organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(2-Methyl-5-oxo-4,5-di­hydro-1,3-oxazol-4-yl­­idene)meth­yl]phenyl acetate

aSchool of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China, and bGuangdong Provincial Key Laboratory of Emergency Testing for Dangerous Chemicals, China National Analytical Center, Guangzhou 510070, People's Republic of China
*Correspondence e-mail: guopengran@gmail.com

(Received 2 June 2009; accepted 14 August 2009; online 22 August 2009)

In the title compound, C13H11NO4, an intramolecular C—H⋯N interaction helps to establish the conformation. In the crystal, two C—H⋯O contacts stack adjacent mol­ecules into a one-dimensional double chain running in the a-axis direction.

Related literature

The title compound is an important medical inter­mediate, see: Baker (1951[Baker, L. E. (1951). J. Biol. Chem. 193, 809-819.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11NO4

  • Mr = 245.23

  • Triclinic, [P \overline 1]

  • a = 5.5802 (15) Å

  • b = 7.446 (2) Å

  • c = 15.012 (4) Å

  • α = 94.322 (4)°

  • β = 93.156 (4)°

  • γ = 108.136 (4)°

  • V = 589.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.14 × 0.13 × 0.08 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SAINT-Plus; Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsion, USA.]) Tmin = 0.985, Tmax = 0.992

  • 3324 measured reflections

  • 2264 independent reflections

  • 1707 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.164

  • S = 1.04

  • 2264 reflections

  • 153 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N1 0.93 2.45 3.098 (4) 127
C7—H7⋯O2i 0.93 2.53 3.417 (4) 160
C13—H13B⋯O4ii 0.96 2.50 3.382 (4) 152
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is an important medical intermediate (Baker, 1951). Here we report the molecular and crystal structure of the title compound (Fig. 1). In the cystal structure,the five- and six-membered rings are nearly coplanar. The interplanar angle between the two rings is 1.392 (3)°. The crystal packing (Fig. 2) is stabilized by two types of intermolecular C—H···O interactions and one kind of intramolecular C—H···N interaction. Details are listed in Table 1. These interactions join the molecules into a double chain parallel to the a axis.

Related literature top

The title compound is an important medical intermediate, see: Baker (1951).

Experimental top

The title compund is synthesized according to previous reported literature (Baker, 1951). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in dichloromethane at room temperature.

Refinement top

For Methyls, H atoms were positioned theoretically with Uiso(H) = 1.5Ueq(C). The other H atoms in the title compound were placed geometrically and refined with fixed individual displacement parameters [Uiso(H) = 1.2Ueq(C)], using a riding model.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom-labeling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Perspective view along the b-axis of the crystal packing of the title compound. Dashed lines indicate C-H···O and C-H···N contacts.
4-[(2-Methyl-5-oxo-4,5-dihydro-1,3-oxazol-4-ylidene)methyl]phenyl acetate top
Crystal data top
C13H11NO4Z = 2
Mr = 245.23F(000) = 256
Triclinic, P1Dx = 1.383 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.5802 (15) ÅCell parameters from 2544 reflections
b = 7.446 (2) Åθ = 3.0–25.4°
c = 15.012 (4) ŵ = 0.10 mm1
α = 94.322 (4)°T = 293 K
β = 93.156 (4)°Block, colourless
γ = 108.136 (4)°0.14 × 0.13 × 0.08 mm
V = 589.1 (3) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2264 independent reflections
Radiation source: fine-focus sealed tube1707 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 15 pixels mm-1θmax = 26.1°, θmin = 2.7°
ϕ and ω scansh = 63
Absorption correction: multi-scan
(SAINT-Plus; Bruker, 2003)
k = 99
Tmin = 0.985, Tmax = 0.992l = 1815
3324 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0685P)2 + 0.3541P]
where P = (Fo2 + 2Fc2)/3
2264 reflections(Δ/σ)max < 0.001
153 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C13H11NO4γ = 108.136 (4)°
Mr = 245.23V = 589.1 (3) Å3
Triclinic, P1Z = 2
a = 5.5802 (15) ÅMo Kα radiation
b = 7.446 (2) ŵ = 0.10 mm1
c = 15.012 (4) ÅT = 293 K
α = 94.322 (4)°0.14 × 0.13 × 0.08 mm
β = 93.156 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2264 independent reflections
Absorption correction: multi-scan
(SAINT-Plus; Bruker, 2003)
1707 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.992Rint = 0.016
3324 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.04Δρmax = 0.15 e Å3
2264 reflectionsΔρmin = 0.14 e Å3
153 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4700 (4)0.9795 (3)0.17606 (14)0.0516 (6)
O11.3127 (3)0.7316 (3)0.44177 (12)0.0565 (5)
O20.2844 (4)0.6674 (3)0.02010 (13)0.0725 (6)
O30.2123 (4)0.9237 (3)0.04884 (12)0.0568 (5)
O41.0311 (4)0.7157 (3)0.54417 (13)0.0631 (6)
C11.1357 (5)0.7294 (4)0.37105 (17)0.0491 (6)
C21.1061 (5)0.5959 (4)0.29939 (17)0.0540 (7)
H21.19500.50910.30020.065*
C30.9434 (5)0.5922 (4)0.22626 (17)0.0518 (7)
H30.92290.50190.17780.062*
C40.8449 (5)0.8561 (4)0.29798 (17)0.0529 (7)
H40.75740.94390.29800.064*
C51.0078 (5)0.8603 (4)0.37083 (17)0.0552 (7)
H51.03120.95070.41950.066*
C60.8087 (5)0.7219 (3)0.22381 (16)0.0460 (6)
C70.6402 (5)0.7112 (4)0.14512 (17)0.0485 (6)
H70.63120.61400.10100.058*
C80.4950 (5)0.8196 (3)0.12586 (16)0.0456 (6)
C90.3284 (5)0.7834 (4)0.04328 (18)0.0517 (6)
C100.3096 (6)1.0311 (4)0.1294 (2)0.0614 (5)
C110.2127 (6)1.1906 (4)0.1497 (2)0.0614 (5)
H11A0.29771.26190.20460.092*
H11B0.03431.14270.15580.092*
H11C0.24301.27150.10190.092*
C121.2360 (5)0.7171 (4)0.52634 (17)0.0483 (6)
C131.4387 (6)0.6997 (4)0.5901 (2)0.0614 (5)
H13A1.45210.78170.64390.092*
H13B1.59690.73530.56320.092*
H13C1.39840.57070.60440.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0563 (13)0.0520 (13)0.0512 (12)0.0260 (10)0.0003 (10)0.0015 (10)
O10.0468 (10)0.0774 (13)0.0507 (11)0.0283 (9)0.0027 (8)0.0039 (9)
O20.0901 (16)0.0779 (14)0.0548 (12)0.0428 (12)0.0140 (11)0.0167 (11)
O30.0637 (12)0.0609 (12)0.0513 (11)0.0312 (10)0.0071 (9)0.0008 (9)
O40.0549 (12)0.0869 (15)0.0590 (12)0.0379 (11)0.0086 (9)0.0100 (10)
C10.0461 (14)0.0585 (15)0.0465 (14)0.0220 (12)0.0049 (11)0.0049 (12)
C20.0600 (16)0.0603 (16)0.0524 (15)0.0355 (14)0.0043 (13)0.0020 (13)
C30.0634 (17)0.0516 (15)0.0470 (14)0.0295 (13)0.0039 (12)0.0020 (11)
C40.0654 (17)0.0523 (15)0.0507 (15)0.0339 (13)0.0019 (13)0.0007 (12)
C50.0665 (17)0.0570 (16)0.0468 (14)0.0299 (14)0.0005 (13)0.0061 (12)
C60.0512 (14)0.0463 (13)0.0450 (13)0.0219 (11)0.0058 (11)0.0030 (11)
C70.0563 (15)0.0482 (14)0.0442 (13)0.0220 (12)0.0046 (11)0.0001 (11)
C80.0502 (14)0.0469 (13)0.0429 (13)0.0206 (11)0.0040 (11)0.0026 (10)
C90.0581 (16)0.0522 (15)0.0493 (14)0.0249 (13)0.0031 (12)0.0025 (12)
C100.0603 (10)0.0662 (11)0.0616 (10)0.0281 (8)0.0028 (8)0.0013 (8)
C110.0603 (10)0.0662 (11)0.0616 (10)0.0281 (8)0.0028 (8)0.0013 (8)
C120.0472 (15)0.0487 (14)0.0487 (14)0.0173 (12)0.0005 (11)0.0029 (11)
C130.0603 (10)0.0662 (11)0.0616 (10)0.0281 (8)0.0028 (8)0.0013 (8)
Geometric parameters (Å, º) top
N1—C101.275 (3)C4—C61.400 (3)
N1—C81.409 (3)C4—H40.9300
O1—C121.363 (3)C5—H50.9300
O1—C11.405 (3)C6—C71.450 (3)
O2—C91.196 (3)C7—C81.345 (4)
O3—C101.381 (3)C7—H70.9300
O3—C91.390 (3)C8—C91.463 (4)
O4—C121.185 (3)C10—C111.469 (4)
C1—C21.374 (4)C11—H11A0.9600
C1—C51.376 (4)C11—H11B0.9600
C2—C31.379 (4)C11—H11C0.9600
C2—H20.9300C12—C131.484 (4)
C3—C61.398 (3)C13—H13A0.9600
C3—H30.9300C13—H13B0.9600
C4—C51.375 (4)C13—H13C0.9600
C10—N1—C8105.4 (2)C7—C8—N1129.4 (2)
C12—O1—C1118.8 (2)C7—C8—C9122.6 (2)
C10—O3—C9105.4 (2)N1—C8—C9108.0 (2)
C2—C1—C5121.3 (2)O2—C9—O3121.5 (2)
C2—C1—O1116.6 (2)O2—C9—C8133.5 (2)
C5—C1—O1122.0 (2)O3—C9—C8105.0 (2)
C1—C2—C3119.3 (2)N1—C10—O3116.3 (2)
C1—C2—H2120.3N1—C10—C11128.7 (3)
C3—C2—H2120.3O3—C10—C11115.1 (2)
C2—C3—C6121.1 (2)C10—C11—H11A109.5
C2—C3—H3119.5C10—C11—H11B109.5
C6—C3—H3119.5H11A—C11—H11B109.5
C5—C4—C6121.1 (2)C10—C11—H11C109.5
C5—C4—H4119.4H11A—C11—H11C109.5
C6—C4—H4119.4H11B—C11—H11C109.5
C4—C5—C1119.4 (2)O4—C12—O1123.0 (2)
C4—C5—H5120.3O4—C12—C13125.9 (3)
C1—C5—H5120.3O1—C12—C13111.1 (2)
C3—C6—C4117.8 (2)C12—C13—H13A109.5
C3—C6—C7118.6 (2)C12—C13—H13B109.5
C4—C6—C7123.6 (2)H13A—C13—H13B109.5
C8—C7—C6130.1 (2)C12—C13—H13C109.5
C8—C7—H7114.9H13A—C13—H13C109.5
C6—C7—H7114.9H13B—C13—H13C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N10.932.453.098 (4)127
C7—H7···O2i0.932.533.417 (4)160
C13—H13B···O4ii0.962.503.382 (4)152
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC13H11NO4
Mr245.23
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.5802 (15), 7.446 (2), 15.012 (4)
α, β, γ (°)94.322 (4), 93.156 (4), 108.136 (4)
V3)589.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.14 × 0.13 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SAINT-Plus; Bruker, 2003)
Tmin, Tmax0.985, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
3324, 2264, 1707
Rint0.016
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.164, 1.04
No. of reflections2264
No. of parameters153
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.14

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N10.932.453.098 (4)127
C7—H7···O2i0.932.533.417 (4)160
C13—H13B···O4ii0.962.503.382 (4)152
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.
 

Acknowledgements

This work was supported by Guangdong Provincial Key Laboratory of Emergency Testing for Dangerous Chemicals, China National Analytical Center (Guangzhou), People's Republic of China.

References

First citationBaker, L. E. (1951). J. Biol. Chem. 193, 809–819.  PubMed CAS Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsion, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds