c = 14.429 (2) ŵ = 1.10 mm1
α = 96.268 (2)°T = 293 K
β = 92.602 (2)°Block, yellow
γ = 102.019 (2)°0.34 × 0.29 × 0.20 mm
V = 1049.3 (3) Å3
Data collection top
Bruker APEXII
diffractometer
3804 independent reflections
Radiation source: fine-focus sealed tube3260 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 0 pixels mm-1θmax = 25.3°, θmin = 1.4°
ω scansh = 86
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 1212
Tmin = 0.697, Tmax = 0.804l = 1715
5319 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.937P]
where P = (Fo2 + 2Fc2)/3
3804 reflections(Δ/σ)max < 0.001
284 parametersΔρmax = 1.39 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Cd(C8H4O4)(C11H6N2O)(H2O)3]·2H2Oγ = 102.019 (2)°
Mr = 548.78V = 1049.3 (3) Å3
Triclinic, P1Z = 2
a = 6.9383 (10) ÅMo Kα radiation
b = 10.8070 (16) ŵ = 1.10 mm1
c = 14.429 (2) ÅT = 293 K
α = 96.268 (2)°0.34 × 0.29 × 0.20 mm
β = 92.602 (2)°
Data collection top
Bruker APEXII
diffractometer
3804 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3260 reflections with I > 2σ(I)
Tmin = 0.697, Tmax = 0.804Rint = 0.017
5319 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.05Δρmax = 1.39 e Å3
3804 reflectionsΔρmin = 0.64 e Å3
284 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.41915 (4)0.92090 (2)0.19901 (2)0.03260 (12)
O10.4624 (5)0.7585 (3)0.2984 (2)0.0506 (8)
O20.2646 (5)0.7034 (3)0.1714 (2)0.0507 (8)
O30.0030 (5)0.2413 (3)0.0709 (2)0.0466 (7)
O40.0050 (4)0.1021 (2)0.1719 (2)0.0448 (7)
O50.2170 (4)0.9328 (3)0.06495 (19)0.0423 (7)
HO5A0.15230.86170.03760.051*
HO5B0.13100.99040.07850.051*
O60.1543 (4)0.9578 (3)0.28319 (19)0.0409 (7)
HO6A0.06520.88780.29780.049*
HO6B0.08571.00670.24390.049*
O70.6983 (4)0.8944 (3)0.1303 (2)0.0423 (7)
HO7A0.79090.96160.11640.051*
HO7B0.72460.81500.11850.051*
O80.8494 (5)1.5000 (3)0.3739 (3)0.0547 (8)
OW10.1330 (6)0.2440 (4)0.6739 (3)0.0680 (10)*
HW1A0.15940.32830.67550.082*
HW1B0.22870.19980.66740.082*
OW20.8579 (5)0.6822 (3)0.0952 (2)0.0534 (8)
HW2A0.90770.69710.03350.064*
HW2B0.98560.68310.12260.064*
N10.6184 (5)1.0507 (3)0.3377 (2)0.0365 (8)
N20.5214 (5)1.1420 (3)0.1616 (2)0.0328 (7)
C10.6800 (7)1.0281 (4)0.4218 (3)0.0478 (11)
H1A0.65410.94430.43520.057*
C20.7803 (8)1.1222 (5)0.4906 (3)0.0562 (13)
H2A0.82121.10060.54780.067*
C30.8193 (7)1.2488 (5)0.4736 (3)0.0482 (11)
H3A0.88471.31380.51880.058*
C40.7579 (6)1.2732 (4)0.3883 (3)0.0341 (9)
C50.7763 (6)1.3928 (4)0.3402 (3)0.0389 (10)
C60.6842 (6)1.3482 (4)0.2420 (3)0.0354 (9)
C70.6627 (6)1.4071 (4)0.1647 (3)0.0451 (11)
H7A0.70731.49460.16560.054*
C80.5715 (7)1.3310 (5)0.0844 (3)0.0487 (11)
H80.55591.36700.02960.058*
C90.5033 (6)1.2005 (4)0.0861 (3)0.0404 (10)
H9A0.44191.15170.03160.049*
C100.6136 (5)1.2180 (3)0.2354 (3)0.0291 (8)
C110.6594 (6)1.1723 (4)0.3241 (3)0.0320 (8)
C120.3421 (6)0.6768 (4)0.2441 (3)0.0362 (9)
C130.2920 (5)0.5422 (4)0.2679 (3)0.0318 (8)
C140.3450 (6)0.5166 (4)0.3568 (3)0.0362 (9)
H14A0.41130.58200.40140.043*
C150.2974 (6)0.3917 (4)0.3781 (3)0.0411 (10)
H15A0.33120.37370.43750.049*
C160.2012 (6)0.2952 (4)0.3122 (3)0.0338 (9)
H16A0.17040.21210.32730.041*
C170.1493 (5)0.3197 (3)0.2233 (3)0.0276 (8)
C180.1937 (5)0.4439 (3)0.2020 (3)0.0309 (8)
H19A0.15730.46150.14280.037*
C190.0452 (5)0.2137 (3)0.1493 (3)0.0311 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03412 (18)0.02318 (16)0.03710 (18)0.00121 (11)0.00345 (12)0.00067 (11)
O10.0498 (19)0.0243 (15)0.069 (2)0.0032 (13)0.0120 (16)0.0015 (14)
O20.055 (2)0.0298 (16)0.063 (2)0.0004 (14)0.0124 (16)0.0103 (14)
O30.0568 (19)0.0375 (16)0.0360 (17)0.0061 (14)0.0068 (14)0.0016 (13)
O40.0468 (18)0.0216 (14)0.061 (2)0.0021 (12)0.0168 (15)0.0021 (13)
O50.0478 (18)0.0318 (15)0.0423 (17)0.0043 (13)0.0111 (13)0.0030 (12)
O60.0420 (16)0.0411 (16)0.0401 (16)0.0089 (13)0.0007 (13)0.0081 (13)
O70.0371 (16)0.0300 (15)0.0556 (18)0.0009 (12)0.0049 (14)0.0019 (13)
O80.0515 (19)0.0296 (17)0.076 (2)0.0010 (14)0.0073 (17)0.0039 (15)
OW20.0510 (19)0.0481 (19)0.061 (2)0.0056 (15)0.0053 (16)0.0144 (16)
N10.0396 (19)0.0273 (17)0.0382 (19)0.0008 (14)0.0019 (15)0.0008 (14)
N20.0299 (17)0.0321 (18)0.0330 (18)0.0024 (14)0.0027 (14)0.0014 (14)
C10.067 (3)0.038 (2)0.039 (2)0.009 (2)0.002 (2)0.011 (2)
C20.069 (3)0.060 (3)0.036 (3)0.009 (3)0.006 (2)0.010 (2)
C30.049 (3)0.051 (3)0.038 (2)0.002 (2)0.005 (2)0.007 (2)
C40.027 (2)0.034 (2)0.036 (2)0.0024 (16)0.0011 (16)0.0111 (17)
C50.028 (2)0.029 (2)0.055 (3)0.0015 (17)0.0003 (18)0.0055 (19)
C60.027 (2)0.0250 (19)0.053 (3)0.0035 (16)0.0016 (18)0.0025 (18)
C70.039 (2)0.031 (2)0.065 (3)0.0043 (19)0.002 (2)0.013 (2)
C80.040 (2)0.062 (3)0.050 (3)0.018 (2)0.004 (2)0.020 (2)
C90.039 (2)0.044 (2)0.036 (2)0.0053 (19)0.0006 (18)0.0020 (19)
C100.0218 (18)0.0279 (19)0.036 (2)0.0036 (15)0.0032 (15)0.0014 (16)
C110.030 (2)0.027 (2)0.036 (2)0.0012 (16)0.0006 (16)0.0024 (16)
C120.030 (2)0.025 (2)0.051 (3)0.0025 (17)0.0037 (19)0.0002 (18)
C130.0259 (19)0.027 (2)0.041 (2)0.0049 (16)0.0000 (16)0.0001 (16)
C140.039 (2)0.030 (2)0.037 (2)0.0061 (17)0.0036 (18)0.0050 (17)
C150.045 (2)0.045 (2)0.034 (2)0.011 (2)0.0019 (18)0.0073 (19)
C160.035 (2)0.0262 (19)0.042 (2)0.0084 (17)0.0033 (17)0.0063 (17)
C170.0238 (18)0.0235 (18)0.035 (2)0.0036 (15)0.0008 (15)0.0021 (15)
C180.028 (2)0.0264 (19)0.036 (2)0.0041 (16)0.0003 (16)0.0010 (16)
C190.0247 (19)0.024 (2)0.043 (2)0.0039 (15)0.0011 (17)0.0023 (17)
Geometric parameters (Å, º) top
Cd1—O72.271 (3)C1—H1A0.9300
Cd1—O62.326 (3)C2—C31.388 (7)
Cd1—O22.354 (3)C2—H2A0.9300
Cd1—O52.368 (3)C3—C41.356 (6)
Cd1—O12.441 (3)C3—H3A0.9300
Cd1—N22.472 (3)C4—C111.388 (5)
Cd1—N12.492 (3)C4—C51.517 (6)
Cd1—C122.736 (4)C5—C61.514 (6)
O1—C121.254 (5)C6—C71.361 (6)
O2—C121.246 (5)C6—C101.381 (5)
O3—C191.238 (5)C7—C81.388 (7)
O4—C191.262 (5)C7—H7A0.9300
O5—HO5A0.8494C8—C91.394 (6)
O5—HO5B0.9593C8—H80.9300
O6—HO6A0.9221C9—H9A0.9300
O6—HO6B0.9864C10—C111.466 (6)
O7—HO7A0.9108C12—C131.505 (5)
O7—HO7B0.9138C13—C181.384 (5)
O8—C51.203 (5)C13—C141.390 (6)
OW1—HW1A0.8890C14—C151.393 (6)
OW1—HW1B0.8979C14—H14A0.9300
OW2—HW2A0.9870C15—C161.369 (6)
OW2—HW2B0.9517C15—H15A0.9300
N1—C111.324 (5)C16—C171.385 (5)
N1—C11.333 (5)C16—H16A0.9300
N2—C101.321 (5)C17—C181.385 (5)
N2—C91.332 (5)C17—C191.514 (5)
C1—C21.388 (7)C18—H19A0.9300
O7—Cd1—O6174.04 (10)C4—C3—H3A121.5
O7—Cd1—O294.34 (11)C2—C3—H3A121.5
O6—Cd1—O289.02 (11)C3—C4—C11118.9 (4)
O7—Cd1—O599.74 (11)C3—C4—C5134.3 (4)
O6—Cd1—O585.55 (10)C11—C4—C5106.8 (4)
O2—Cd1—O582.74 (10)O8—C5—C6127.8 (4)
O7—Cd1—O188.67 (11)O8—C5—C4126.7 (4)
O6—Cd1—O189.30 (11)C6—C5—C4105.5 (3)
O2—Cd1—O154.28 (10)C7—C6—C10118.1 (4)
O5—Cd1—O1136.81 (10)C7—C6—C5134.3 (4)
O7—Cd1—N283.60 (10)C10—C6—C5107.6 (3)
O6—Cd1—N295.28 (10)C6—C7—C8117.1 (4)
O2—Cd1—N2156.30 (11)C6—C7—H7A121.4
O5—Cd1—N274.40 (10)C8—C7—H7A121.4
O1—Cd1—N2148.78 (10)C7—C8—C9119.9 (4)
O7—Cd1—N190.91 (11)C7—C8—H8120.1
O6—Cd1—N183.18 (11)C9—C8—H8120.1
O2—Cd1—N1131.53 (11)N2—C9—C8123.6 (4)
O5—Cd1—N1143.43 (10)N2—C9—H9A118.2
O1—Cd1—N177.78 (10)C8—C9—H9A118.2
N2—Cd1—N172.17 (11)N2—C10—C6127.1 (4)
O7—Cd1—C1292.22 (11)N2—C10—C11123.2 (3)
O6—Cd1—C1288.55 (11)C6—C10—C11109.7 (3)
O2—Cd1—C1227.01 (11)N1—C11—C4126.0 (4)
O5—Cd1—C12109.62 (11)N1—C11—C10123.7 (3)
O1—Cd1—C1227.27 (11)C4—C11—C10110.3 (3)
N2—Cd1—C12174.70 (11)O2—C12—O1122.2 (4)
N1—Cd1—C12104.75 (12)O2—C12—C13119.4 (4)
C12—O1—Cd189.6 (3)O1—C12—C13118.4 (4)
C12—O2—Cd193.9 (2)O2—C12—Cd159.1 (2)
Cd1—O5—HO5A115.3O1—C12—Cd163.1 (2)
Cd1—O5—HO5B111.3C13—C12—Cd1177.9 (3)
HO5A—O5—HO5B110.7C18—C13—C14119.9 (4)
Cd1—O6—HO6A117.7C18—C13—C12120.4 (4)
Cd1—O6—HO6B104.4C14—C13—C12119.6 (4)
HO6A—O6—HO6B109.4C13—C14—C15119.1 (4)
Cd1—O7—HO7A122.1C13—C14—H14A120.4
Cd1—O7—HO7B120.4C15—C14—H14A120.4
HO7A—O7—HO7B117.4C16—C15—C14120.5 (4)
HW1A—OW1—HW1B121.2C16—C15—H15A119.8
HW2A—OW2—HW2B93.1C14—C15—H15A119.8
C11—N1—C1114.5 (4)C15—C16—C17120.7 (4)
C11—N1—Cd1109.7 (3)C15—C16—H16A119.6
C1—N1—Cd1135.7 (3)C17—C16—H16A119.6
C10—N2—C9114.2 (3)C16—C17—C18119.1 (3)
C10—N2—Cd1110.7 (2)C16—C17—C19121.4 (3)
C9—N2—Cd1135.1 (3)C18—C17—C19119.5 (3)
N1—C1—C2124.0 (4)C13—C18—C17120.6 (4)
N1—C1—H1A118.0C13—C18—H19A119.7
C2—C1—H1A118.0C17—C18—H19A119.7
C1—C2—C3119.7 (4)O3—C19—O4123.9 (4)
C1—C2—H2A120.2O3—C19—C17118.5 (3)
C3—C2—H2A120.2O4—C19—C17117.5 (3)
C4—C3—C2117.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—HO5A···O3i0.851.952.728 (4)151
O5—HO5B···O4ii0.962.062.933 (4)151
O6—HO6A···OW1iii0.921.862.776 (5)175
O6—HO6B···O4ii0.991.702.675 (4)171
O7—HO7A···O4iv0.911.962.744 (4)143
O7—HO7B···OW20.911.872.757 (4)162
OW1—HW1A···O8v0.892.072.903 (5)156
OW1—HW1B···O1vi0.902.122.824 (5)135
OW2—HW2A···O3vii0.991.802.769 (4)168
OW2—HW2B···O2viii0.951.992.936 (5)173
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z; (iii) x, y+1, z+1; (iv) x+1, y+1, z; (v) x+1, y+2, z+1; (vi) x+1, y+1, z+1; (vii) x+1, y+1, z; (viii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cd(C8H4O4)(C11H6N2O)(H2O)3]·2H2O
Mr548.78
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.9383 (10), 10.8070 (16), 14.429 (2)
α, β, γ (°)96.268 (2), 92.602 (2), 102.019 (2)
V3)1049.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.34 × 0.29 × 0.20
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.697, 0.804
No. of measured, independent and
observed [I > 2σ(I)] reflections
5319, 3804, 3260
Rint0.017
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.093, 1.05
No. of reflections3804
No. of parameters284
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.39, 0.64

Computer programs: APEX2 (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cd1—O72.271 (3)Cd1—O12.441 (3)
Cd1—O62.326 (3)Cd1—N22.472 (3)
Cd1—O22.354 (3)Cd1—N12.492 (3)
Cd1—O52.368 (3)
O7—Cd1—O6174.04 (10)O7—Cd1—O188.67 (11)
O7—Cd1—O294.34 (11)O6—Cd1—O189.30 (11)
O6—Cd1—O289.02 (11)O2—Cd1—O154.28 (10)
O7—Cd1—O599.74 (11)O5—Cd1—O1136.81 (10)
O6—Cd1—O585.55 (10)N2—Cd1—N172.17 (11)
O2—Cd1—O582.74 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—HO5A···O3i0.851.952.728 (4)150.9
O5—HO5B···O4ii0.962.062.933 (4)151.1
O6—HO6A···OW1iii0.921.862.776 (5)174.5
O6—HO6B···O4ii0.991.702.675 (4)170.7
O7—HO7A···O4iv0.911.962.744 (4)143.2
O7—HO7B···OW20.911.872.757 (4)162.3
OW1—HW1A···O8v0.892.072.903 (5)155.6
OW1—HW1B···O1vi0.902.122.824 (5)134.6
OW2—HW2A···O3vii0.991.802.769 (4)167.9
OW2—HW2B···O2viii0.951.992.936 (5)172.9
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z; (iii) x, y+1, z+1; (iv) x+1, y+1, z; (v) x+1, y+2, z+1; (vi) x+1, y+1, z+1; (vii) x+1, y+1, z; (viii) x+1, y, z.
 

Acknowledgements

The authors thank Baicheng Normal University for supporting this work.

References

First citationBruker (1998). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X.-M. & Liu, G.-F. (2002). Chem. Eur. J. 8, 4811–4817.  CrossRef PubMed CAS Google Scholar
First citationHenderson, L. J., Fronczek, F. R. & Cherry, W. R. (1984). J. Am. Chem. Soc. 106, 5876–5879.  CSD CrossRef CAS Web of Science Google Scholar
First citationKraft, B. J., Eppley, H. J., Huffman, J. C. & Zaleski, J. M. (2002). J. Am. Chem. Soc. 124, 272–280.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1069-m1070
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds