metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­aqua-μ2-oxalato-di-μ4-succinato-diyttrium(III)]

aSchool of Materials and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
*Correspondence e-mail: jxlzfeng@yahoo.com.cn

(Received 8 August 2009; accepted 13 August 2009; online 19 August 2009)

In the title compound, [Y2(C4H4O4)2(C2O4)(H2O)2]n, the flexible succinate anion assumes a gauche conformation and bridges the eight-coordinated Y atoms, generating two-dimensional layers parallel to (010). The coordination polymer layers are linked into a three-dimensional framework by the rigid oxalate ligands. The oxalate ions are located on a center of inversion. Inter­molecular O—H⋯O hydrogen bonds help to stabilize the crystal structure.

Related literature

The title compound is isostructural with [Nd2(C4H4O4)2(C2O4)(H2O)], see: Wang et al. (2007[Wang, C.-X., Li, Z.-F. & Wang, P. (2007). Acta Cryst. C63, m473-m475.]). For bond lengths and angles in succinate anions, see: Seguatni et al. (2004[Seguatni, A., Fakhfakh, M., Vaauley, M. J. & Jouini, N. (2004). J. Solid State Chem. 177, 3402-3410.]).

[Scheme 1]

Experimental

Crystal data
  • [Y2(C4H4O4)2(C2O4)(H2O)2]

  • Mr = 534.02

  • Triclinic, [P \overline 1]

  • a = 6.610 (2) Å

  • b = 7.689 (3) Å

  • c = 8.018 (3) Å

  • α = 101.589 (5)°

  • β = 101.843 (4)°

  • γ = 101.492 (5)°

  • V = 378.2 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 7.71 mm−1

  • T = 295 K

  • 0.21 × 0.18 × 0.09 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.215, Tmax = 0.505

  • 2108 measured reflections

  • 1482 independent reflections

  • 1376 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.059

  • S = 1.08

  • 1482 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Selected bond lengths (Å)

Y—O1 2.4755 (18)
Y—O1i 2.3319 (19)
Y—O2 2.4658 (19)
Y—O3ii 2.303 (2)
Y—O4iii 2.218 (2)
Y—O5 2.3876 (19)
Y—O6iv 2.3583 (19)
Y—O7 2.391 (2)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x+1, y, z; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+2, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O2v 0.85 2.02 2.867 (5) 175
O7—H7B⋯O5ii 0.85 1.96 2.812 (4) 175
Symmetry codes: (ii) x+1, y, z; (v) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound (I), is isostructural with [Nd2(C4H4O4)2(C2O4)(H2O)] [Wang et al., 2007]. As shown in Fig.1, the asymmetric unit consists of one Y3+ cation, one succinate anion, a half of oxalate anion and one aqua ligand. The Y atoms are each coordinated by eight oxygen atoms of four succinate anions, one oxalate anion and one aqua ligand to complete a distorted square antiprismatic geometry. The Y-O distances range from 2.218 (2) to 2.4755 (18) Å.

In (I), the succinate anions assume a gauche conformation, in which both carboxylate groups exhibit different coordination modes: a common bidentate bridging mode and a tridentate chelating-bridging mode. In this mode, the Y atoms are linked into a two-dimensional polymeric sheet parallel to the (010) plane. These sheets are in turn bridged via oxalate ligands. Both lengths and angles within the succinate anions exhibit normal values [Seguatni et al., 2004]. The oxalate ions locate on a center of inversion and act as double bidentate (tetradentate) ligands in a linear chain which connect two Y atoms in two different layers to form a 3D framework (Fig.2). The aqua ligands donate hydrogen atoms to carboxylate oxygen atoms O2 and O5 to form hydrogen bonds, which make a significant contribution to the stabilization of the crystal structure of the title yttrium compound.

Related literature top

The title compound is isostructural with [Nd2(C4H4O4)2(C2O4)(H2O)], see: Wang et al. (2007). For bond lengths and angles in succinate anions, see: Seguatni et al. (2004).

Experimental top

A mixture of YCl3.6H2O (1.00 mmol, 0.30 g), oxalic acid (0.50 mmol, 0.05 g), succinic acid (0.50 mmol, 0.06 g), NaOH (2.00 mmol, 0.08 g) and H2O (10.0 ml) was heated in a 23 ml stainless steel reactor with a Teflon liner at 443 K for 48 h. The colorless plate-like crystals were filtered and washed with water and acetone. Yield: 26% based on Y.

Refinement top

H atoms attached to C atoms were included at calculated positions and treated as riding atoms [C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C)]. The water H atoms were found in a diffrence map, relocated in idealized positions (O—H = 0.85 Å) and refined as riding atoms with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Symmetry code: (i) 1 - x, 1 - y, 1 - z; (ii) x + 1, y, z; (iii) -x, 1 - y, 1 - z; (iv) 1 - x, 2 - y, 2 - z; (v) x - 1, y, z.
[Figure 2] Fig. 2. The three-dimensional framework of the title compound.
Poly[diaqua-µ2-oxalato-di-µ4-succinato-diyttrium(III)] top
Crystal data top
[Y2(C4H4O4)2(C2O4)(H2O)2]Z = 1
Mr = 534.02F(000) = 262
Triclinic, P1Dx = 2.345 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 6.610 (2) ÅCell parameters from 336 reflections
b = 7.689 (3) Åθ = 2.1–27.8°
c = 8.018 (3) ŵ = 7.71 mm1
α = 101.589 (5)°T = 295 K
β = 101.843 (4)°Plate, colorless
γ = 101.492 (5)°0.21 × 0.18 × 0.09 mm
V = 378.2 (2) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1482 independent reflections
Radiation source: fine-focus sealed tube1376 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 26.2°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 87
Tmin = 0.215, Tmax = 0.505k = 69
2108 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0373P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
1482 reflectionsΔρmax = 0.60 e Å3
119 parametersΔρmin = 0.54 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (3)
Crystal data top
[Y2(C4H4O4)2(C2O4)(H2O)2]γ = 101.492 (5)°
Mr = 534.02V = 378.2 (2) Å3
Triclinic, P1Z = 1
a = 6.610 (2) ÅMo Kα radiation
b = 7.689 (3) ŵ = 7.71 mm1
c = 8.018 (3) ÅT = 295 K
α = 101.589 (5)°0.21 × 0.18 × 0.09 mm
β = 101.843 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1482 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1376 reflections with I > 2σ(I)
Tmin = 0.215, Tmax = 0.505Rint = 0.016
2108 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.08Δρmax = 0.60 e Å3
1482 reflectionsΔρmin = 0.54 e Å3
119 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Y0.53610 (4)0.62226 (3)0.80635 (3)0.01351 (12)
C10.1559 (4)0.3484 (3)0.7710 (3)0.0152 (5)
C20.0273 (4)0.1915 (4)0.7540 (4)0.0252 (6)
H2A0.08780.22000.85360.030*
H2B0.02710.08440.76160.030*
C30.2057 (4)0.1422 (4)0.5858 (4)0.0216 (6)
H3B0.14240.14250.48680.026*
H3A0.29000.01860.56970.026*
C40.3519 (4)0.2691 (4)0.5834 (3)0.0181 (6)
C50.3783 (4)0.9630 (4)0.9836 (3)0.0161 (5)
O10.2979 (3)0.4094 (2)0.9192 (2)0.0192 (4)
O20.1803 (3)0.4203 (3)0.6480 (2)0.0213 (4)
O30.3798 (4)0.3458 (3)0.7273 (3)0.0332 (5)
O40.4457 (3)0.2882 (3)0.4388 (3)0.0330 (5)
O50.3011 (3)0.7981 (2)0.8991 (3)0.0214 (4)
O60.2800 (3)1.0725 (2)1.0435 (3)0.0210 (4)
O70.8645 (3)0.6937 (3)0.7236 (3)0.0280 (5)
H7A0.84270.65640.61270.042*
H7B0.99490.73070.78110.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Y0.01401 (16)0.01412 (16)0.01224 (16)0.00374 (10)0.00208 (9)0.00406 (10)
C10.0149 (12)0.0151 (13)0.0164 (12)0.0070 (10)0.0039 (10)0.0029 (10)
C20.0170 (13)0.0255 (16)0.0329 (15)0.0021 (11)0.0000 (12)0.0171 (12)
C30.0149 (13)0.0161 (14)0.0275 (15)0.0002 (10)0.0005 (11)0.0001 (11)
C40.0177 (13)0.0132 (13)0.0199 (13)0.0011 (10)0.0002 (10)0.0059 (10)
C50.0145 (13)0.0172 (13)0.0169 (12)0.0033 (10)0.0024 (10)0.0071 (10)
O10.0187 (9)0.0201 (10)0.0139 (9)0.0003 (8)0.0016 (7)0.0044 (7)
O20.0216 (10)0.0232 (10)0.0162 (9)0.0001 (8)0.0013 (7)0.0076 (8)
O30.0434 (13)0.0273 (12)0.0304 (11)0.0170 (10)0.0105 (10)0.0013 (9)
O40.0275 (11)0.0441 (14)0.0311 (11)0.0075 (10)0.0012 (9)0.0253 (10)
O50.0160 (9)0.0153 (10)0.0290 (10)0.0017 (7)0.0049 (8)0.0004 (8)
O60.0164 (9)0.0165 (10)0.0301 (10)0.0051 (8)0.0074 (8)0.0036 (8)
O70.0167 (9)0.0412 (13)0.0207 (10)0.0033 (9)0.0032 (8)0.0012 (9)
Geometric parameters (Å, º) top
Y—O12.4755 (18)C2—H2A0.9700
Y—O1i2.3319 (19)C2—H2B0.9700
Y—O22.4658 (19)C3—C41.504 (4)
Y—O3ii2.303 (2)C3—H3B0.9700
Y—O4iii2.218 (2)C3—H3A0.9700
Y—O52.3876 (19)C4—O41.249 (3)
Y—O6iv2.3583 (19)C4—O31.253 (3)
Y—O72.391 (2)C5—O61.243 (3)
Y—Yi4.0005 (11)C5—O51.258 (3)
C1—O21.246 (3)C5—C5iv1.544 (5)
C1—O11.287 (3)O7—H7A0.8495
C1—C21.491 (4)O7—H7B0.8503
C2—C31.522 (4)
O4iii—Y—O3ii106.90 (8)O5—Y—Yi86.67 (5)
O4iii—Y—O1i165.91 (7)O7—Y—Yi123.69 (5)
O3ii—Y—O1i78.99 (7)O2—Y—Yi84.57 (5)
O4iii—Y—O6iv89.63 (8)O1—Y—Yi32.56 (4)
O3ii—Y—O6iv137.24 (8)C1—Y—Yi58.88 (5)
O1i—Y—O6iv77.83 (7)O2—C1—O1118.6 (2)
O4iii—Y—O582.76 (8)O2—C1—C2123.3 (2)
O3ii—Y—O5151.09 (8)O1—C1—C2118.1 (2)
O1i—Y—O598.21 (7)O2—C1—Y59.11 (13)
O6iv—Y—O568.11 (6)O1—C1—Y59.69 (12)
O4iii—Y—O776.30 (8)C2—C1—Y173.79 (19)
O3ii—Y—O774.60 (8)C1—C2—C3115.8 (2)
O1i—Y—O793.43 (7)C1—C2—H2A108.3
O6iv—Y—O771.50 (7)C3—C2—H2A108.3
O5—Y—O7134.23 (7)C1—C2—H2B108.3
O4iii—Y—O274.88 (7)C3—C2—H2B108.3
O3ii—Y—O279.10 (7)H2A—C2—H2B107.4
O1i—Y—O2119.12 (6)C4—C3—C2114.3 (2)
O6iv—Y—O2143.65 (7)C4—C3—H3B108.7
O5—Y—O277.31 (7)C2—C3—H3B108.7
O7—Y—O2132.82 (7)C4—C3—H3A108.7
O4iii—Y—O1126.14 (7)C2—C3—H3A108.7
O3ii—Y—O175.63 (8)H3B—C3—H3A107.6
O1i—Y—O167.40 (7)O4—C4—O3123.0 (3)
O6iv—Y—O1125.61 (6)O4—C4—C3118.9 (3)
O5—Y—O176.79 (7)O3—C4—C3118.0 (2)
O7—Y—O1147.15 (7)O6—C5—O5127.1 (2)
O2—Y—O152.31 (6)O6—C5—C5iv116.6 (3)
O4iii—Y—C1100.33 (8)O5—C5—C5iv116.3 (3)
O3ii—Y—C174.65 (8)C1—O1—Yi151.33 (16)
O1i—Y—C193.56 (7)C1—O1—Y93.65 (15)
O6iv—Y—C1141.99 (7)Yi—O1—Y112.60 (7)
O5—Y—C176.83 (7)C1—O2—Y95.19 (15)
O7—Y—C1146.47 (7)C4—O3—Yv129.0 (2)
O2—Y—C125.70 (7)C4—O4—Yiii165.24 (19)
O1—Y—C126.66 (7)C5—O5—Y118.76 (16)
O4iii—Y—Yi158.49 (6)C5—O6—Yiv120.22 (16)
O3ii—Y—Yi74.64 (6)Y—O7—H7A110.0
O1i—Y—Yi34.84 (4)Y—O7—H7B133.6
O6iv—Y—Yi103.73 (5)H7A—O7—H7B115.4
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z; (iii) x, y+1, z+1; (iv) x+1, y+2, z+2; (v) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O2vi0.852.022.867 (5)175
O7—H7B···O5ii0.851.962.812 (4)175
Symmetry codes: (ii) x+1, y, z; (vi) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Y2(C4H4O4)2(C2O4)(H2O)2]
Mr534.02
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)6.610 (2), 7.689 (3), 8.018 (3)
α, β, γ (°)101.589 (5), 101.843 (4), 101.492 (5)
V3)378.2 (2)
Z1
Radiation typeMo Kα
µ (mm1)7.71
Crystal size (mm)0.21 × 0.18 × 0.09
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.215, 0.505
No. of measured, independent and
observed [I > 2σ(I)] reflections
2108, 1482, 1376
Rint0.016
(sin θ/λ)max1)0.622
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.059, 1.08
No. of reflections1482
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.54

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Y—O12.4755 (18)Y—O4iii2.218 (2)
Y—O1i2.3319 (19)Y—O52.3876 (19)
Y—O22.4658 (19)Y—O6iv2.3583 (19)
Y—O3ii2.303 (2)Y—O72.391 (2)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z; (iii) x, y+1, z+1; (iv) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O2v0.852.022.867 (5)175
O7—H7B···O5ii0.851.962.812 (4)175
Symmetry codes: (ii) x+1, y, z; (v) x+1, y+1, z+1.
 

Acknowledgements

This work is supported by the Jiangxi Provincial Educational foundation (GJJ09227) and the Jiangxi Provincial Natural Science Foundation (No. 0620018).

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSeguatni, A., Fakhfakh, M., Vaauley, M. J. & Jouini, N. (2004). J. Solid State Chem. 177, 3402–3410.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C.-X., Li, Z.-F. & Wang, P. (2007). Acta Cryst. C63, m473–m475.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds